NEVADA BUREAU OF MINES AND GEOLOGY

BULLETIN 91

THERMAL WATERS OF NEVADA

LARRY J. GARSIDE JOHN H. SCHILLING

Descriptions of Nevada's thermal waters in springs, wells, and mine workings: locations, geology, temperatures, flow rates, water chemistry, well depths, drilling and other exploration activities, and past and present uses.

MACKAY SCHOOL OF MINES UNIVERSITY OF NEVADA · RENO 1979

UNIVERSITY OF NEVADA SYSTEM

Board of Regents

June Whitley, Chairman Jill Derby James Eardley Joseph M. Foley Dorothy Gallagher

Chris Karamanos Lonnie Hammargren Daniel J. Klaich Carolyn M. Sparks

Mark H. Dawson, Chancellor

UNIVERSITY OF NEVADA-RENO

Joseph N. Crowley, President

MACKAY SCHOOL OF MINES Richard Bradt, Dean

NEVADA BUREAU OF MINES AND GEOLOGY

Jonathan G. Price, Director/State Geologist

SCIENTIFIC RESEARCH STAFF

MINERAL RESOURCES AND GEOCHEMISTRY Harold F. Bonham, Jr., Research Geologist Stephen Castor, Industrial-Minerals Geologist Patrick Goldstrand, Graduate Research Assistant Larry J. Garside, Research Geologist Liang-Chi Hsu, Geochemist Richard B. Jones, Metal-Resources Geologist Daphne D. LaPointe, Research Geologist Paul J. Lechler, Chief Chemist/Geochemist David Davis, Mineral Preparator/Shop Mechanic Mario Desilets, Assistant Chemist Brett Pecoraro, Laboratory Assistant Joseph V. Tingley, Economic Geologist

ENVIRONMENTAL, ENGINEERING, AND **URBAN GEOLOGY**

John W. Bell, Engineering Geologist Craig M. dePolo, Research Geologist Thomas P. Lugaski, Research Geologist Alan R. Ramelli, Research Geologist James G. Rigby, Engineering Geologist

GEOLOGIC INFORMATION

Keryl Fleming, Geologic Computer Specialist John Taylor, Graduate Research Assistant Ron Hess, Geologic Information Specialist Becky S. Weimer, Geologic Information Specialist

ADMINISTRATIVE AND SUPPORT STAFF

PUBLICATION SUPPORT Rayetta Buckley, Word Processing Supervisor Richard Meeuwig, Publications Editor Susan L. Tingley, Publications Manager/Cartographer Linda P. Hobbs, Geologic Cartographer Larry Jacox, Geologic Cartographer Mati A. Stephens, Publication Technician

ADMINISTRATION, CLERICAL SUPPORT, AND PUBLICATION SALES Ann E. Dalbec, Management Assistant Dorene E. Camp, Receptionist Brenda E. Craig, Account Clerk Arlene Kramer, Sales Manager

First edition, second printing, 1989: 1000 copies Composed in IBM Press Roman type at the Nevada Bureau of Mines and Geology Printed by A. Carlisle, 1080 Bible Way, Reno, NV Note:

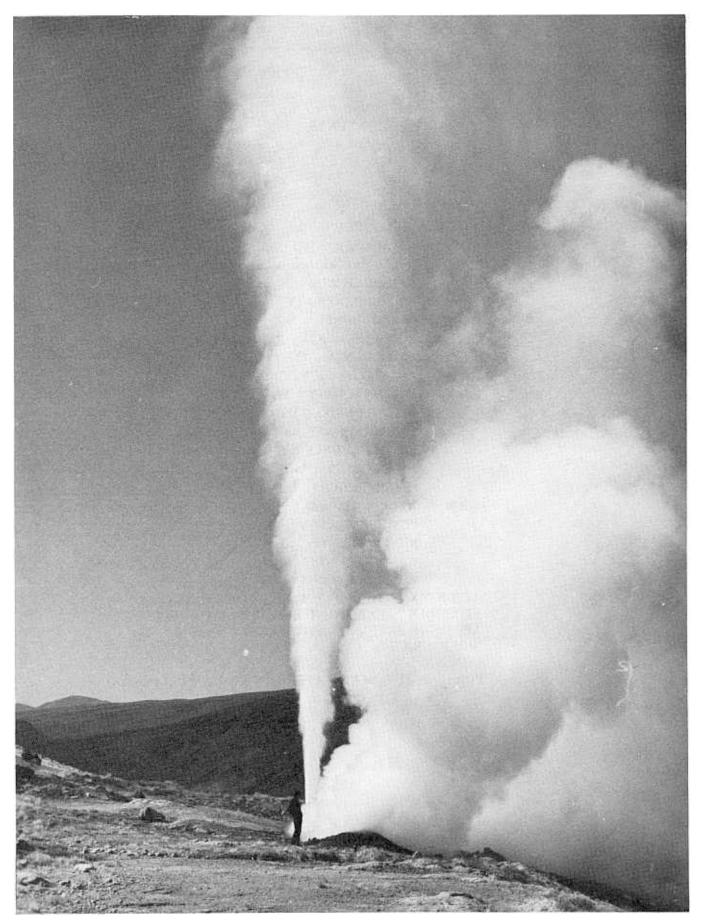
Minor corrections to the first printing were made in text, appendixes, and plate.

NEVADA BUREAU OF MINES AND GEOLOGY

BULLETIN

THERMAL WATERS OF NEVADA

LARRY J. GARSIDE JOHN H. SCHILLING


Descriptions of Nevada's thermal waters in springs, wells, and mine workings: locations, geology, temperatures, flow rates, water chemistry, well depths, drilling and other exploration activities, and past and present uses.

MACKAY SCHOOL OF MINES UNIVERSITY OF NEVADA · RENO 1979

CONTENTS

INTRODUCTION 1 NEVADA RESOURCES 2 General Information 2 Hot Springs and Geothermal Areas 6 CARSON CITY 6 CHURCHILL COUNTY 6 CLARK COUNTY 20 DOUGLAS COUNTY 21 ELKO COUNTY 22 ESMERALDA COUNTY 27 EUREKA COUNTY 29 HUMBOLDT COUNTY 35 LANDER COUNTY 41 LINCOLN COUNTY 45 LYON COUNTY 46 MINERAL COUNTY 47 NYE COUNTY 48 PERSHING COUNTY 55 STOREY COUNTY 63 WASHOE COUNTY 64 WHITE PINE COUNTY 79 APPENDIX 1-THERMAL WATER DATA 82 APPENDIX 2-EXPLORATORY DRILLING 147 APPENDIX 3-TEMPERATURE CONVERSION 150 BIBLIOGRAPHY 151 INDEX 160 PLATE 1-THERMAL WATERS OF NEVADA in pocket

Steam well at Beowawe Geysers, Eureka County (photo by Dennis Trexler).

INTRODUCTION

Purpose and scope

The goal of this report is to provide basic information that can be used to determine the potential of Nevada's geothermal resources and aid in their exploration, development, and utilization—to bring together under one cover all the scattered data, published and unpublished, on Nevada's thermal waters, both hot water and steam. Information about springs, wells, mine workings, and other occurrences is included. Nevada does have huge geothermalenergy resources, as this report indicates, however, no attempt was made to evaluate the potential of any given area in the State.

Although we have tried to be as complete as practicable without making an exhaustive search, this report should be considered as preliminary and incomplete—a first pass at collecting existing data. The bibliography lists most of the references containing information on Nevada thermal waters. Many errors probably have been perpetuated because temperatures, flow rates, and chemical analyses were not field-checked.

The Nevada Bureau of Mines and Geology will continue to collect data on geothermal resources; this information will be available for inspection (by appointment), and staff members will continue to be available to answer questions.

Corrections, as well as additional information, are welcome (please send to Larry Garside, the senior author).

Organization of report

Much of the data collected is given in tabular form in *Appendix 1* (Nevada Thermal Water Data) and *Appendix 2* (Exploratory Geothermal Drilling in Nevada). It also is summarized in narrative form, alphabetically by county and by geothermal area, in the section preceding the two Appendices. In a general way the descriptions of geothermal areas within individual counties are arranged according to maximum reported temperature.

Definition of thermal water

This report lists all warm or hot (anomalously thermal) water—water that has a higher temperature than it would if affected only by "normal" wall-rock and/or surface temperatures. Unfortunately, it is difficult at best to determine an accurate cutoff for individual springs or wells.

Subsurface temperatures are affected by climatic conditions to depths of about 100 feet; below 100 feet temperatures in most of Nevada "normally" increase about 1°F every 55 feet, but increase more rapidly in areas of anomalously high heat flow. The water temperature in a spring or well depends on: (1) the surface-water temperature at the ground-water recharge point; (2) heating or cooling during near-surface movement; (3) heating during movement to greater depths; (4) cooling in returning to the surface or shallower depths; and (5) cooling or heating by mixing with other ground water.

Unfortunately all the information needed to determine accurately the absolute minimum temperature necessary for a well or spring to be thermal, is never available. In this report we have used $70^{\circ}F$ as an arbitrary cutoff for springs

and water wells; in a few cases springs with temperatures above 70°F have been omitted for various specific reasons, and in Pahrump Valley and the Las Vegas basin water wells were omitted when they fell below the temperature expected from a normal geothermal gradient.

Because an arbitrary cutoff had to be used, some truly thermal wells and springs undoubtedly have been left out of this report, and some nonthermal occurrences have undoubtedly been included. Users should also keep in mind that "cold" (nonthermal) and warm water can chemically indicate the presence of anomalously hot temperatures at depth; cold springs and wells should not be ignored when exploring for geothermal resources.

Definition of geothermal area

In this report a geothermal area must: (1) have at least one known occurrence of thermal water; and (2) form a geographic cluster and/or appear to have a common source and form a continuous anomaly at depth. Information is usually lacking to prove a connection between two or more occurrences, and in many cases springs and wells have been grouped together only to simplify their presentation. Thus the limits of each geothermal area have had to be defined in a rather arbitrary manner.

System of naming and numbering

Geothermal areas have been assigned geographical names—usually that of the largest, best known hot spring, or less commonly of a well-known feature in the area. Hot-spring names used in this report are those considered to be the most widely used; where needed, other alternate names are listed in parentheses after the primary name. It is hoped that the primary names will be used whenever possible.

Each hot-spring group, geothermal area, and isolated hot spring has been given a unique identification number which is used in the text and tables, as well as on plate 1.

Location

Section-township-range locations are given for each spring and well. Where more detailed locations are known the quarter-quarter-quarter system is used (for example: NE/4 SE/4 NW/4 S5,T20,R30E indicates that the occurrence is located within approximately a 10 acre parcel which is the northeast quarter of the southeast quarter of the northwest quarter of Section 5, Township 20 North, Range 30 East). In some cases, these described locations were estimated by projecting the land grid into unsurveyed areas.

Usually the location of springs and wells is from (or was cross-checked with) U. S. Geological Survey $7\frac{1}{2}$, 15', and $1x2^{\circ}$ topographic quadrangle maps, using the most detailed map available for a given area. Unless the well or spring is actually shown and named on the map, or the location was field-checked, the location information was taken from the reference listed and may be wrong. Incorrect locations were found in many published reports, and some undoubtedly are carried over to this report.

Acknowledgements

So many individuals and organizations have contributed to this report that we have not listed them individually in this section. Their help is gratefully acknowledged. We have tried to show their support by citing sources of information throughout the report, and by listing published sources in the Bibliography.

The Nevada Oil and Gas Conservation Commission contributed \$1,500 toward the funding of this project. We greatly appreciate this support.

We also wish to thank other members of the Nevada Bureau of Mines and Geology staff who helped make this report possible: Janet Amesbury, Bill Daniels, Robert Kirkham, Helen Mossman, Susan Nichols, LaVerne Rollin, Georgianna Trexler, and Becky Weimer.

NEVADA RESOURCES

General Information

Geothermal energy is simply the natural heat of the earth. The earth can be thought of as a great furnace with the amount of contained heat so vast that it is impossible to comprehend. It has been estimated, for example, that heat equivalent to the combustion of 300 million barrels of oil is released if 1 cubic mile of hot, near-surface rock is cooled from 625° F to 350° F. The problem is in extracting and utilizing this energy.

The source of the earth's heat, which increases with increasing depth beneath the surface, is believed to be due to the decay of radioactive elements as well as to frictional (tidal) forces. Because heat continues to be produced, one should think of the earth as a heat generator, not simply as a reservoir.

At present it is probably not economically feasible to drill a deep well in any arbitrary area and obtain useful quantities of heat. Therefore, for the near term, geothermal energy utilization will be concentrated in those areas of the world where "hot spots" are known to occur, for example, the "Ring of Fire"-the belt of volcanoes and earthquake activity many thousands of miles in length that circles the Pacific Ocean. Nevada is located within this tectonically active belt. Hot springs or other areas where temperatures increase more rapidly than normal with depth may indicate near-surface sources of heat, such as magma chambers, or hot recently solidified rock. If water flows through such heated zones, it will, in turn, become heated. Therefore it is in these areas, where water can act as a transfer agent for the heat, that exploration for geothermal energy will be concentrated.

Although geothermal energy can be used directly for space heating, much of the exploration in Nevada will concentrate on finding naturally heated reservoirs that can produce steam or hot water for use in electric-power generation. The so-called dry-steam fields, like The Geysers in northern California, are probably rare in nature. When wells are drilled to tap a geothermal reservoir, the product may be dry steam unaccompanied by water, or it may be extremely hot water at elevated pressure. Hot-water fields are much more common, but more complicated equipment will be required to best utilize their energy. Minerals are much more soluble in hot water than in cold, therefore these fields often yield water with considerable amounts of dissolved minerals. Also, the amount of dissolved mineral matter varies from one geothermal area to another. Dissolved minerals can clog and corrode pipe and generating facilities, and equipment to handle these problems is still mainly in the experimental stages. (For example, down-hole heat exchange systems could prevent the mineral-laden water from coming in contact with generating equipment.)

Hydroelectric power is the only power source that has been found to be cheaper than geothermal power, and then only in certain cases. At The Geysers, California, the only commercial U. S. geothermal installation, geothermal electric power has proven to be cheaper than power from other fuel sources, regardless of plant size (Koenig, 1973). The cost of generation at The Geysers is in fact, about two-thirds of that which could be obtained from a coalfired plant. The Geysers presently produce 500 megawatts of electricity, enough to supply all of San Francisco's needs.

Use

Hot springs and wells are scattered over the entire State (plate 1), and there are at least 300 thermal wells, springs, and spring clusters. The use of hot springs in Nevada dates back to prehistoric time, when Indians used them for bathing, scalding ducks and geese, and as an aid in removing the pitch from pinyon-pine cones and seeds. Early explorers and the wagon trains of the 49'ers used the hot springs for drinking, bathing, and watering stock. Because of the State's arid climate, water, even if mineralized and hot, has always been an important resource. The waters of almost all the springs in the State, whether hot or not, have been appropriated for some beneficial use. The mines of the Comstock Lode at Virginia City were famous for the great quantities of hot water encountered. At Tonopah, 3 million gallons of hot water were pumped every day from the workings; the flow from the Tonopah mines was used to operate greenhouses. In the 1800's and early 1900's resorts grew up around many of the hot springs. Many of these spas are now gone, but some, such as those at Steamboat and Lawton Hot Springs near Reno, are still popular. Today many hot-spring areas are used for swimming and other recreational activities. Swimming pools using the naturally heated water from hot springs are common in the less populated areas of the State. The hot water, either from springs or shallow wells, is often suitable for use in pools with no treatment, although mixing of water of various temperatures may be necessary. Natural pools and ponds at hot springs can be near boiling and are extremely dangerous. When investigating hot-spring areas, persons should exercise considerable caution. (Hot mud often occurs under a seemingly solid surface. This surface may break under a person's weight.)

Steamboat Hot Springs, 8 miles south of Reno, have been used for several commercial purposes, including bath resorts, processing asphalt emulsions, and in the melting and casting of plastic explosives. The hot water from Moana Hot Springs in Reno has been used in the past for a swimming pool and to melt winter ice and snow from streets. In the Stillwater area near Fallon in west-central Nevada, steam and hot water were encountered while drilling water wells in an area where there were no hot spings, and have been used to heat dwellings in this farming area. A number of homes in the southwestern part of Reno (along the Steamboat-Moana-Lawton's thermal anomaly) are heated by simple heat-exchange systems that utilize the heat from hot water encountered in wells. This source of home heating has considerable potential (Bateman and Scheibach, 1975).

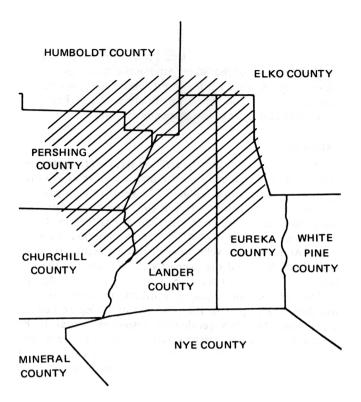


FIGURE 1. Location of Battle Mountain heat-flow high in northcentral Nevada.

The heating of greenhouses with naturally heated water also has great potential. At Wabuska, near Yerington, water at temperatures of over 200°F has been used to heat greenhouses for growing vegetables, especially tomatoes. Geothermally heated greenhouses are also in use at Wendel Hot Springs near Honey Lake, Calif. (near the California– Nevada boundary) and, a food dehydration plant is being built at Brady's Hot Springs.

Although no electricity is generated in Nevada from geothermal steam, the utilization of geothermal energy for electric power is probably its highest potential dollar-value use. Although technological problems remain, the State is blessed with several areas that may soon be the sites of geothermal generating facilities, possibly utilizing heatexchange systems.

Geothermal energy is of special importance to Nevada. Electric power needs in the State are expanding at a rapid rate because of the growing population and increased per capita consumption, as well as the extension of transmission lines to many remote areas. Power consumption in Nevada will probably be about 11 million megawatt-hours in 1978 and is expected to rise to approximately 18 million megawatt-hours per year by 1990. Generating capacity in Nevada will rise to an even higher level, as generating facilities are constructed in Nevada to supply the needs of population centers in California. Nevada's entire population of over half a million persons could be supplied by a single 1200-megawatt nuclear plant, or by a geothermal field the size of The Geysers in northern California (when this field is fully developed). Obviously the demand for electrical energy from outside the State will greatly influence both the development of electric generation facilities and the exploration for new energy sources, including geothermal power.

Geology

The Basin and Range physiographic province, in which Nevada is located, is an area of high heat flow, believed to result from near-melting conditions in the lower crust and upper mantle. The west-central and north-central areas of Nevada have higher hot-spring temperatures and are regions of greater than normal heat flow. An area of conspicuously higher heat flow, called the"Battle Mountain high," is located in north-central Nevada (fig. 1). The boundaries of this region, and possibly others as yet undetected, need to be delineated by more systematic heat-flow surveys. This would provide useful guidance in the search for economically exploitable geothermal fields (Sass and others, 1971). The Battle Mountain high has an indicated average flow of about three heat flow units (two heat flow units is an average value for Nevada), but the thermal gradients, which range from 30° to 60°C/km (about 2.6–4.3°F/100 ft), are not as high as might be expected because of relatively high thermal conductivities of the rocks in this area (White, 1973). The Battle Mountain high may be the result of fairly recent intrusion of magma into the earth's crust. The Ouaternary volcanism within the region suggests that this view is reasonable (Sass and others, 1971).

Nevada has a considerable range in mean annual temperature due to both its variations in elevation and its extent over approximately 7 degrees of latitude. The mean monthly temperature usually varies 15° to 20° F from northern to southern Nevada. For this reason, comparisons of hot-spring temperatures with statewide mean annual air temperatures are usually not worthwhile.

In many areas of the world, hot springs and other hightemperature phenomena such as fumeroles are associated with geologically young igneous rocks, commonly less than 5 million years old. Young volcanic rocks or active volcanoes at the earth's surface often indicate that hotter bodies of rock, or fluid magma, are present below, in the upper part of the earth's crust.

Nevada lies in the center of a large province of Cenozoic volcanic rocks. Although many of these rocks are 10 to 30 million years old, younger volcanic rocks are found in many areas. In Nevada, young volcanic rocks are found in the Mono Lake-Aurora area of southwestern Mineral County and adjacent California, in southwestern Eureka County, north of Silver Peak (Esmeralda County), in the Carson and Virginia Ranges near Reno, at Lunar Crater in northeastern Nye County, at the north end of the Fish Creek Mountains in northern Lander County, in Reveille Valley and the Amargosa Desert in Nye County, on Railroad Point in northwestern Humboldt County, and in the Winnemucca-Battle Mountain area of north-central Nevada, as well as in a number of other areas (Stewart and Carlson, 1976a). K-Ar (potassium-argon) dating has defined the age relations of many volcanic centers in Nevada, and will continue to be useful in the future. Isotopic ages of Nevada rocks are listed in Schilling (1965b), and additional data have been and will continue to be reported in various articles of the journal Isochron/West.

Many of Nevada's numerous hot springs occur along major faults which bound the State's mountain ranges. The basin-and-range pattern of linear, north-south-trending mountain and valley blocks is a result of these faults. The ground water in the valleys often circulates to considerable depths along some of these fractures, and is heated by the

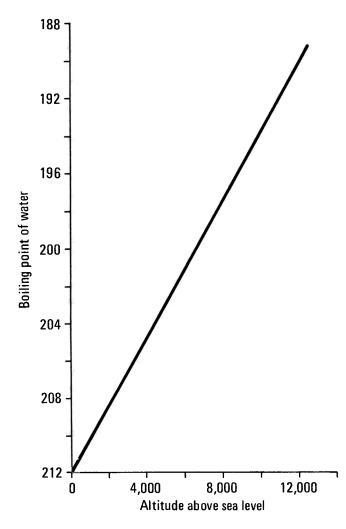


FIGURE 2. Variation of the boiling point of water with altitude above sea level (data from Waring, 1965).

hotter rocks found at these depths. If one knows the approximate geothermal gradient, the depth of circulation of ground water can often be estimated from water temperatures of springs (assuming little cooling has taken place as the water ascends to the surface). The ground water under many of Nevada's valleys is measured in the millions of acre feet per basin.

Hot-spring temperatures in the State range up to boiling, although surface-water measurements on boiling springs will commonly be somewhat below the boiling point for any given elevation because surface evaporation and other cooling phenomena may substantially reduce water temperatures. The best measurements are usually made directly in the orifice of the spring, below the water surface where the flow is greatest. Below altitudes of 5,000 meters (about 16,000 feet), the boiling point of water decreases 1°F for each 550-foot (1°C for each 303 meters) increase in elevation above sea level. Figure 2 is a graph showing altitude plotted against the boiling point; from this graph it can be seen that a spring at an elevation of 6,500 feet will be boiling at water temperatures nearly 12°F below the sea-level boiling point. Conversely, the boiling point rapidly increases with depth below the earth's surface (see fig. 3). Gases in solution lower the boiling point while mineral substances in solution raise the boiling point (however, the effect of elevation or depth is much greater than any change due to dissolved materials).

The major portion of Nevada's hot springs are found in the northern half of the State. Among the many geothermal areas shown on plate 1, the hottest subsurface temperatures were encountered at Beowawe, Brady's, Desert Peak and Steamboat Hot Springs (see Appendices 1 and 2).

Exploration

Only in the past twenty years have serious attempts been made to exploit Nevada's geothermal resources as a source of power. Exploratory drilling in 13 geothermal areas first took place in the period between 1959 and 1965. Although many of these wells were less than 1,000 feet in depth, temperatures of 300° to 400° F were encountered at several areas. At least four wells were drilled to depths of more than 3,500 feet, and the deepest well (Western Geothermal Inc., Needles No. 1) was 5,888 feet deep (Appendix 1).

The cessation of exploratory drilling in the mid-1960's was due in large part to the problems of leasing on Federal land. Also, Nevada's geothermal resources appear to be mainly in hot-water systems rather than dry steam, and interest in this type of field was low in the early part of the 1960's. Today, with changes in energy supply and investment attitudes, exploration is once again being carried on in Nevada for geothermal power. The geothermal wells in the 1970's are being drilled to greater depths and at locations outside of known hot-spring areas. In general, these major exploratory wells are considerably more expen-

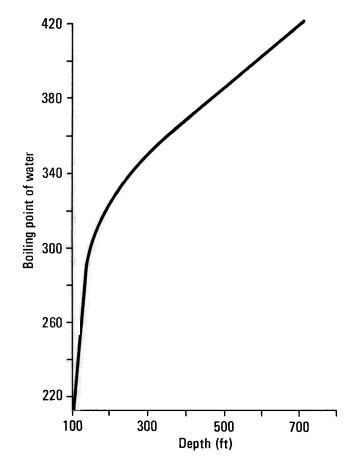


FIGURE 3. Variation of the boiling point of water with depth below a water surface at sea level (data from Waring, 1965).

sive than were those drilled in the 1960's and they are being located on the basis of sophisticated geological, geochemical, and geophysical exploration techniques. A large number of temperature-gradient drill holes were drilled in Nevada in the mid 1970's by private geothermal exploration companies and government agencies. In addition geophysical exploration (gravity, magnetics, seismic, electrical resistivity, etc.) has been used to site major exploration wells in a number of areas. Grose (1971) presents a review of the various exploration methods used in the search for geothermal energy.

A great deal of geothermal-related geologic research has been done in the State over the past several years. Much of this research has been directed toward the collection of basic geologic data on Nevada's known geothermal systems. This data has been released by a number of research groups as published and open-file reports, and these reports are cited where appropriate in the following sections of this report and are listed in the bibliography. The private sector has also collected a large amount of geothermal information; much of it has not been released to the public, although exchanges of this information between companies for their mutual benefit is quite common.

There are numerous sources of general background information on the geology of Nevada. Most of the geologic and geophysical reports and maps have been published by either the Nevada Bureau of Mines and Geology or the U. S. Geological Survey. Also, many of the open-file and limiteddistribution reports on Nevada's geothermal resources are available at the Bureau's offices. For help in determining what is available, (including unpublished information) contact the Nevada Bureau of Mines and Geology (on the University of Nevada, Reno, campus: 702-784-6691).

Regulations

An August 1965 opinion by the Deputy Attorney General of Nevada considers geothermal resources as water resources, and has placed the regulatory jurisdiction with the Division of Water Resources, Department of Conservation and Natural Resources. Anyone planning to drill a geothermal well should therefore contact:

Roland G. Westergard, State Engineer Division of Water Resources 201 South Fall Street Carson City, NV 89701 (702) 885–4380

The State regulations for the drilling and plugging of temperature-gradient drill holes and geothermal wells are similar to those for drilling water wells. Although exploration and subsurface information obtained as a result of a geothermal project must be filed with the State engineer, this information is confidential for a 5-year period, unless written consent to disclose it is given by the operator (Nevada Revised Statutes, chapter 534A).

The Nevada Division of Environmental Protection establishes regulations for all forms of pollution. Although there are no laws specifically dealing with pollution caused by geothermal exploration and development, the general State laws and regulations definitely apply. For more information, contact: Division of Environmental Protection Department of Conservation and Natural Resources 201 South Fall Street Carson City, NV 89701 (702) 885-4670

Nevada State land consists of less than 1 percent of the 110,540 square miles (70,745,600 acres) of total land area. Nearly half of all State-owned land consists of State parks. Because there is essentially no State land with geothermal potential on which leasing would be allowed, no State geothermal-leasing regulations have been issued.

Approximately 86 percent of Nevada's land area is under the jurisdiction of the Federal Government. Much of this land is public domain-public lands under Federal management which have not been reserved for special uses such as parks, National Forests, recreation areas, and military installations (Lutsey and Nichols, 1972). Public domain lands in Nevada total approximately 47 million acres (about 66 percent), and are administered by the Bureau of Land Management of the U.S. Department of the Interior. The Secretary of the Interior is authorized by Public Law 91-581 (The Geothermal Steam Act of 1970) to issue leases for the development and utilization of geothermal steam and associated geothermal resources. Lands administered by the Forest Service, U. S. Department of Agriculture, are included in those lands available for geothermal leases. Further information can be obtained from:

U.S. Bureau of Land Management Nevada State Office 850 Harvard Way Reno, NV 89502

The BLM office also has available for public inspection land plats and other maps which show land use, ownership, survey markers, and other data.

Only about 12 percent of the land area in Nevada, amounting to some 8 million acres, is held in private ownership. The Southern Pacific Co. is the single largest owner of private land, and holds about 1.5 million acres. Over 80 percent of Nevada's private land lies along the route of the Southern Pacific Railroad (and the Humboldt River), forming a 40-mile wide band across the northern third of the State. Much of the private land in Nevada is available for geothermal exploration and development through lease arrangements with private owners.

A recent ruling by the Ninth U. S. Circuit Court of Appeals has indicated that the geothermal rights were reserved to the Federal Government when it reserved the rights to "coal and other minerals" on grazing land conveyed to homesteaders through the Stock-Raising Homestead Act of 1916. The Supreme Court has upheld this ruling. The Ninth Court also ruled that all elements in geothermal systems—porous rock, magma, and steam—are minerals for the purpose of deciding ownership. Thus, the owner of the land surface and water rights may not necessarily hold title to the geothermal rights.

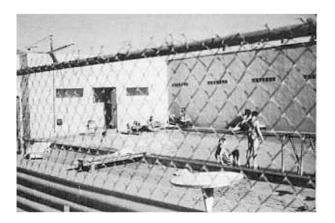
Indian lands, comprising 1.6 percent of the State, may also be available for geothermal exploration and exploitation through the U.S. Bureau of Indian Affairs or individual tribal councils.

Hot Springs and Geothermal Areas

This section of the report describes the State's major hot springs and geothermal areas. It consists of summaries of the geology and history of the better known geothermal localities, and is not intended to be a complete listing of data on all thermal springs and wells—Appendix 1 contains the detailed information on water quality, location, spring and well names, etc. The springs, spring clusters, and geothermal areas are organized by county, and in a general way, by the maximum reported temperature within an individual county.

CARSON CITY

Carson (Swift's, Shaw's) Hot Springs [1]


Hot springs on the north edge of the town of Carson City, have temperatures as high as 120°F. These springs, now referred to as Carson Hot Springs, were formerly called Swift's or Shaw's Hot Springs. The water is used in a swimming pool that is open to the public. Water supplied to the pool is pumped, probably from a shallow well near the pumphouse to the north of the pool area.

Nevada State Prison spring [2]

A hot spring is reported from the area of the Nevada State Prison (Waring, 1965). The old State Prison building was used for some of the early meetings of the Nevada Legislature in the early 1860's, and the legislators often used a large bathhouse there, probably Curry's Warm Springs Hotel (letter of Andrew Marsh to the Sacramento Union, Sept. 30, 1861, published in Nevada Highways and Parks, Spring, 1974). The Warm Springs Hotel was in operation adjacent to the prison in 1867 (Gillis, 1868).

Pinyon Hills [3]

There are a number of warm water wells in the Pinyon Hills subdivision about 2 miles southeast of the Nevada State Prison. The temperatures are generally 90° to 114° F, and the water is generally of poor quality (Glancy and Katzer, 1975; Center for Water Resources Research, University of Nevada, Reno, unpublished data).

Geothermal swimming pool at Carson Hot Springs, Carson City.

CHURCHILL COUNTY

Brady's (Springer's, Fernley) Hot Springs [10]

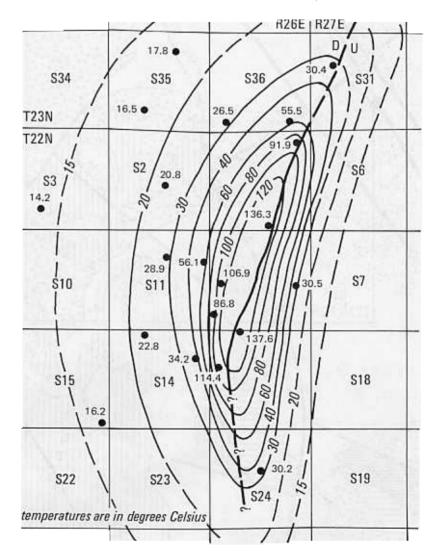
The hot springs along U. S. Highway I-80 about 20 miles northeast of Fernley have been referred to as Hot Springs, or Brady's, Springer's or Fernley Hot Springs, and are the Emigrant Springs of the Forty-Mile Desert. Some early travelers called it the Spring of False Hope. Coming across the desert, the oxen of the wagon trains could smell the moisture before reaching the springs. However, when they rushed forward to drink, they found the water scalding. The emigrants collected water in casks to cool, but pushed on to the Truckee River, as there was no forage at the springs (Work Projects Administration, 1940).

In the 1880's Russell (1885) reported that hot boiling water issued from a number of orifices, and when these became obstructed, the steam escaped with a hissing and roaring sound. During this same period there was an unsuccessful attempt to separate boric acid from the waters. In later years the hot water was used in a bathhouse and swimming pool which were located at a service station along U. S. Highway 40. The concrete pool, built in 1929, is all that remains today. The pool was apparently supplied by hot water directly from the springs. The hot springs do not flow at the surface today.

Brady's Hot Springs are located in NE/4 NE/4 SW/4 S12,T22N,R26E. Thermal ground water is found within an area of 6 to 8 square miles centered on this location (fig. 4). The elongate thermal area is parallel to the "Thermal Fault" mapped by Anctil and others (1960). Areas of hydrothermal alteration are aligned along this fault, and its trace has also been outlined by areas of observed snowmelt, indicating warm ground (Olmsted and others, 1975, fig. 37). This fault has had recent movement, as it cuts spring sinter and the alluvial fan deposits in the spring area and to the north. The fault is normal and dips steeply to the west, with the downthrown side to the west; the amount of displacement is unknown (Olmsted and others, 1975). All successful steam wells were collared in the hanging wall of the Brady Thermal Fault (Anctil and others, 1960).

The rocks exposed in the vicinity of Brady's consist of Tertiary basalt and andesite, Tertiary sedimentary rocks, Pleistocene lake sediments, and Quaternary alluvial deposits and siliceous sinter (figs. 5, 6). None of the wells drilled at Brady's (up to 7,275 ft. deep) penetrated the pre-Tertiary rocks, although they are exposed in the northern Hot Springs Mountains and were found in steam wells near Desert Peak (see the following section).

Bailey and Phoenix (1944, p. 51) report the presence of cinnabar and sulfur in S6(?),T22N,R27E about onequarter mile southeast of U. S. Highway 40 and one-half mile east of the hot springs. The best showings of cinnabar are reported from around an active hot-spring vent. The occurrence is in hydrothermally altered tuff. Soil gas in the vicinity of the main Thermal Fault and around active steam vents at Brady's is anomalous in mercury (John Robbins, Scintrex Limited, written communication, 1973).


The spring sinter at Brady's is predominantly opal, and is quite extensive. It is concentrated along the main Thermal Fault and a small subsidiary fault to the east (Oesterling and Anctil, 1962).

The ground water in Fireball Valley (Hot Springs Flat) to the north probably moves as underflow to Brady's Hot

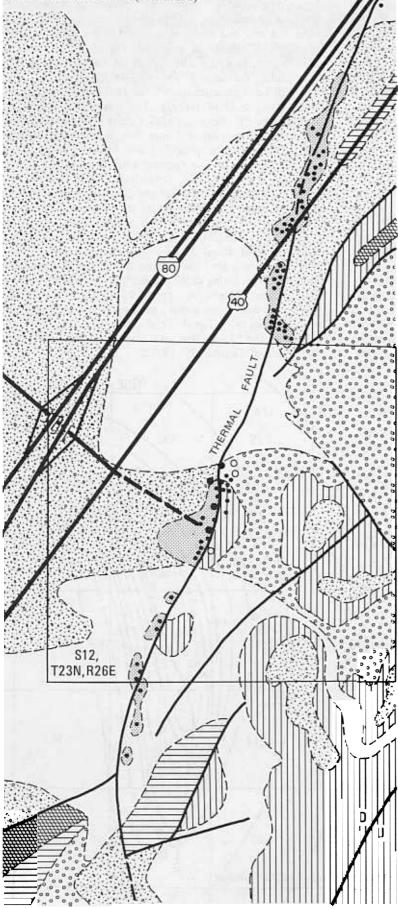
Springs, and other ground water may move as underflow from the Fernley area (Harrill, 1970). Olmsted and others (1975) suggest that the recharge of the thermal area could be outside the local drainage area.

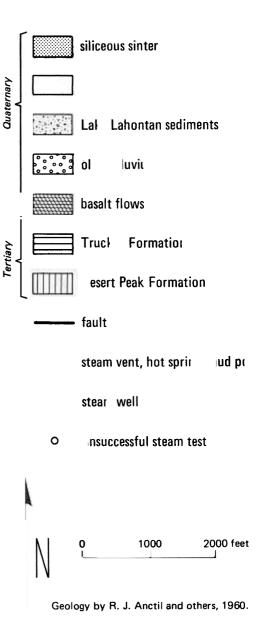
Ground-water discharge from the thermal area is in part by evapotranspiration and in part by lateral subsurface outflow toward the south. Prior to the drilling of geothermal wells in the late 1950's and early 1960's (but after diversion of the flow to a swimming pool) White (written communication, 1974 *in* Olmsted and others, 1975) estimated a spring flow of about 20.6 gpm. Waring (1965) reported a larger flow (50 gpm), but White believes that this may be too large. The withdrawal of water during drilling may have caused the springs to cease flowing (Harrill, 1970) and at present all discharge is in the subsurface. The original spring was 180° F (Oesterling, 1962). Boiling water reportedly stands at 20 feet below the surface in one well (Willden and Speed, 1974, p. 55).

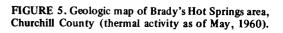
Twelve major geothermal wells have been drilled at Brady's Hot Springs over the past 20 years, ranging in depth from 341 to 7,275 feet (see Appendix 2 for details). The temperatures encountered during drilling were up to 418°F, (Koenig, 1971). Following the drilling of Magma Power Co. Brady No. 2 well in 1959 thermal activity spread along the 3-mile portion of the main fault. This activity was probably due to steam escaping through the encased portions of the wells and into the fault zone. Olmsted and others (1975) describe this activity in more detail from data in a 1960 unpublished report by Allen. Tests on several wells shortly after drilling indicated 170,000 to 700,000 lbs/hr of fluid. The well head pressure was 9.5 to 18.0 lbs/in² gage (psig) (Middleton, undated report). The steam flashover is reported to be 5% (Koenig, 1971). Calcite is reported to form rapidly in the well bores during flow, requiring reaming of the wells after a short period of time. However, the amount of scaling is reported to decrease after the wells have been produced for some time (Oesterling, 1962). The thermal water at Brady's is of the sodium chloride type, with total dissolved solids from some steam wells reported to be over 2,400 ppm. The silica concentration from a steam well near C S12,T22N,R26E (Harrill, 1970) indicates a reservoir temperature of about 360°F (Olmsted and others, 1975). This seems somewhat low in view of the $400^{\circ}F$ + temperatures reported during drilling. Geothermal Food Processors, Inc. of Reno, Nevada have received a \$2,836,800 Federally guaranteed loan to construct a geothermal food dehydration plant at Brady's. The Federal guarantee will cover 74 percent of the \$3.8 million total cost of the project (Nevada State Journal, October 29, 1977).

test hole, number is temperature (°C) at a depth of 30 meters

line of equal temperature (°C)


at a depth of 30 meters


30.2


-20-----

fault, dashed where concealed, queried where indefinite

FIGURE 4. Map of Brady's Hot Springs thermal area, Churchill County, showing temperature at depth of 30 meters, 1973 (modified from Olmsted and others, 1975).

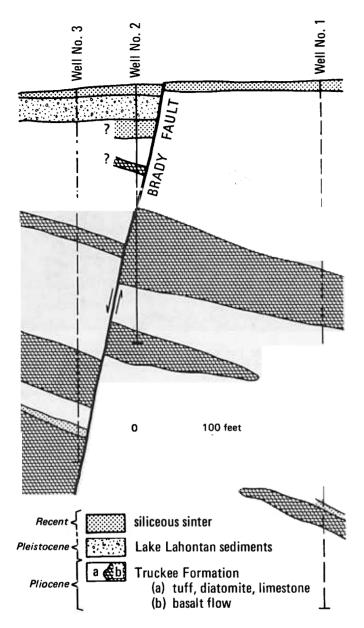
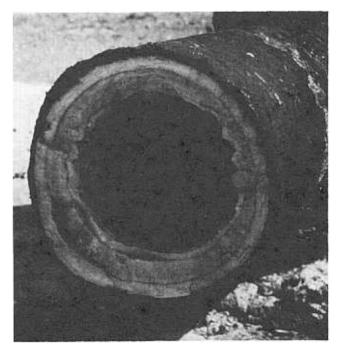


FIGURE 6. Cross section (based on driller's logs), looking northnortheast, at Brady's Hot Springs, Churchill County (after Oesterling and Anctil, 1962).

Desert Peak area [12]

The Desert Peak geothermal prospect is located in the northern part of the Hot Springs Mountains about 4 miles southeast of Brady's Hot Springs, and is named for a prominent peak 2 to 3 miles northwest of the area of the steam wells. The thermal area is apparently centered on S21,29,T22N,R27E (fig. 7). It was discovered by Phillips Petroleum Co. after drilling approximately 50 temperaturegradient holes up to 500 feet in depth. Much of the following information is summarized from data released by Phillips.

There are no surface thermal indications at the area, other than a few small occurrences of siliceous sinter and travertine, probably from springs which are now inactive. The geology of the rocks exposed at the surface has not been helpful in predicting the subsurface geology. The three geothermal wells drilled in the 1974–1976 period encountered Mesozoic metavolcanic and metasedimentary rocks at depths of 3,000 to 4,500 feet, below a sequence of Miocene volcanic rocks (fig. 8). Wells 21-1 and 21-2produce a mixture of steam and water from fractured metaandesite. It has been suggested that the Tertiary volcanic rocks may act as a seal for the reservoir.

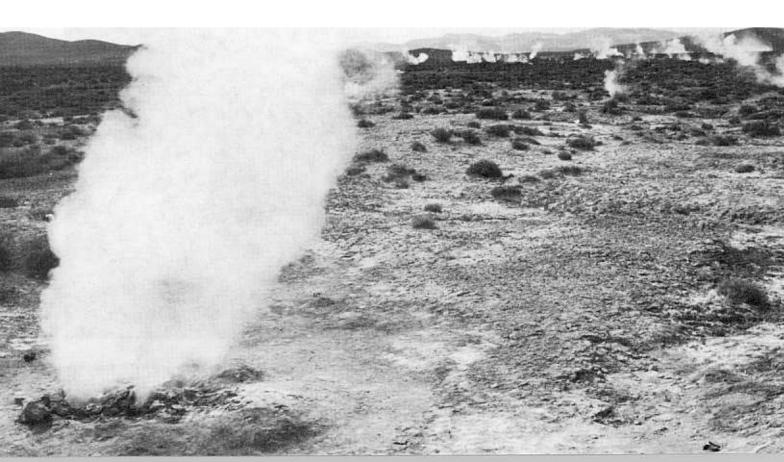

The reservoir is believed to have a temperature of 406° F, and the fluid produced is a sodium chloride type containing about 7,500 ppm total dissolved solids.

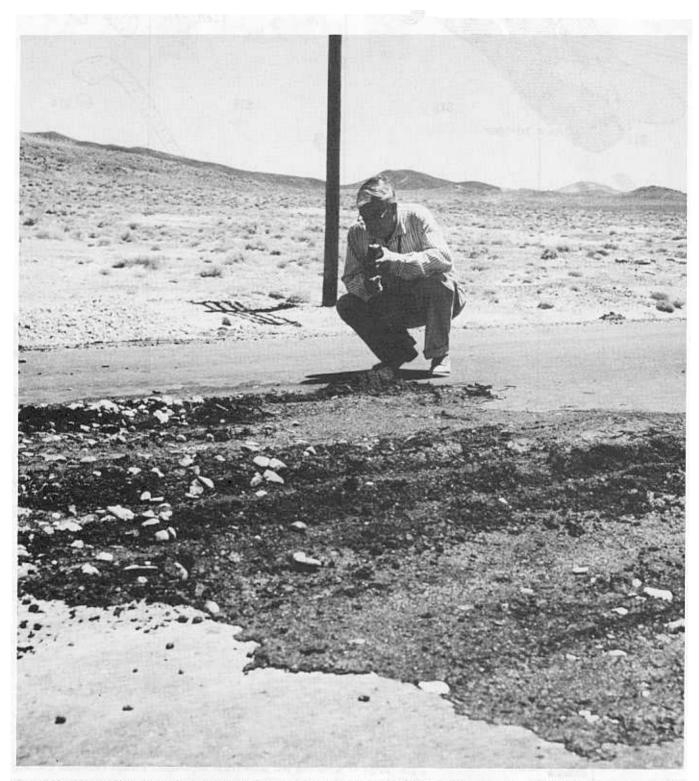
Soda Lakes–Upsal Hogback thermal area [13]

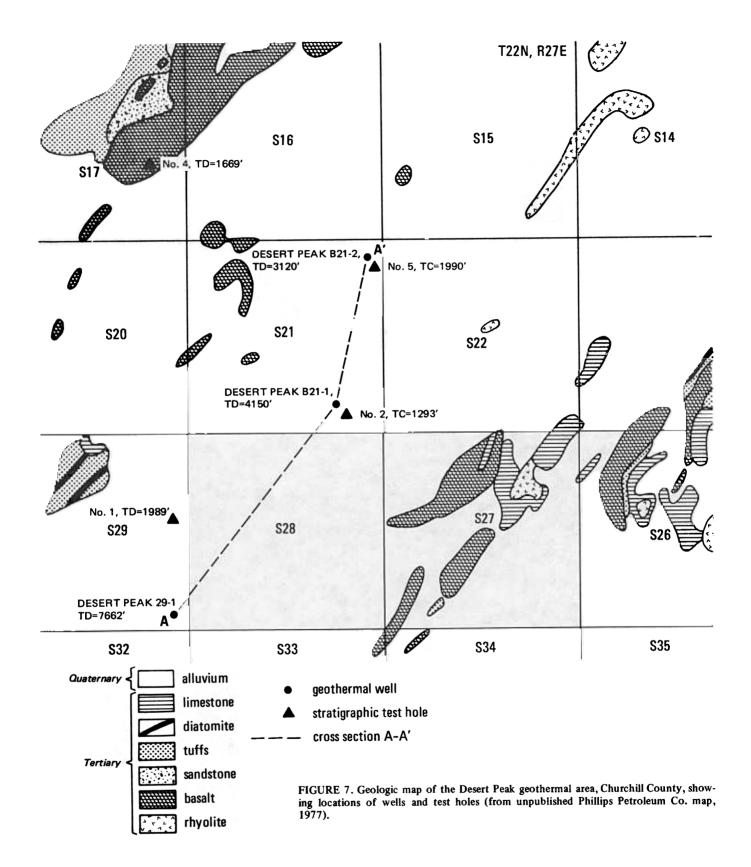
The Soda Lakes–Upsal Hogback thermal area is in the west-central part of the Carson Desert, 7 to 8 miles northwest of Fallon (fig. 9). The thermal ground water is mostly present in the central part of T20N,R28E over an area of 7 to 8 mi². The area is along the Carson River Route of the Old California Trail; soda was mined from Soda Lakes in the middle to late 1800's.

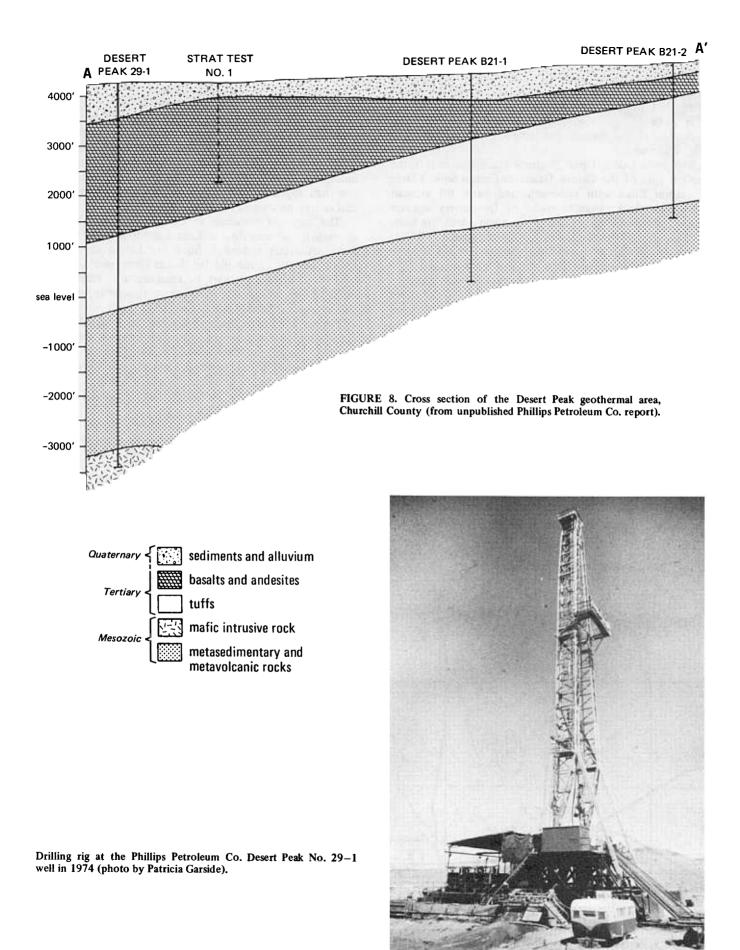
The presence of hot water in the area was not known until a well drilled in 1903 to supply water for a topographic survey camp for the Truckee-Carson Irrigation Project hit boiling water at about 60 feet. A cinder-block bathhouse was built later to utilize the steam and hot water (Peggy Wheat, oral communication, 1975). The well was still emitting hot steam in 1974, although the bathhouse had been torn down.

The extent of the thermal anomaly in the shallow subsurface has been outlined by the drilling of temperaturegradient holes (fig. 10) by the U. S. Geological Survey and the U. S. Bureau of Reclamation (Olmsted and others, 1975). Also, warm springs apparently enter the bottom of Big Soda Lake near its center, which is approximately 200 feet deep. Breese (1968), conducted a temperature survey of the lake bottom and reported temperatures up to 86°F. Nearby temperature-gradient drill holes of the U. S. Geological Survey indicate that cool ground water is present




Travertine deposited in the pipe of a geothermal well at Brady's Hot Springs, Churchill County.


Above: Steam escaping from a fault zone which crossed U. S. Highway 40 approximately 1 mile north of Brady's Hot Springs, Churchill County. This unusual geothermal activity resulted from a well blow-out following drilling in 1959 (photo courtesy Nevada State Highway Department).


Below: Close-up of a steam vent which formed after the well blow-out at Brady's Hot Springs. Other new vents can be seen in the background (photo courtesy Nevada State Highway Department).

Resurfaced area of U. S. Highway 40 which was disrupted by geothermal activity following blow-out of a well at Brady's Hot Springs in 1959 (photo courtesy Nevada State Highway Department).

between Big Soda Lake and the thermal anomaly approximately 3 miles to the northeast. A geothermal well drilled in C SE/4 SE/4 S29,T20N,R28E (The Chevron-Phillips Soda Lake 1-29) to 4,306 feet reportedly encountered gabbro? near the bottom. No temperature data are available on the well.

The Soda Lakes-Upsal Hogback thermal area is in the western part of the Carson Desert or Carson Sink, a large depression filled with unconsolidated basin fill at least 6,000 feet thick. Basalitc rocks of Quaternary age are exposed at several places within the basin, including Lone Rock in the northeast Carson Sink, Rattlesnake Hill near Fallon, and Soda Lakes and Upsal Hogback (fig. 11). Lone Rock may be a remnant of a volcanic plug or neck, and Rattlesnake Mountain consists of basalt flows and the eruptive vent, which is now filled with agglomerate (Morrison, 1964). Upsal Hogback is a cluster of several basaltic cones, and Soda and Little Soda Lakes are craters or maars which are rimmed by a mixture of basaltic and nonvolcanic debris blown out by repeated gaseous eruptions (Olmsted and others, 1975). The eruptions that formed the craters may be phreatic in part.

The eruptions that formed the cones at Upsal Hogback occurred chiefly during an interpluvial time in the late Pleistocene when Lake Lahontan was dry (Morrison, 1964). Upsal basaltic tephra is found in the lower Sehoo Formation, which is probably about 25,000 to 30,000 years old (Jonathan Davis, oral communication, 1977). The earliest eruptions at Soda Lakes may have been as early as or earlier than those at Upsal Hogback (Morrison, 1964), but the rim of Soda Lake (elevation 4,000 ft.) has not been cut by any Pleistocene lakes. Since the last lake above 4,000 feet elevation was in the lowermost upper Sehoo, this would indicate that the present maar at Soda Lake was formed less than approximately 6,900 years ago (Jonathan Davis, oral communication, 1977).

The exposed materials in the thermal area are predominantly unconsolidated Lake Lahontan sediments and some sediments reworked from the Lahontan deposits. In the vicinity of the old bathhouse steam well the sands have been altered in part to kaolinite and various iron oxides or hydroxides by hydrothermal activity, probably chiefly vapor (Olmsted and others, 1975).

Exposed faults in the area are rare, although Morrison (1964) has mapped several northeast-trending faults (see fig. 11). The general alignment of Soda Lakes, the thermal anomaly, and Upsal Hogback along a north-northeast trend suggests faults at depth, possibly along a zone of rupture in the Tertiary or pre-Tertiary consolidated rocks (Olmsted and others, 1975).

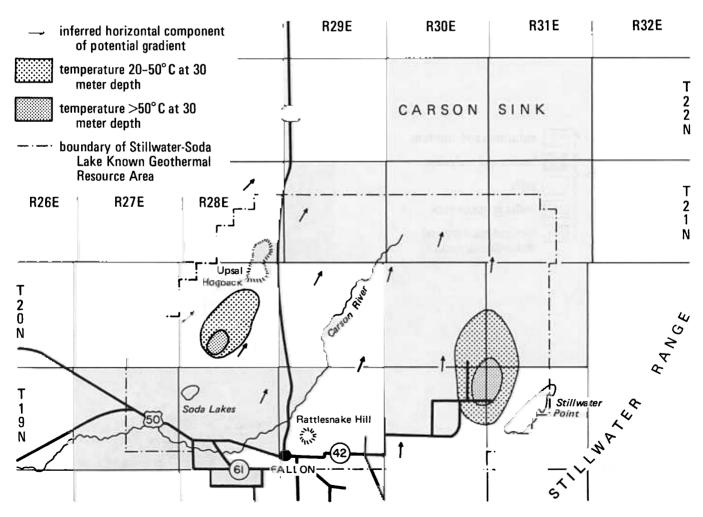


FIGURE 9. Portion of the Carson Sink showing locations of Stillwater and Soda Lakes-Upsal Hogback thermal areas (from Olmsted and others, 1975).

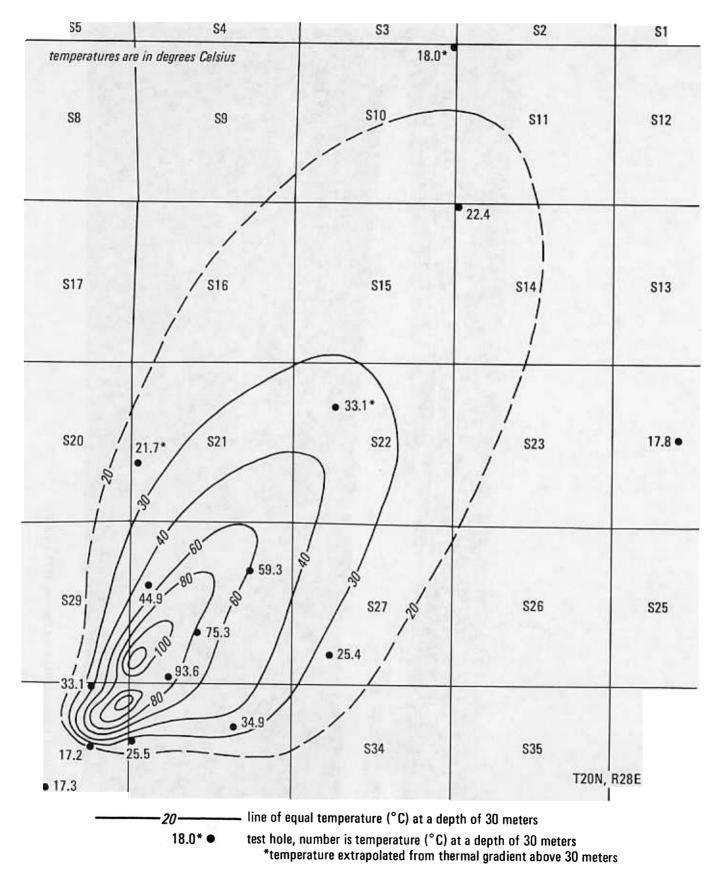
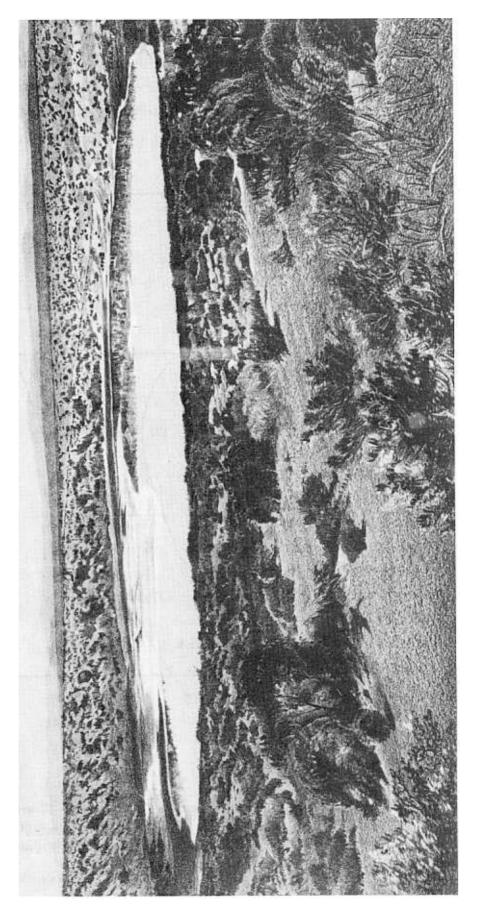



FIGURE 10. Soda Lakes-Upsal Hogback thermal area, Churchill County, showing temperature at a depth of 30 meters, December, 1973 (after Olmsted and others, 1975).

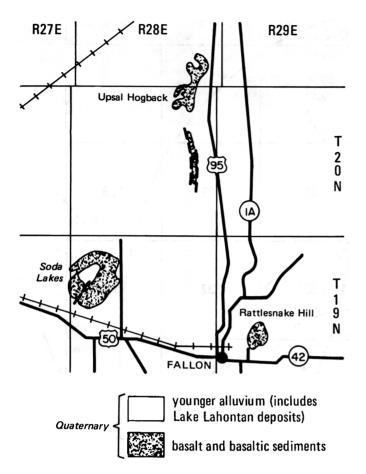


FIGURE 11. Geologic map of the Soda Lakes–Upsal Hogback area, Churchill County (after Willden and Speed, 1974, plate 1).

Since the early 1900's irrigation has raised the water table throughout the area. The thermal water rises from depth, mixes with the shallow nonthermal water, and moves laterally to the north-northeast (fig. 9). The extent of the zone of mixing is not known (Olmsted and others, 1975).

Stillwater thermal area [14]

The Stillwater area, like Desert Peak and Soda Lakes-Upsal Hogback, is a "hidden" geothermal area, its presence being discovered in 1919 when Charles Kent hit hot water in a shallow well. Shortly thereafter, W. W. Wheeler and a man named Freeman struck hot water in a well drilled for oil near the picnic grove. The well reportedly geysered about once a minute, shooting water into the air to a height of over 30 feet. This phenomenon continued until some very brave souls capped off the well (de Braga, 1964, p. 30-31). This well was the first of many hot artesian wells in the area. The well at Greenwood's store in the small community of Stillwater was used to heat the store in 1947. The well is 230 feet deep and has a temperature of 190°F (Morrison, 1964, p. 117). The community of Stillwater in S7,T19N,R31E is near the center of a thermal ground-water anomaly covering 20-25 mi² (fig. 12). The high water temperatures are believed to be due to flow from much greater depth along faults (figs. 12 and 13) and into shallower aquifers (Morrison, 1964). The Stillwater thermal area appears to be in a portion of the Carson Sink that has had recurrent Quaternary faulting (Morrison, 1964) and to lie along the extension of a fault bordering the west side of Rainbow Mountain a few miles to the south. Olmsted and others (1975) suggest that the velocity of upflow of the thermal water rising along the fault near Stillwater is sufficient to maintain the water temperature near that of the deep source, which is inferred to be close to 320° F on the basis of geochemical data (Mariner and others, 1974). The source of thermal water probably lies at a depth of several kilometers, well within the pre-Tertiary basement (Olmsted and others, 1975).

Several geothermal wells have been drilled in the Stillwater area (see Appendix 1), but data are available only for the O'Neill Geothermal Inc. (Oliphant) Reynolds No. 1 well which was drilled to a depth of 4,237 feet in 1964. The maximum temperature recorded was 277° F. Three other wells were drilled to approximately 4,000 feet in 1976 and 1977 by Union Oil Co. in several sections about 1 mile north of Stillwater.

Other wells in the Carson Desert [15-19]

Several wells in various parts of the Carson Desert (Carson Sink) have temperatures over 70°F. Some of these are heatflow drill holes, and probably indicate the regional heat flow. A 3,758-foot-deep oil well (S15,T22N,R30E) is reported to flow hot water (R. Forest, oral communication, 1974), and a water well in S7,T17N,R30E has a reported temperature of 158°C (C. W. Klein, oral communication, 1977).

Lee Hot Springs [21]

Lee Hot Springs are in the NW/4 S34,T16N,R29E. In the past these springs may have been called Allen's Hot Springs (Miller and others, 1953), although Allen's Springs are located about one-quarter of a mile northwest of Lee Hot Springs and are not reported to be warm. However, spring deposits are found at Allen's Springs.

The present flow at Lee Hot Springs is from a well located in a small area of siliceous spring sinter: this well is probably 56 feet deep, and has reported temperatures between 190°F and boiling (Mariner and others, 1974; Glancy and Katzer, 1975). Estimated thermal reservoir temperatures are 323°F and 343°F, using the silica and Na-K-Ca geothermometers, respectively (Mariner and others, 1974).

Eightmile Flat [20]

Borax Spring (NE/4 S14,T17N,R30E) on Eightmile Flat 18 miles southeast of Fallon has a reported temperature of 178°F (Stearns and others, 1937; Russell, 1885, pl. 8). Also an exploration drill hole for saline minerals in NW/4 NW/4 S12,T17N,R30E reportedly hit very hot water at 400 feet. The drill hole is in playa and lake sediments to a total depth of 500 feet (Nevada Bureau of Mines and Geology unpublished data). The Fourmile Flat section of Salt Wells Basin, a playa area to the southeast of Eightmile Flat also has a reported hot spring in S6,T16N,R32E (Waring, 1965, no. 75).

Dixie Hot Springs [6]

Numerous hot springs are located in SE/4 S5 and NE/4 S8,T22N,R35E along the west side of Dixie Valley. Cold springs are present about 1 mile to the south in S17,T22N, R35E (Dixie Valley 15-minute topographic quadrangle).

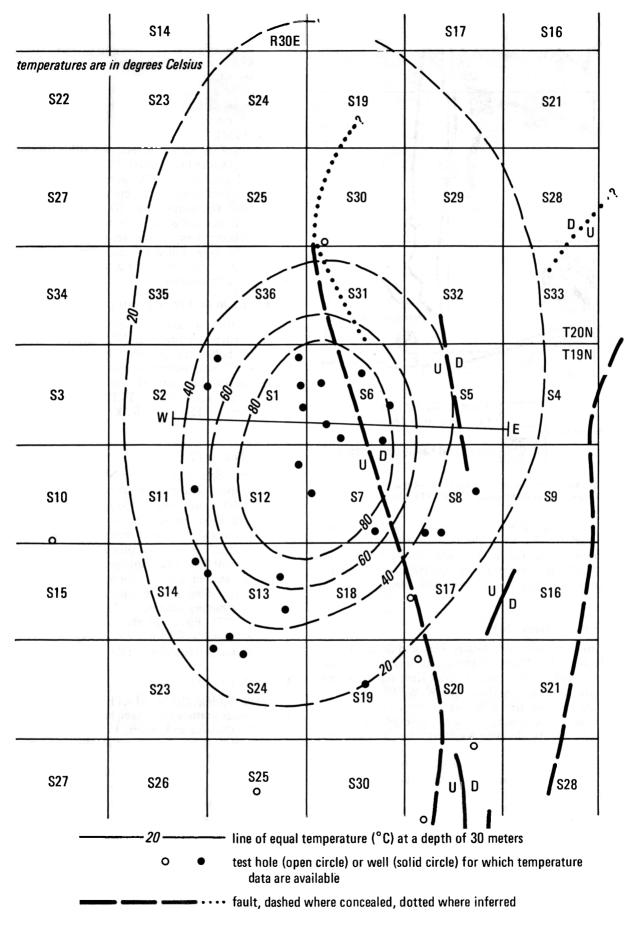


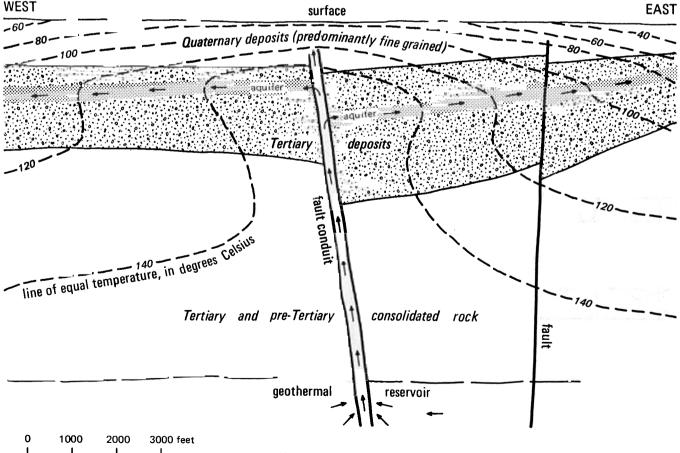
FIGURE 12. Stillwater thermal area, Churchill County, showing temperature at a depth of 30 meters and location of fig. 13 (after Olmsted and others, 1959).

The springs seem to be along a northeast-trending line which may be the continuation of a range-front fault present to the north at the Dixie Comstock Mine (see the following description). Movement was reported along this fault in the 1954 Dixie Valley earthquake (Willden and Speed, 1974). The estimated thermal reservoir temperature is $291-293^{\circ}$ F, using the silica and Na-K-Ca geothermometers (Mariner and others, 1974).

Eight to ten miles south of Dixie Hot Springs (T21N, R34E and 35E) a number of flowing wells are found in the central part of southern Dixie Valley. These wells, with slightly anomalous temperatures of 70° to 76° F, may be related to the same thermal system active elsewhere along the west side of Dixie Valley.

Senator Fumaroles [4]

Cinnabar, metacinnabar, sulfur, and minor pyrite are present in siliceous sinter at the Senator Mine (Senator Fumaroles) in the northern end of Dixie Valley. The mine is located along the N30°E fault which bounds the eastern edge of the Stillwater Range (Lawrence, 1971). The location of the mine is reported to be 1 mile north of the Boyer Ranch at the mouth of Cottonwood Canyon, probably in the vicinity of SW/4 S31,T25N,R37E. The deposit was discovered in 1968.


No hot springs are present at the site, as it is approximately 60 feet to the water table. Cinnabar appears to be depositing at the present time around two main fumaroles which are 300 feet east of the main deposit. Small amounts of sulfur and pyrite have also been deposited, and considerable solfataric alteration has taken place. Small volumes of steam with some hydrogen sulfide are being emitted at the vents, and preliminary work indicates that the cinnabar was being deposited from a vapor phase at the surface (Lawrence, 1971).

Dixie Comstock Mine [5]

Vanderburg (1940, p. 48) reports that mining in the Dixie Comstock Mine was hindered by the intense heat and a large volume of hot water in the mine workings less than 75 feet from the surface. These workings referred to by Vanderburg are probably in S14,T23N,R35E near the major range-front fault which had movement in the 1954 Dixie Valley earthquake (Willden and Speed, 1974). This fault and related parallel faults continue south 5.5 miles to the Dixie Hot Springs area, and north to Senator Fumaroles. Waring (1965) reports a small spring in T23N,R35E, which may possibly be near the Dixie Comstock Mine.

Cottonwood Canyon sinter deposit [4]

Ransome (1909b, p. 57) described an extinct hot spring located 2 or 3 miles above Boyer's Ranch and about half a mile below the Nickel Mine in Cottonwood Canyon (approximately SE/4 S35,T25N,R36E). A large mound of siliceous sinter is surmounted by a craterlike orifice, about 200 feet above the present stream, which has cut deeply into the mound. The deposit rests on diorite. The relationship of the sinter deposit to the nearby Senator Fumaroles (about 2 miles to the southeast) is not known.

vertical and horizontal scale

FIGURE 13. Idealized cross section of the central part of the Stillwater thermal anomaly (location shown on fig. 12), Churchill County (after Olmsted and others, 1975).

CLARK COUNTY

Moapa area [24]

Warm springs and wells 6 miles northwest of Moapa are at the head of the Muddy River (fig. 14) and have reported temperatures that average 90°F. The springs issue from alluvium but probably are supplied by water which is transmitted through Paleozoic carbonate rocks which crop out nearby. Preliminary analysis of minor long-term spring discharge variations suggest a 15-to 20-year lag in response to recharge from precipitation (Eakin and Moore, 1964). The water at Iverson's Warm Springs has been used for irrigation and bathing (Eakin, 1964).

Las Vegas Valley [33]

Many water wells and several springs in Las Vegas Valley have water temperatures between 70° and 106°F. The area has a high mean annual temperature (probably over 60° F) and this is a factor in the reported water temperatures. However, when water temperatures from wells are adjusted for the increase of temperature with depth (the geothermal gradient), a number of wells still seem to be anomalous. A geothermal gradient of 1°F per 75 feet was selected as the lower limit, and only those wells with a gradient above that were included in this report. Any surface temperature over 70°F was considered anomalous, as has been the practice elsewhere in this report. Therefore, the 1°F/75' line on figure 15 was begun at 70°F, and only wells which fell to the right of that line were considered. Much of the water data for Las Vegas Valley was obtained from Maxey and Jameson (1946, 1948).

In Las Vegas Valley the warm-water springs and wells seem to be concentrated in three areas. The most northerly of these, Kyle Spring in S15,T20S,R61E, has a reported

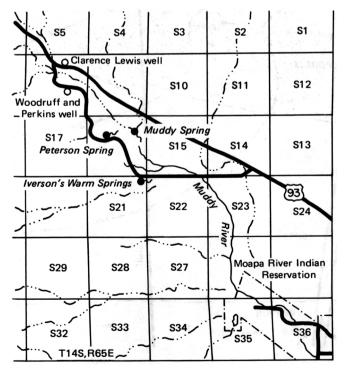


FIGURE 14. Locations of warm springs and wells 6 miles northwest of Moapa, Clark County.

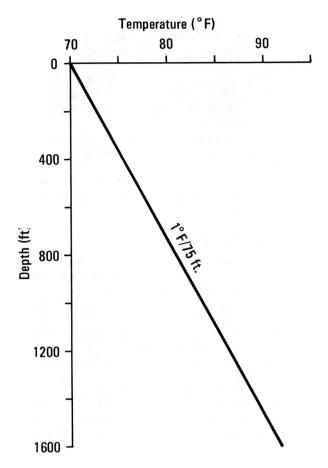


FIGURE 15. Graph of temperature vs depth; only Las Vegas Valley wells which fall to the right of the 1°F/75 ft-line were included in this report.

temperature of 75°F. Several warm-water wells in the surrounding sections seem to indicate that their source is also related to this spring. These anomalous spring and well temperatures probably indicate that the water at this area has circulated to depths greater than much of the rest of the water in Las Vegas Valley.

Las Vegas (or Vegas) Springs are located in S30 and 31, T20S, R61E east of downtown Las Vegas and have temperatures up to 79° F. Frémont stopped here on May 3, 1844 and reported that the waters were "two narrow streams of clear water, 4 or 5 feet deep, with a quick current, from two singularly large springs." The water had a pleasant taste but was too warm to be agreeable (Carpenter, 1915). The springs were used locally for irrigation, but have gone dry due to intense ground-water development. They orig-nally flowed 2,567 gallons per minute, and are reportedly along a fault which displaces the basin alluvium (Mifflin, 1968).

More than 20 wells with anomalous temperatures are clustered around Warm Springs Ranch in S10,T22S,R61E (fig. 16). No temperature data are available for springs which may have been present at Warm Springs Ranch, but nearby well waters are 90°F, and temperatures of 79° to 84°F are encountered in an area up to 1 to 1.5 miles north and west of the ranch. A 106°F water well is present in NW/4 S16,T22S,R61E about 1 mile southwest of Warm Springs Ranch (Malmberg, 1965). Several other warm-water wells are found in the southern part of Las Vegas Valley, but do not seem to be concentrated in any one area. The

CLARK COUNTY (continued)

warmer water probably represents a deeper source area, and may be useful in determining areas of maximum ground-water discharge from deep aquifers or faults. An exploration well (the Joe W. Brown Wilson-Government No. 1) was drilled for oil in 1957 in C NW/4 NW/4 S24, T21S,R61E and encountered hot water. The well was plugged below 6,050 feet and converted to a hot $(137^{\circ}F)$ artesian water well. The hot water entry point was approximately 5,210 feet, in the Permian Kaibab Limestone (Schilling and Garside, 1968). Waters similar to this could be the source for warm springs and wells in the Las Vegas Valley.

Other warm springs and wells in Clark County

Seven additional warm springs or spring areas have been reported in Clark County, mainly in its northern half. Several springs are found in Arizona and Nevada along the Black Canyon part of the Colorado River east of Boulder City (S32,T22S,R65E; S5,8,21,T23S,R65E) with temperatures of 78° to 145°F. Rogers Springs are the next warmest with temperatures up to 86°F, and the springs at the Virgin River Narrows reportedly range from 75° to 80°F. Indian Springs (79°F), White Rock Spring (78°F), Brown's Spring (75°F), and Ash Creek Spring (72°F) are somewhat cooler. Warm-water wells in Clark County range from 70° to 88°F and are 60 to 825 feet deep.

DOUGLAS COUNTY

Walley's (Genoa) Hot Springs [45]

Walley's Hot Springs are about 2.5 miles south of Genoa on the west edge of Carson Valley (S21 and 22, T13N, R19E). The springs are named for David Walley, who built a large hotel and spa on the site in 1862. The resort had 40 bedrooms and, for a time, a physician in attendance. Later, the hotel was partly destroyed by fire, and completely demolished in 1929–1930 (Dangberg, 1972). At present, Ed and Helen Johnson have a bar and dining room in their home on the site of the old hotel. The Johnsons provided the authors with copies of the U. S. Steel Corp. maps and well logs from geothermal investigations done there in 1962 and 1963.

The hot springs themselves occur over an area of several acres, and range in temperature from 136° to 160° F (Waring, 1965). The flow of the springs has been estimated at 600 gpm (Lamke and Moore, 1965). The springs are along the trace of a major fault (fig. 17), which forms the edge of the Carson Range in this area for at least 12 miles (Moore, 1969). This fault has had recent movement, although the plainly visible scarp has been in existence since before 1854. Lawson (1912) has measured the recent displacement on this fault at 44 feet at Walley's Hot Springs, and believed it to represent movement from a single earthquake. The springs flow from a salient on a topographic low which occurs here along the trace of the fault.

FIGURE 16. Selected thermal water wells in south Las Vegas Valley (wells shown have temperatures greater than or equal to 70°F after adjustment for a geothermal gradient effect of 1°F per 75 feet of well depth).

DOUGLAS COUNTY (continued)

In 1962 and 1963, Columbia Iron Mining Co., subsidary of U. S. Steel Corp. explored the hot springs area for geothermal energy. They drilled 26 shallow holes to determine the area of maximum water temperature. These were 100 to 200 feet deep, and encountered temperatures up to 181°F (see fig. 18). Two deeper wells were also drilled in the area (fig. 19). Mariner and others (1974) have estimated the reservoir temperature at 185°F from a Na-Ca-K geothermometer.

Saratoga Hot Spring [44]

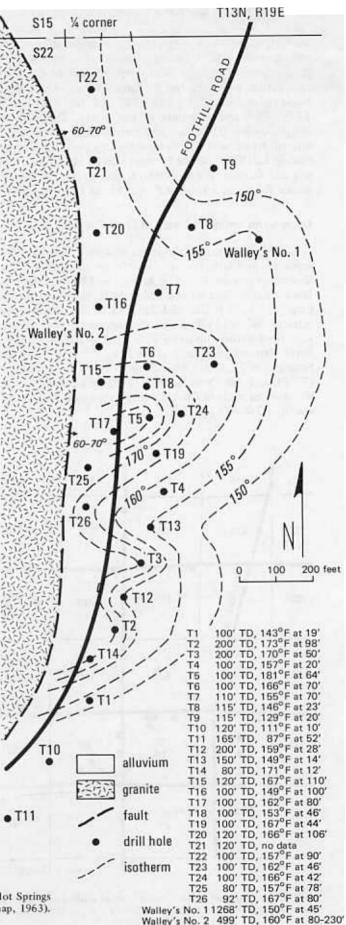
A hot spring is present in the SE/4 SE/4 SW/4 S21,T14N, R20E near the west side of Hot Springs Mountain on the eastern margin of Hot Springs Valley (Glancy and Katzer, 1975). The reported temperature is 122°F.

Hobo Hot Springs [42]

Several hot springs in C S/2 S23,T14N,R19E occur over a quarter of a square mile area. These springs are named Hobo Hot Springs on the Genoa 7¹/₂-minute quadrangle, but the Reno 1:250,000 topographic map shows Hobo Hot Springs to be 1.5 miles to the northeast of another group of hot springs (see the following description). Glancy and Katzer (1975) report Hobo Hot Springs in SE/4 SE/4 S23,T14N,R19E with a temperature of 114°F.

Unnamed springs, Carson Valley [43]

Water analyses and temperatures have been reported by the Center for Water Resources Research, University of Nevada, Reno on four warm springs in NW/4 NW/4 S19, T14N,R20E. These are 1.5 miles northeast of Hobo Hot Springs. The temperatures range from 76° to 90°F.


ELKO COUNTY

Sulphur Hot Springs [83]

The highest spring temperatures in Elko County (up to 205°F) are reported from Sulphur Hot Springs, in S11, T31N,R59E in Ruby Valley. They are probably named for their odor of hydrogen sulfide. The springs flow from a roughly circular sinter mound about 1,500 feet in diameter on an alluvial apron near the east side of the Ruby Mountains (Olmsted and others, 1975). The water flows into Stonier Lake. A major Basin and Range normal fault forms the contact between consolidated rocks and unconsolidated deposits at the mountain front (fig. 20). Another fault cuts the alluvial units about half the distance between the mountain front and the hot springs. Eakin and others (1951) suggest that the thermal spring waters probably rise along a fault.

The siliceous spring sinter consists of white- to light-gray, earthy, amorphous silica (probably opal) deposited by both present and ancestral hot springs (Olmsted and others, 1975). This extensive area of sinter suggests a high geothermal reservoir temperature. Mariner and others (1974) analyzed water from one of the hottest overflowing pools

FIGURE 17. Isothermal contour map of the Walley's Hot Springs area, Douglas County (modified from U. S. Steel Co. map, 1963).

ELKO COUNTY (continued)

and estimated the reservoir temperature at 361° to 374° using the silica-quartz geothermometer. The area of subsurface hot water at Sulphur Hot Springs is roughly circular and covers approximately 2 square miles (fig. 21).

Waring (1965) reports Miller's Hot Springs in T30N, R69E at the northeast end of Franklin Lake. This description probably refers to the Sulphur Hot Springs area. Batzle and others (1976b) report on telluric profiles of the Ruby Valley Known Geothermal Resource Area, which includes Sulphur Hot Springs.

Hot Sulphur Springs [60]

Hot Sulphur Springs at the north end of Independence Valley (S8,T41N,R52E) have reported spring temperatures of 194°F, and an estimated reservoir temperature of 262°F based on a slicia geothermometer (Mariner and others, 1974). Petaini Springs (index no. 63) 7 miles to the southwest in SW/4 S6,T40N,R53E are the only other reported warm springs in Independence Valley.

Elko Hot Springs [78]

The hot springs near the present town of Elko were a landmark along the old emigrant trail. In 1868 Governor Bigler and Col. Thomas Hanley built a two-room steam bathhouse at hot springs southwest of Elko and employed a doctor to supervise treatment of patients. Soon afterward, they constructed a ten-room building (Smith, 1957, p. 16– 17). Adjoining springs were developed into Laumeister and Groepper's Humboldt Hot Springs; the hotel and bathhouse went through many ownerships and two disastrous fires before 1900. A brick building, rebuilt after the second fire, and the hot springs are are now incorporated in Elko

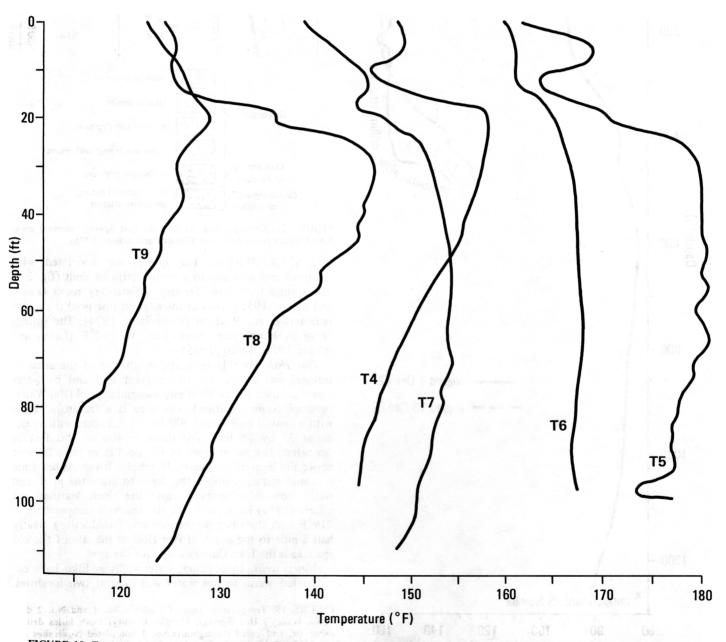
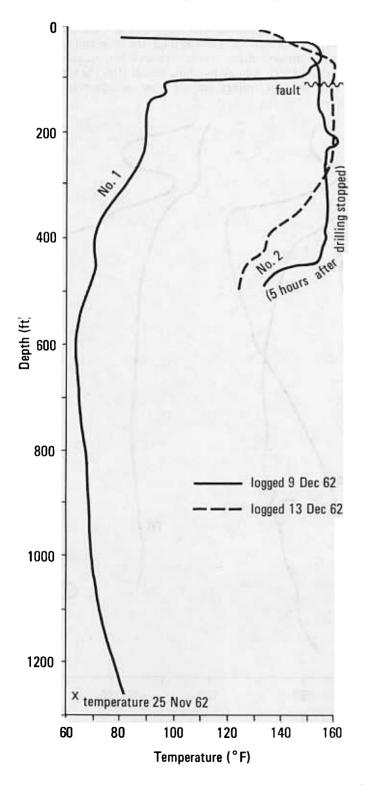
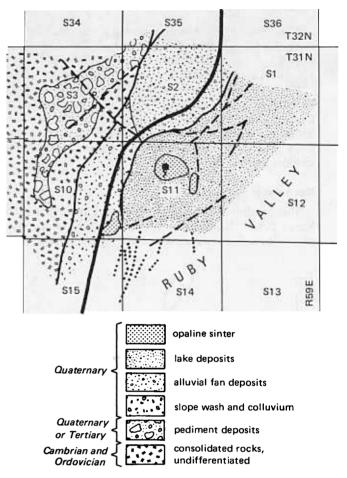



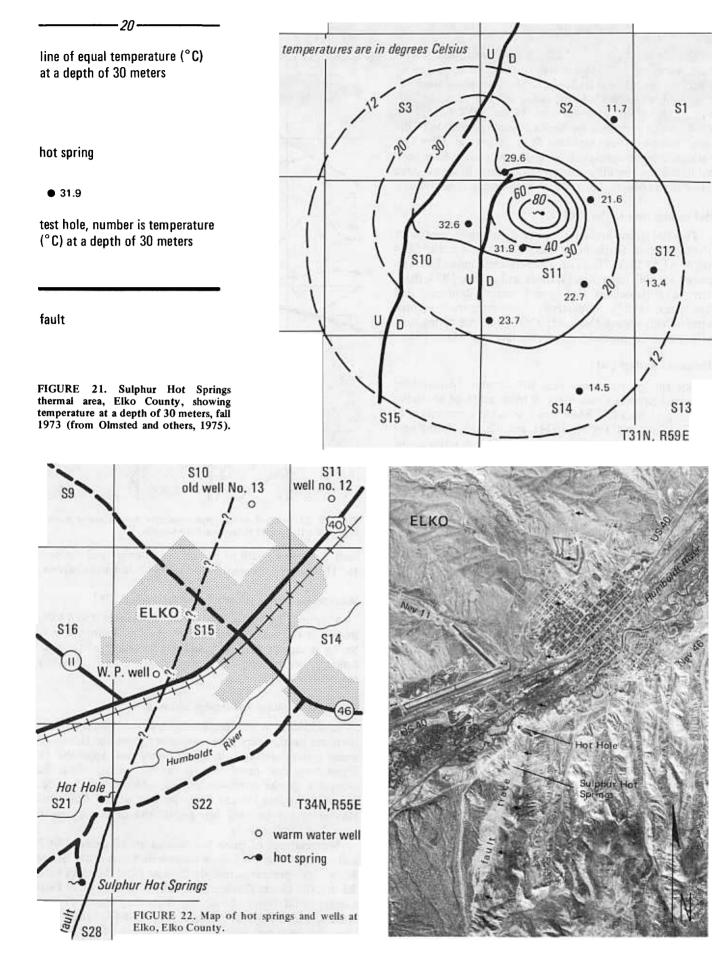
FIGURE 18. Temperature logs of selected shallow test holes at Walley's Hot Springs, Douglas County. Holes 4, 6, 7, 8 and 9 logged December 9, 1962; hole 5 logged December 13, 1962 (from U. S. Steel Co. temperature logs, 1962).

ELKO COUNTY (continued)

County's home for the aged (Patterson and others, 1969, p. 547-548). The hot springs have reportedly been utilized in hatching chickens (Adams and Bishop, 1884, p. 195), and attempts were made in 1921 at the nearby Catlin Oil Shale plant to distill oil from the local oil shales with the aid of hot water from the Hot Hole area (Patterson and others, 1969).

The Elko Hot Springs area is about 1.5 miles southwest of the center of Elko along a half-mile-long zone in the




FIGURE 20. Geologic map of Sulphur Hot Springs thermal area, Elko County (modified from Olmsted and others, 1975).

W/2 S21,T34N,R55E. The springs are associated with fractures and adjacent to a north-northeast fault (fig. 22). The springs flow from Tertiary sedimentary rocks (Eakin and others, 1951). Tufa at the edge of one pool is slightly radioactive, at 19 μ R/hr (Wollenberg, 1974). The springs range in temperature from 150° to 192°F (Eakin and others, 1951; Waring, 1965).

Hot Hole. Hot Hole at the north end of the zone of springs, was a stop on the emigrant trail and its water was once used for an Elko city swimming pool (Bill White, personal communication). The area is a travertine dome with a central hole about 200 feet in diameter with a pool about 35 by 75 feet. The dome is 400 to 500 feet in diameter. The water level in the pool is at least 20 feet above the level of the nearby Humboldt River. At one time a tunnel was cut through the dome to drain the pool, and water now flows eastward into the river. Mariner and others (1974) have estimated the reservoir temperature at 219°F with the silica geothermometer (conductive). Nearly half a mile to the south of Hot Hole at the site of the old spa area is the Elko County home for the aged.

Water wells. In addition, water wells in Elko have encountered warm to hot water and mud at two localities.

FIGURE 19. Temperature logs of Walley's No. 1 and No. 2 drill holes, Walley's Hot Springs, Douglas County. Both holes drilled using air, and cased throughout; No. 1 completed November 25, 1962, No. 2 completed December 9, 1962 (from U. S. Steel Co. temperature logs, 1962).

ELKO COUNTY (continued)

In the SW/4 S15,T34N,R55E, two Western Pacific wells were warm to hot. And a well in the north section of Elko, in the SE/4 S10,T34N,R55E, was abandoned because hot mud invaded the casing at 425 feet. A 75°F well is also present to the east, in the SW/4 S11,T34N, R55E. These hot wells are near a possible projection of the same north-northeast-trending fault present at Elko Hot Springs. Audiomagnetotelluric and gravity data have been published for the Elko Known Geothermal Resource Area (Hoover and others, 1976; Peterson and Dansereau, 1976b).

Hot springs near Carlin [80]

Two hot-spring areas are located 3 to 4 miles southwest of the town of Carlin in S33,T33N,R52E and in the SE/4 SW/4 S5,T32N,T52E. The temperatures have been reported as 174° or boiling (Mariner and others, 1974; Bradberry and Associates, 1964) and warm (Bradberry and Associates, 1964), respectively. An estimated thermal aquifer temperature (Na-K-4/3 Ca) is near the spring temperature of the northern spring (Mariner and others, 1974).

Thousand Springs [64]

Hot springs are found near the Gamble Ranch along Thousand Springs Creek about 8 miles north of Montello. A spring in S4,T40N,R69E has a reported temperature of 111°F (Hose and Taylor, 1974), and Gamble Spring near the Gamble Ranch is 69°F (Mifflin, 1968). A warm spring is also reported from S14,T40N,R69E, and the Gamble Ranch well no. 4 is reportedly 76°F and 210 feet deep. Stearns and others (1937) report a boiling spring in the area, but it is not known which spring this is.

Humboldt Wells [73]

Numerous springs about one mile north of the present town of Wells were a stopping point on the emigrant trail, and although not particularly warm, they have never been known to freeze over (Adams and Bishop, 1884, p. 192). Three areas of hot springs are located adjacent to a Basin and Range fault which runs along the west side of the Snake Mountains north of Wells (fig. 23). These springs are in S29,20, and 17,T38N,R62E. Temperatures are reported as high as 142°F, and estimates of reservoir temperatures are as high as 363°F, based on a Na-K-Ca geothermometer. The thermal waters may have mixed with cool ground water, however (Mariner and others, 1974). Twelvemile Spring (NW/4 NE/4 NE/4 S27, T39N, R62E) is in Bishop Canyon, along Bishop Creek, several miles north of the springs described above. The spring is 102°F (Waring, 1965) and its flow mixes with Bishop Creek, which is used for irrigation. A cement swimming pool is present, and both cold and hot waters flow into it. No major fault is known to be present at the site of this spring. Railroad Spring 4 miles south of Wells (S29,T37N,R62E) is also probably along an extension of the Basin and Range fault described above.

San Jacinto Ranch (Mineral) Spring [54]

Several springs and shallow wells at San Jacinto Ranch 8 miles north of Contact are hot. Spring temperatures are reported as high as 148°F (Miller and others, 1953). A major

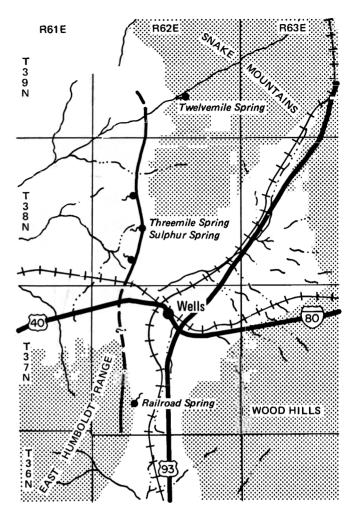


FIGURE 23. Map of hot springs associated with a major normal fault in the Humboldt Wells area, Elko County.

fault is present south of the springs (Stewart and Carlson 1974) and may be present at the springs below the alluvium

Mineral Hot Spring (Contact Mineral Spring) [56]

A spring 1.5 miles northeast of Contact (S6,T45N, R64E) and 6 miles southwest of the San Jacinto Ranch Spring is reportedly 140°F and has an estimated thermalaquifer temperature of approximately 200°F (Mariner and others, 1974).

Other Elko County hot springs and wells

In addition to the previously described thermal areas there are nearly forty other hot-spring groups or individual warm springs and wells in Elko County (see Appendix 1). These areas are spread throughout the county, with the exception of the northwest corner, which is on the edge of the Columbia Plateau. This portion of the Columbia Plateau is cut by very few faults, and outcrops consist mainly of basaltic rocks.

Temperatures of these hot springs are all below 140°F and are as low as 71°F for a water well. Some of the better known hot-spring areas include those at Rizzi Ranch (T45N, R54E), the Goose Creek area in extreme northeastern Elko County, Wild Horse Hot Spring, Wine Cup Ranch (T41N, R64E), Ralph's Warm Springs (T36N,R64E), and those near the northeast margin of Ruby Marsh (T27N,R58E).

ELKO COUNTY (continued)

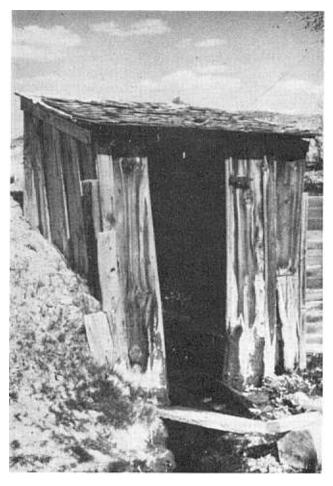
The springs near Ruby Marsh have a long history, and were first described by Bidwell (1842) as being "boiling hot"; Bidwell's party reportedly used them to cook meat. Audiomagnetotelluric data for the Ruby Valley Known Geothermal Resource Area are reported in Long and Batzle (1976b) and Batzle and others (1976b).

Information on some of Elko County's hot springs is extremely limited, and several are known only from their "warm" designation on topographic maps. Some springs are sources for streams or lakes with "hot" or "warm" in their names, but no temperautre information is available on them. Recent data are available on a few springs in Mariner and others (1974) and Hose and Taylor (1974).

ESMERALDA COUNTY

Nevada Oil and Minerals V.R.S. No. 1 Well [85]

An oil-exploration well drilled in 1970 in Fish Lake Valley encountered hot water during drilling. A temperature log of the well shows a steady temperature increase from 214° at 1,500' to 253°F at 9,100 feet. However, the bottom hole temperature reported from the electric log was 318° F (Nevada Oil and Gas Conservation Commission, unpublished data). The tops of the major lithologic units are listed below:


surface	valley fill
5,000′	volcanics
6,175'	limestone
6,350′	shale
6,575'	dolomite
6,610′	metasedimentary? rocks
8,120'	limestone
8,300′	metavolcanic? rocks
8,400′	mudstone
8,600′	metavolcanic rocks

Other springs and wells in Fish Lake Valley [85]

In addition to the Nevada Oil and Minerals well, several other springs and water wells in Fish Lake Valley have higher-than-normal temperatures. Gap Spring, an unnamed spring about 1.5 miles northeast of Gap Spring, Fish Spring, and Sand Spring have temperatures ranging from 73° to 81° F and small discharges. At Gap Spring, a small spot of several square feet at the spring outlet is slightly radio-active. The running water has the highest radioactivity, suggesting that the water may contain radon (Garside, 1973). Four water wells in the northern part of Fish Lake Valley have water temperatures of 74° to 77° F.

Alkali Springs [90]

The waters from Alkali Springs (SW/4 SE/4 NE/4 S26, T1S,R41E) originally rose at a number of small seeps, but in the early 1900's, Combination Mines Co. drove a 40-foot adit into the slope to concentrate the flow into a single channel. The water was pumped to the Combination mill at Goldfield (about 10 miles southeast). The temperature at the face in the adit was 140° F (Ball, 1907, p. 19, 20). A

Old bathhouse at Alkali Springs, Esmeralda County.

low dome of gray-brown travertine is present 100 yards north of the adit. The spring is reported to contain lithium although Alkali Flat, unlike Clayton Valley (see Silver Peak Hot Springs), does not (Albers and Stewart, 1972). The springs were operated as a spa by the Joe Guisti family during Goldfield's heyday, and a large building and an indoor wooden swimming pool were on the site (Rosevear, 1976).

Silver Peak (Waterworks) Hot Springs [91]

Near Silver Peak, hot springs are found near the edge of the playa (Silver Peak Hot Springs), and there is another group of hot springs (Pearl Hot Springs) on the east side of Clayton Valley near the edge of Clayton Ridge. The local residents report that hot waters underlie the upper crust of the whole playa or marsh, especially at certain seasons of the year (Spurr, 1906). Silver Peak Hot Springs (C SE/4 S15,T2S,R39E) has a maximum reported temperature of 118°F, while Pearl Hot Springs to the northeast across Clayton Valley are only 89°F.

The Silver Peak Hot Springs are reportedly quite radioactive (Garside, 1973), but contain very small amounts of uranium. Possibly the radioactivity is due to radon gas. Eleven springs are reported, and the water was once used for the town water supply (Waring, 1965). The springs may be on a major north-northeast-trending fault along the west side of Clayton Valley (Albers and Stewart, 1972). Additional information on the hydrology and salines in Clayton

ESMERALDA COUNTY (continued)

Valley can be found in Dole (1913) and Meinzer (1917).

One of the world's principal sources of lithium is Clayton Valley. The Foote Mineral Co. has been producing the lithium from brines pumped through about 15 wells from depths of 300 to 700 feet. Lithium values occur at different depths in different wells although the depth to water level remains constant at 30 feet in all wells. Temperatures are constant at 70° F (Albers and Stewart, 1972).

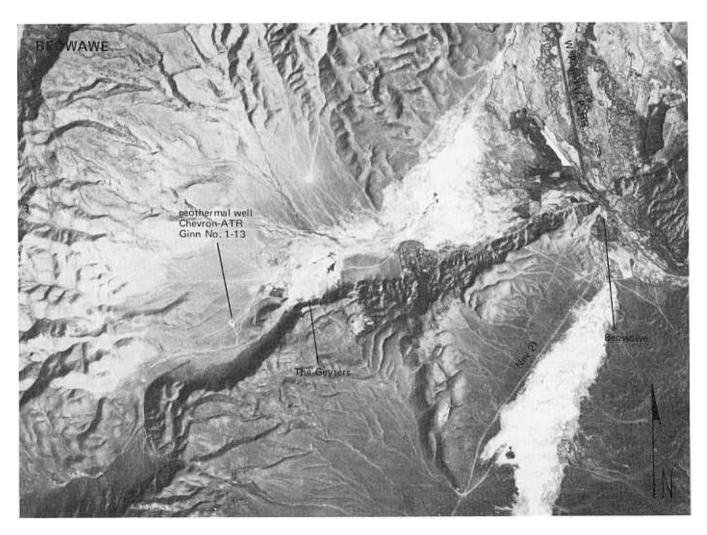
The brines contain about 400 ppm lithium and also contain sodium, potassium, and magnesium, and a little calcium and minor sulfates. The ratio of lithium to potassium is 1:25 and of lithium to magnesium 1:1.5 (Albers and Stewart, 1972). The lithium is concentrated by evaporation.

Geologists employed by Foote Mineral Co. believe that the most likely source of the lithium is hot springs under the valley (Albers and Stewart, 1972).

Pearl Hot Springs [89]

Pearl Hot Springs are located in S25,T1S,R40E and had a reported temperature of 98°F on January 19, 1967 (University of Nevada, DRI, Center for Water Resources Research data). These are probably the springs referred to by Spurr (1906) as issuing from the east side of the playa across Clayton Valley from the Silver Peak Hot Springs. A major north-northeast-trending fault may run through the site of the springs (see Albers and Stewart, 1972, plate 1).

Big Divide Mine [87]


Hot water was reportedly hit below the 1,000 foot-level in the Big Divide Mine (NW/4 SW/4 S26,T2N,R42E) during the 1920's. Approximately 42,000 gallons per day were pumped during this time (Engineering and Mining Journal Press, 1923). Two miners were reportedly scalded in the shaft sump, and the shaft steamed at the surface in cold weather until the ventilation system was changed (Norman Coombs, personal communication, 1972).

Water wells in southern Big Smoky Valley [86]

Three wells in the southern part of Big Smoky Valley have anomalous water temperatures. These wells (Emigrant well, Fishlake Livestock Co. well, and an unnamed well) are 300 to 500 feet deep, and one, the Fishlake Livestock Co. well, hit hot water at 165 feet.

Unnamed spring, southern Esmeralda County [92]

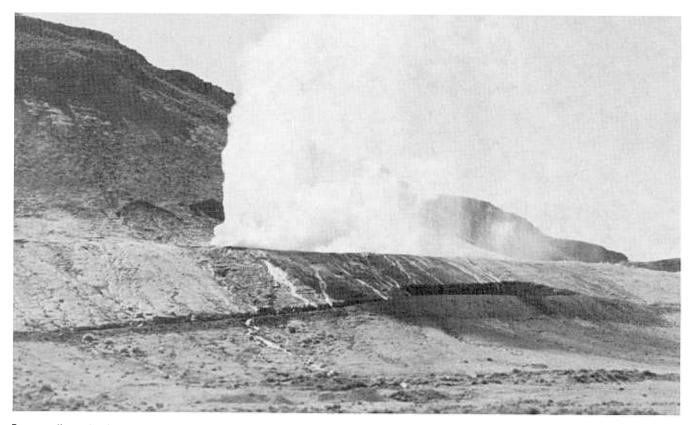
A spring is reported from S6,T11S,R43E, just inside Death Valley National Monument. The temperature is 77°F (University of Nevada, DRI, Center for Water Resources Research).

ESMERALDA COUNTY (continued)

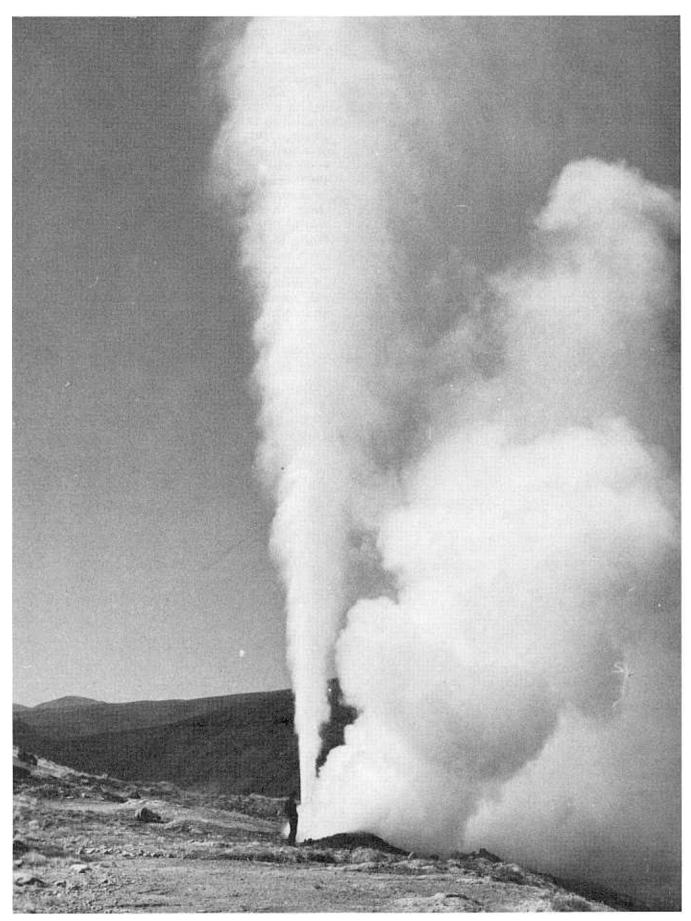
Travertine deposit [88]

A mound of calcareous spring travertine occurs in C NW/4 S5,T1N,R43E, near the south end of the Klondyke Hills. There are no known hot springs in the vicinity. The mound is about 600 feet in diameter, and occurs in an area of Tertiary welded tuffs and Paleozoic limestones.

EUREKA COUNTY


Beowawe Geysers [94]

The geothermal area at Beowawe Geysers has the highest reported subsurface temperatures in Eureka County, and, with the Brady's Hot Spring area in Churchill County, has the highest steam-well temperatures in Nevada. It is one of the most drilled geothermal areas in the State, and has been actively investigated by several energy companies over the past 15 years.


The surface geothermal activity at the Beowawe Geysers area is mainly confined to \$8,17,18,T31N,R48E. This area

is mainly in Eureka County, although S18 is in Lander County. For simplicity, this description is included in Eureka County. The Geysers is in southwestern Whirlwind Valley, about 6 miles west of the small community of Beowawe.

The hot springs, geysers, and fumaroles have temperatures up to 202° to 204°F, and in 1932 several geysers were reported to erupt to heights of several feet (Nolan and Anderson, 1934). One geyser reportedly played to a height of 3 feet and another to 12 feet. Drilling of geothermal exploration wells on the main sinter terrace in the early 1960's resulted in the disruption of natural geyser activity there, but geysers on the valley floor to the west of the terrace were considerably more thermally active in 1968 than in 1932 (Rinehart, 1968). These geysers erupted to heights of 3 to 6 feet. Vandals blew the caps from four steam wells on the main terrace sometime prior to 1972, and one of these released steam and water in rather large volumes. One of the notable effects of this release of fluid and possibly the original drilling was the cessation of geyser activity (Hose and Taylor, 1974). The "best guess"

Steam wells on the sinter terrace at Beowawe Geysers in 1977 (photo by Dennis Trexler).

Steam well at Beowawe Geysers, Eureka County (photo by Dennis Trexler).

EUREKA COUNTY (continued)

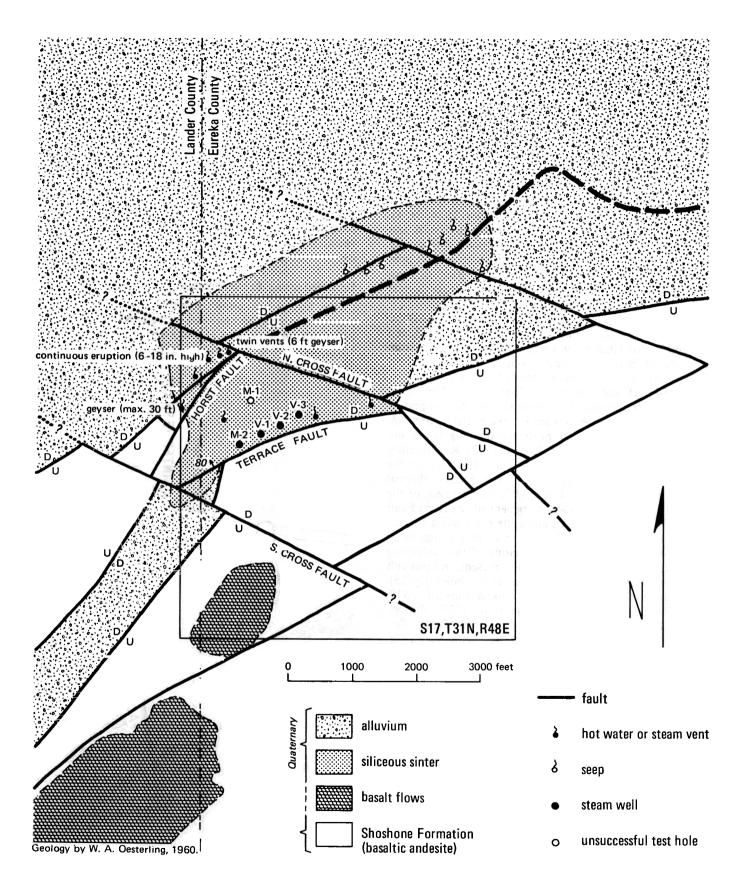


FIGURE 24. Geologic map of Beowawe Geysers, Eureka and Lander Counties (from Oesterling, 1962).

estimates of thermal reservoir temperatures are approximately $385^{\circ}F$ for a sample from a spring, and 440° to $460^{\circ}F$ for a sample from a steam well (Mariner and others, 1974). Since temperatures of over $400^{\circ}F$ are reported from shallow depths, the higher estimates seem likely to be realized.

The most conspicuous feature of the Beowawe Geysers is an enormous, symmetrical spring-sinter terrace which stands some 250 feet high. The top of the terrace, which measures 100 feet wide and 2,800 feet long, is remarkably level (Oesterling, 1962). The flowing springs and geothermal wells are located along a narrow band of older sinter which is present between the main terrace and outcrops of Tertiary andesite to the south (Hose and Taylor, 1974, fig. 4). The siliceous sinter is almost entirely made up of opal, and it is presently forming around certain pools (Nolan and Anderson, 1934). The sinter reportedly contains 300 ppm tungsten and high beryllium (R. Erickson, personal communication, 1970); tungsten is also high in the geothermal fluids (Wollenberg and others, 1975).

The Geysers are located at the south edge of Whirlwind Valley along a major fault zone which is at least 35, and possibly up to 70, miles in length. The zone extends from the central Shoshone Range along southern Whirlwind Valley and then across the center of the Tuscarora Mountains (Stewart and Carlson, 1976b). The east-northeast trending faults mapped by Oesterling (fig. 24) are part of this zone. Beowawe Geysers are located at the intersection of this zone with several northwest-trending faults and lineaments (Oesterling, 1962; Trexler, 1977). Recent movement is believed to have taken place on faults which cut the sinter terrace (Oesterling, 1962). The surface thermal activity is mainly confined to a 3,000-foot segment of the Terrace Fault and a 1,300-foot segment of the Horst Fault (fig. 24). The rocks exposed along the ridge called Malpais to the south of the geothermal area are predominantly basalts and andesites. A few outcrops of the underlying Ordovician Vinini Formation are also present, and this unit was encountered at depth in some of the drill holes (fig. 25).

Twelve exploratory geothermal wells were drilled in S17, T31N,R48E at Beowawe Geysers from 1959? through 1965. These wells were drilled by Magma Power Co., Vulcan Thermal Power Co., and Sierra Pacific Power Co. The deepest well drilled during this period was 2,052 feet; several of the wells had temperatures of 407° to 414°F at depths of 700 to 800 feet. Since 1974, three more wells have been drilled, two of them to approximately 5,500 feet, and a third to 9,563 feet. The Magma Energy, Inc. Batz No. 1 was drilled to 5,447 feet in S17,T31N,R48E, near the previous wells. Two wells, the Chevron-American Thermal Resources Ginn No. 1-13 and the Chevron U.S.A., Inc. Rossi No. 21-19, were drilled in an area approximately 1.5 miles to the southwest of the Geysers. These wells reportedly encountered high-temperature fluids in faulted zones near the bottom of both wells. Little data are available for any wells drilled in the 1970's. Names and detailed location data for geothermal wells are given in Appendix II.

The earlier wells at Beowawe Geysers underwent considerable testing shortly after drilling and for several years thereafter (Middleton, 1961; Oesterling, 1962; Allen, 1962).

Although some of the data are confusing or conflicting, it seems clear that several of the steam wells did produce large flows of steam and hot water from shallow depths. Temperature-depth curves for some of the wells are reproduced in Figure 26. Some of the wells apparently produced at least 400,000 to 500,000 lbs/hr of fluid, with 10 to 15 percent steam flashover. Middleton (1961) reports approximately 1.5 million lbs/hr of fluid at 342°F from the Vulcan No. 4 well, with 41,500 lbs/hr of that being steam. The wellhead pressure was reported to be 116 lbs/in² absolute (psia). Static pressure in several of the wells is apparently in the 40 to 100 psia range, and flow pressure is reportedly 20 to 30 psia. Problems of cold water inflow have been reported because the holes were not cased deeply enough. Scaling in the wells can also be a problem (Koenig, 1970). These problems may have contributed to the general lowering of productivity indicated in test results over a period of several years. No data are available on the productivity of the deeper wells drilled in the mid-1970's.

Unnamed spring, Crescent Valley [97]

The highest hot-spring temperatures in Eureka County are reported from an unnamed spring in NW/4 NW/4 NE/4 S10,T28N,R49E. Wilson (1960a) reports a temperature of 186°F for this spring, which occurs along a major basin-

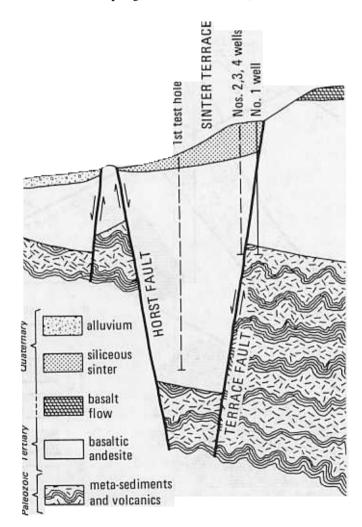


FIGURE 25. Diagrammatic cross section, looking east-northeast, at Beowawe Geysers, Eureka County (after Oesterling, 1962).

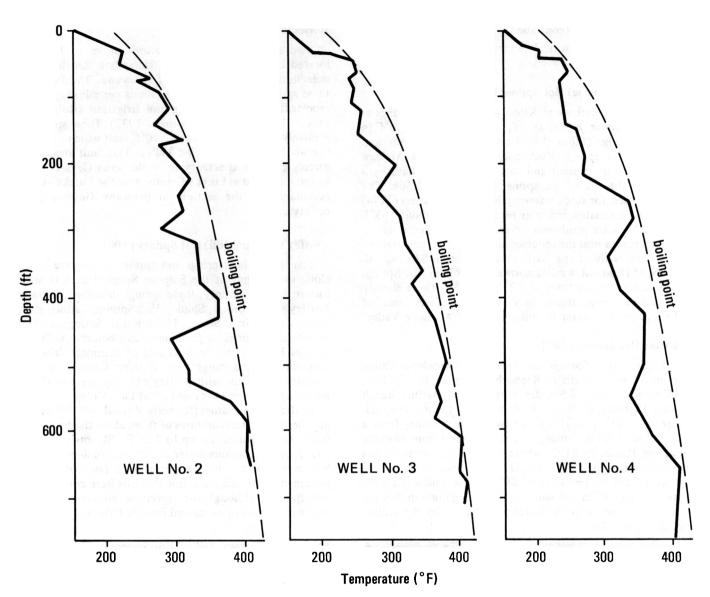


FIGURE 26. Temperatures recorded during drilling of Vulcan Thermal Power Co. wells by cable tool rig at Beowawe Geysers, Eureka County (from Middleton, 1961).

range fault (the Crescent Fault) which has significant displacement.

Hot Springs Point (Crescent Valley) [96]

At least five hot springs are found at Hot Springs Point in Crescent Valley. These are located near the corner of S1, 2, and 11,T29N,R48E and arise from alluvium and bedrock in a line 1.5 miles long. Native sulfur occurs in the Ordovician Valmy Formation along a northwest-trending, nearly vertical fault zone (Keith Papke, personal communication, 1975) just southeast of the hot springs. Hot Springs Point itself is bounded on its northwest and southeast sides by faults. The hot springs fall along the trace of the Dry Hills fault, which extends northeast along the northwest side of Hot Springs Point for about 8 miles. The deposit of native sulfur appears to be associated with the hot-springs activity, and small amounts of cinnabar and antimony occur sporadically throughout the sulfur (Olson, 1964). Spring temperatures fall between 122° and 138°F, except for one spring on the valley floor which is 79°F. A 410-foot-deep geothermal well drilled by Magma Power Co. encountered

subsurface temperatures up to 166° F. The estimated thermal-aquifer temperature for this spring system is 239° F (Mariner and others, 1974). Spring sinter and caliche are reported from along nearby northeast-trending faults which cut Tertiary andesites (Wilson, 1960b). These deposits are in the north half of S6,T29N,R49E. Also, calcareous sinter is reportedly being deposited at the hot springs. Young north- and northeast-trending faults are also common in the alluvial deposits of Crescent Valley in this area.

Walti Hot Springs [102]

Walti Hot Springs in Grass Valley have the third highest reported water temperatures in Eureka County. Several springs are presently depositing siliceous spring sinter (Roberts and others, 1967). Mariner and others (1974) estimate that the reservoir temperature of Walti Hot Springs is probably about 179°F according to a Na-K-Ca geothermometer. The springs lie near a major fault along the west margin of the Simpson Park Mountains (Roberts and others, 1967, plate 3). An alligator is reported to have survived in the hot-spring waters for 16 years in the early

EUREKA COUNTY (continued)

1900's (Nevada Historical Society in the Nevada State Journal, October 17, 1976).

Klobe (Bartholomae) Hot Springs [108]

Water temperatures at Klobe (or Clobe) Hot Springs at the Bartholomae Ranch are reported as high as 156° F in flowing springs (Fiero, 1968) and 158° F in a water well drilled in the spring (Rush and Everett, 1964). At least two springs are present and two or more wells have been drilled at the site of the springs in S28,T18N,R50E. The water is used for stock watering. Mariner and others (1974) report an estimated reservoir temperature of about 163°F from a Na-K-Ca geothermometer. This estimated reservoir temperature is near the reported surface spring temperature. Also, two wells of the Bartholomae Corp. in S18 and 30, T18N,R51E about 4 miles northeast of Klobe Hot Springs have water temperatures of 72° and 74°F. These slightly anomalous temperatures may indicate a large area of thermal ground water in this portion of Antelope Valley.

Bartine Hot Springs [107]

Bartine Hot Springs are located in Antelope Valley about 11 miles north of Klobe Hot Springs, in S5,T19N, R50E, and about 2.5 miles north of the Bartine Ranch along Highway U. S. 50. Waring (1965) reports temperatures of 105° and 108° F for two springs issuing from a "tufa" mound. A flowing well is described from near the Bartine Ranch in S17?, where a 116° F temperature was reported by Fred Bartine. Other artesian wells in the vicinity have temperatures of 58° F. These cold-water wells are probably all in the same water-bearing horizon, but the flow of the hot-water well was not affected by the drilling of the cold wells.

Horseshoe Ranch Springs [93]

Two springs having temperatures of up to 136°F are located in S32,T32N,R49E at Horseshoe Ranch about 1 mile northeast of the town of Beowawe. The flow from these springs is only about 30 gallons per minute; they are reportedly used for bathing and irrigation (Roberts and others, 1967; Stearns and others, 1937). These springs are probably on an extension of a N70°E fault which runs along the south side of Whirlwind Valley. This fault localizes the surface geothermal activity at the Beowawe Geysers 7 miles to the southwest in Eureka County near the Eureka–Lander boundary (see the section on Beowawe Geysers in this county).

Bruffey's (Mineral Hill) Hot Springs [100]

Five or six hot springs and spring systems are located along the margins of the Sulphur Spring Range in southeastern Eureka County, these springs described below are Bruffey's Hot Springs, Shipley Hot Springs, Carlotti Ranch Springs, Siri Ranch Spring, Flynn Ranch Springs, and possibly Sulfur Springs. A prominent fault bounds the Sulphur Springs Range along the west side of Diamond Valley and cuts through the range near Bruffey Canyon; it is apparently coincident with Bruffey's Hot Springs and Carlotti Ranch Springs along the east side of Pine Valley.

Bruffey's Hot Springs (formerly Mineral Hill Hot Springs) has the highest temperatures of those along the trace of the fault. Temperatures are up to 152°F, (Stearns and others, 1937), and calcareous sinter occurs as prominent terraces. Six springs occur along a north-south fault of large displacement. The old travertine deposits here contain barite and fluorite, although the travertine presently being deposited is devoid of barite and fluorite (White, 1955a).

Shipley (Big Shipley, Sadler) Hot Springs [103]

Springs in S23,T24N,R42E known as Shipley, Big Shipley, or Sadler Hot Springs have temperatures up to 106°F and issue from alluvium near the bedrock outcrops. The springs are probably supplied by water moving through secondary openings in Paleozoic rocks (Eakin, 1962a). Reported discharges range from 3,000 to 6,750 gallons per minute.

Carlotti Ranch (Sulfur) Springs [99]

Two springs a quarter of a mile apart have temperatures of 95° and $102^{\circ}F$ (Stearns and others, 1937). The springs are used for irrigation. They are along the east side of Pine Valley 5 miles north of Bruffey's Hot Springs and are probably along the same fault reported there.

Siri Ranch Spring [104]

A warm spring and water well are found in S6,T24N, R53E at Siri Ranch along the west side of Diamond Valley north of Shipley's Hot Springs. A small pool in the alluvium is reported (Mifflin, 1968). The reported temperatures vary from 81° to 87°F for the spring, while the well is 95°F. Discharges reported are 5,800 and 300 gallons per minute (Mifflin, 1968; Stearns and others, 1937). These springs are probably associated with the range-front fault along the Sulphur Spring Range here.

EUREKA COUNTY (continued)

Flynn Ranch Springs [101]

The Flynn Ranch Springs consist of several slightly warm springs of low discharge and a deep pool. The temperatures range from 69° to 70° F, and the discharge is reported to be 10 gallons per minute. The springs are located in S5,T25N,R53E, about one-half the distance between Shipley's and Bruffey's Hot Springs, along the west edge of the Sulphur Spring Range.

Sulfur Springs [105]

Two slightly warm springs are located in S36,T23N, R52E along the east side of the Sulphur Spring Range about 8 miles south of Shipley's Hot Springs. The temperature of the springs is 74° F and they discharge about 20 gallons per minute. These springs are near the mountain front, and may be related to a possible extension of the frontal fault near Siri Ranch and just north of Shipley's Hot Springs.

Thompson Ranch Spring [106]

A warm $(69^{\circ} \text{ to } 75^{\circ}\text{F})$ spring issues from alluvium adjacent to limestone at Thompson Ranch on the east side of Diamond Valley in S3,T23N,R54E (Mifflin, 1968). This spring may be the same as the Jacobson Ranch Springs reported by Waring (1965). Harrill (1968) suggests that the spring is probably fault-controlled, as is, according to Roberts and others (1967), a part of the range front along the edge of the Diamond Range.

Hot Creek springs [98]

Six springs flow from alluvium just adjacent to limestone bedrock. The main spring orifice is reportedly in bedrock. The springs are in S12,T28N,R52E (Mifflin, 1968). The reported temperature is 84°F. These springs have reported discharges of 1,800–2,250 (Eakin, 1961) and 5,900 (Mifflin, 1968) gallons per minute. This flow often largely maintains Pine Creek which flows north down the center of Pine Valley. The Na-K-Ca thermal reservoir estimate is near the spring temperature (Mariner and others, 1974).

Raine Ranch? Springs [95]

Springs in S6,T31N,R52E are reportedly warm and flow 100 gallons per minute (Bradberry and Associates, 1964).

HUMBOLDT COUNTY

Double Hot Springs-Black Rock Hot Springs [131]

A number of hot springs are located in alluvium along the west side of the Black Rock Range (fig. 27). These springs are normally 1 mile or less from the bedrock outcrops, and are aligned along a 7 mile long zone from south of Black Rock Point to Double Hot Springs (Hose and Taylor, 1974). The springs are along a major range-boundary fault with slight Holocene displacement which extends north from Black Rock Point to Soldier Meadows, a distance of approximately 35 miles. A hot spring is also present in S10,T37N,R26E about 5 miles north of Double Hot Springs (Waring, 1965), and warm ground was encountered about half a mile north of that spring in a U. S. Geological

FIGURE 27. Geologic map of the Double Hot Springs-Black Rock area (after Hose and Taylor, 1974).

HUMBOLDT COUNTY (continued)

Survey test hole (Olmsted and others, 1975). Thus, the known extent of the thermal anomaly is about 12 miles. No data are available for the northern portion of the boundary fault. To the south of Black Rock Point the fault crosses the Black Rock Desert (fig. 27) and joins with a fault associated with the hot springs at the Trego area in Pershing County (L. T. Grose, written communication, 1977). Hose and Taylor (1974) suggest that the Holocene displacement on this fault may be related to an earthquake of magnitude 4.1 at latitude 41°N, longitude 119°W in 1936.

The hot springs along this zone were used for drinking, bathing, and stock watering by wagon-train emigrants (Paden, 1949) on the Applegate-Lassen Trail. Today they are used for stock watering and irrigation.

The nearest young volcanic rocks are the less than 6million-year-old basalts 40 to 50 miles to the north along a north-northeast trending lineament which runs from Soldier Meadows to Railroad Point (fig. 28). The Double Hot Springs-Black Rock Hot Springs fault appears to turn to the northeast and join this lineament just west of Soldier Meadows Hot Springs.

Higher concentrations of dissolved solids are reported from springs near the south end of the fault. This is believed to be due to contamination of the waters by more saline brines which probably collect in low areas of the Black Rock Desert (Hose and Taylor, 1974).

Estimates of the subsurface aquifer temperature based on SiO_2 content show reasonably consistent temperatures for springs at either end of the fault. These estimated aquifer temperatures are 275° to 298°F. Trace amounts of both travertine and siliceous sinter are reported (Hose and Taylor, 1974).

Water temperatures at springs along the fault are usually 130° to 170° F, with temperatures up to 202° F, which is near boiling for this elevation (4,000 feet), reported from the spring furthest south along the fault.

Two heat-flow drill holes in the central part of the Black Rock Desert (within 3 miles of Black Rock), which are not affected by the local movement of thermal ground water, indicate that the heat flow in the Black Rock Desert area is probably not more than two heat flow units (HFU), which is not unusually high for the northern Basin and Range province (Olmsted and others, 1975).

Pinto Hot Springs [129]

The second highest spring temperatures in Humboldt County are reported from about 1 mile north of Pinto Mountain. These springs shown in S17,19,T40N,R28E on the Pinto Mountain 7^{1/2}-minute quadrangle, are East and West Pinto Hot Springs, respectively. Location data given in older references are somewhat confused, owing to the irregular nature of the land grid in this area. Reported temperatures for the springs, which are about 1 mile apart, are 199° to 201°F. The water analyses are also quite similar, indicating a close hydrologic connection. The springs are in a small outcrop area of quartz monzonite (Willden, 1964, plate 1) in some low hills of mafic Tertiary volcanic rocks along the west margin of the Black Rock Desert. The estimated thermal reservoir temperatures using the conductive silica geothermometer are 324° to 329° F (Mariner and others, 1974). Travertine and siliceous sinter are interlayered in the spring deposits at the springs (Hose and Taylor, 1974). Batzle and others (1976a) report on telluric profiles at Pinto Hot Springs.

Baltazor (Continental) Hot Springs [111]

Baltazor Hot Springs are located in S13,T46N,R28E at the north end of Continental Lake. They are along a fault which bounds the east side of the Pueblo Mountains, and which is a small part of a lineament which extends from Soldier Meadow Hot Springs through Baltazor Hot Springs and into Oregon (Hose and Taylor, 1974). This lineament is at least 65 miles long and can be seen in the fault pattern shown on the preliminary geologic map of Nevada at 1:500,000 (Stewart and Carlson, 1974). A warm spring in S12,T44N,R27E also lies along this lineament, and a subparallel zone extends from Summit Lake along the east side of McGee Mountain to Bog Hot Springs, where it reportedly terminates. In the vicinity of McGee Mountain, steam and warm water are reported from along this fault, and a core hole, reported 131°F at 200 feet (Wendell, 1970, p. 95, 98, 109), possibly in the vicinity of the Painted Hills mercury mine in S23?, T45N, R27E. The only young (less than 6 m.y.) volcanic rocks in this area are basalts which are exposed just to the northwest of this fault in the extreme northwest corner of Humboldt County (Stewart and Carlson, 1976a).

Hose and Taylor (1974) have suggested that this $N30^{\circ}$ -35°E lineament existed as a large fault in the early Tertiary terrain and that tectonism that occurred after the Oligocene and Miocene volcanic rocks were deposited resulted in modest renewed displacement that manifested itself in the volcanic cover.

Water temperatures at Baltazor Hot Springs are at or near 200°F, and small amounts of both travertine and siliceous sinter are present. The best estimates of the reservoir temperature are 306°F and 329°F for the Na-K-Ca and silica geothermometers, respectively and traces of travertine and siliceous sinter are reported (Mariner and others, 1974).

Hot Springs (Tipton) Ranch [146]

Hot springs at Tipton Ranch in S4,5,T33N,R40E have temperatures as high as 185°F (Mariner and others, 1974). These springs are along a N20°E fault which forms the boundary of the Sonoma Range in that area. The spring deposits are predominantly travertine with a trace of siliceous sinter. The "best" estimates of the thermal-aquifer temperature are 381° to 385°F (Mariner and others, 1974). Wollenberg (1974b) reports that slightly anomalous radioactivity (up to 22.5 μ R/hr) is present at the springs. In 1974 Magma Power Co. drilled a geothermal well at Tipton Ranch to a total depth of 3,071 feet. The well has also been called the "Pumpernickel Valley well."

Golconda area [139]

Hot springs are found in S29,32,T36N,R40E near the town of Golconda, and hot water is present in a drill hole at the Golconda tungsten mine in S36,T36N,R40E.

Approximately 12 springs are reported at Golconda Hot Springs, with temperatures ranging from 109° to 165°F (see Appendix 1). The area was famous as a resort and health center where early settlers often spent several weeks

at its large hotel drinking and bathing in the mineral waters (Miller and others, 1953).

In the early 1880's, Adams and Bishop (1884) reported that farmers in the vicinity used the springs for scalding swine. The swimming area at that time was a hole excavated in the ground. Also, the water was used for irrigation, and radishes, lettuce, onions, etc. were raised early in the growing season due to the warmth produced by the hot-spring water. A 175-foot-deep well drilled in 1940 was used from 1940 to 1945 for water in the chemical plant treating the tungsten-iron-manganese ores from the Golconda Mine, 4 miles to the east (D. I. Segerstrom, written communication, 1972). For many years the water from this well was used for health baths at the Golconda Hot Springs Hotel.

Penrose (1893) reported that the deposits of Golconda Hot Springs were highly charged with manganese oxides. Some of the areas around the hot spring vents are anomalously radioactive, up to 175 μ R/hr (Wollenberg, 1974b), and thorium may be present in the water (D. I. Segerstrom, written communication, 1972). Also, a few parts per million tungsten are reported.

The spring deposits at the Golconda Hot Springs are reported to consist of travertine, and an estimate of the thermal reservoir temperature using the silica geothermometer is 239° F (Mariner and others, 1974). Basalt flows younger than 6 m.y. are present about 2.5 mi south of the Hot Springs area (Stewart and Carlson, 1976b).

At the tungsten-manganese deposits of the Golconda Mine in S36,T36N,R40E, as much as 6 feet of tungstenbearing ferruginous and locally manganiferous clayey gravel rests on steeply dipping Cambrian rocks. Much of the ore is overlain by up to 20 feet of travertine. The tungsten is believed to have been deposited from water emerging from a fissure in phyllite beneath the deposit, and the travertine was deposited from spring waters issuing from a parallel fissure in limestone upslope from the tungsten deposit (White, 1955, p. 136). In a few places,

Hot-water pool at Golconda Hot Springs, Humboldt County.

HUMBOLDT COUNTY (continued)

travertine underlies the ore, and although the relative age of the travertine and tungsten deposits is not completely clear, White (1955a) believes that they were deposited contemporaneously. Barium occurs within the manganiferous tungsten deposits, and barite nodules have been found locally in the travertine. Analyses of the ore indicate that it is anomalous in Co, Nb, Ni, As, Be, Ge, and Th (Ralph Erickson, personal communication, 1971).

The most likely explanation for this deposit seems to be that it is of hot-springs origin, deposited at or very near the present land surface. A 258-foot-deep drill hole at the mine contained marcasite throughout its entire depth (D. I. Segerstrom, written communication, 1972), another indication of deposition at shallow depth and low temperature. The bedded deposit is underlain by scheelite-bearing skarn rocks, and remobilization of tungsten and arsenic could account for all of the metallization associated with the hot-spring water (Berger and others, 1974).

The Golconda tungsten-manganese deposit has been interpreted as being related to the high-water stage of Lake Lahontan (see Willden, 1964, p. 111). Although the deposits are about 100 feet above the highest late Pleistocene shoreline (Kerr, 1940), the springs that formed these deposits probably had their greatest discharge when the lake level and surrounding ground-water levels were high (Willden, 1964). This relationship with Pleistocene Lake Lahontan would make the deposit very young, probably less than 50,000 years old. Erickson and Marsh (written communication in Berger and others, 1975) suggest that the deposit is the result of spring activity less than 5 m.y. old.

A drill hole in the C SW/4 S36,T36N,R40E at the site of the Golconda Mine has a temperature of 143°F at 220 feet. As there was considerable marcasite encountered in this hole, the temperature could be due to oxidation of sulfide minerals (D. I. Segerstrom, written communication, 1972). A spring about 600 feet to the northeast of this well is reported to flow 1.5 gallons per minute of 69°F water.

Howard Hot Spring [117]

Water temperatures at Howard Hot Spring (S4,5,T44N, R31E) are usually reported to be 118° to 136°F, although Sinclair (1962a) does list one spring with a temperature of 163°F. There are several described hot springs in Waring (1965) and Stearns and others (1937) for which detailed location data are lacking, but which may refer to Howard Hot Springs. Hose and Taylor (1974) report that siliceous sinter is present, and they prefer a 262°F estimated reservoir temperature using the silica (conductive) geothermometer.

Dyke Hot Spring [119]

Dyke Hot Spring is approximately 11 miles south of Howard Hot Spring in S25,T43N,R30E. It lies at the southern end of a fault which forms the east boundary of the Pine Forest Range. The temperature is reported to be as high as 158°F (Sinclair, 1962a). The estimated thermalaquifer temperatures are 262°F and 279°F, although these are from mixed waters, and may be significantly below the true thermal-aquifer temperature. A trace of travertine is reported (Mariner and others, 1974).

Cordero Mercury Mine [109]

White (1955a) reported that the lower workings of the Cordero Mercury Mine (S33,T47N,R37E) were noticably hot, in the order of 86° to 95°F, but no precise temperature measurements were taken. He also mentioned that the level of oxidation in the mine was between the 500- and 600-foot level. Water wells downslope from the mine have temperatures of up to 140° F (Visher, 1957) at depths of 400 to 600 feet. Isotopic analysis of the well waters indicates a strong dominance by water of meteoric origin (White, 1974). A well in S17,T47N,R38E, 5.5 miles northeast of the Cordero Mine, has a reported temperature of 90°F.

Bog Hot Springs [110]

Bog Hot Springs in S7,18,T46N,R28E have been used since the turn of the century for stock watering and irrigation of over 400 acres of wild hay. Also, they are presently used for domestic water and hot mineral water baths on the Bog Hot Springs Ranch (Peterson, 1976). The springs are reported to discharge as much as 1,000 gallons per minute, and are probably associated with an active fault zone (Sinclair, 1963c). The highest surface temperature reported is 131°F (Sanders and Miles, 1974), and estimates of the reservoir temperature from chemical geothermometers are approximately 227°F, although the springs may be a mixedwater system.

Bog Hot Springs are located at the north end of the western branch of a major lineament which extends from Soldier Meadows Hot Springs into Oregon (fig. 28), a distance of over 65 miles (Hose and Taylor, 1974). Geothermal anomalies are reported along the western branch of this lineament to the south in the vicinity of McGee Mountain (see preceding description of Baltazor Hot Springs).

Soldier Meadows Hot Springs [128]

The hot springs in Soldier Meadows are generally in and around S23,T40N,R24E. The area is named for the soldiers which were stationed at a U. S. Army field camp, Camp McGarry, located in the northern part of the meadows in the 1860's. Hose and Taylor (1974) have described a $N30^{\circ}-35^{\circ}E$ lineament which is believed to extend from Soldier Meadows 65 miles to the northeast into Oregon (see the preceding sections on Baltazor and Bog Hot Springs). There are a large number of thermal springs in the Soldier Meadows area, with temperatures reported as high as 129°F. Grose and Keller (1975b) mention 49 distinct features noted on airborne thermal infrared scanner imagery, which are believed to be distinct thermal springs. Some warm springs were noted in areas where no thermal springs have been reported in the literature.

The discharge of some springs is estimated to be up to 500 gallons per minute, and the spring temperatures often fall into a bimodal distribution at approximately 70° and 126°F (Grose and Keller, 1975b). A considerable number of springs with temperatures of 110° to 120°F are located along a flowing creek, which had an average temperature of 100°F in the spring of 1973. The Na-K-Ca estimated reservoir temperature (149°F) is near the spring temperatures (Mariner and others, 1974).

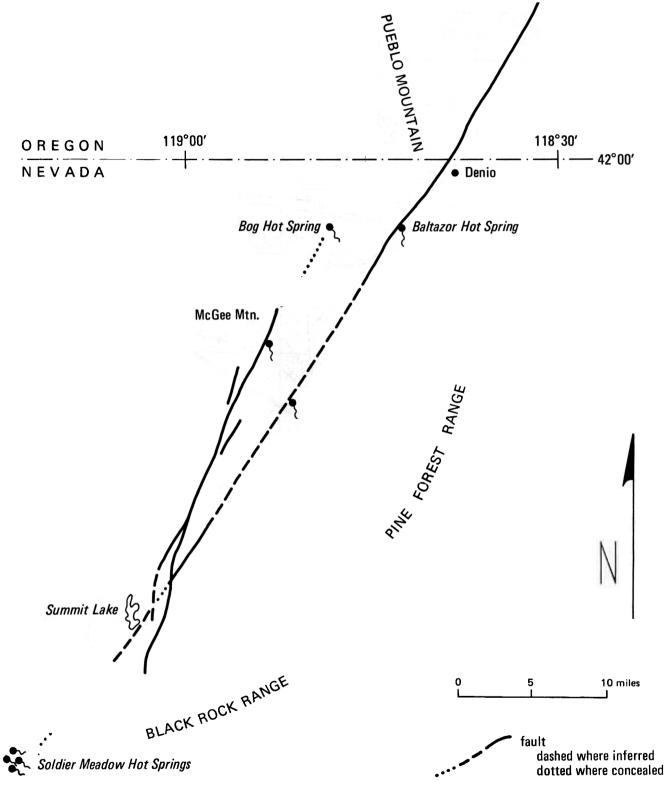
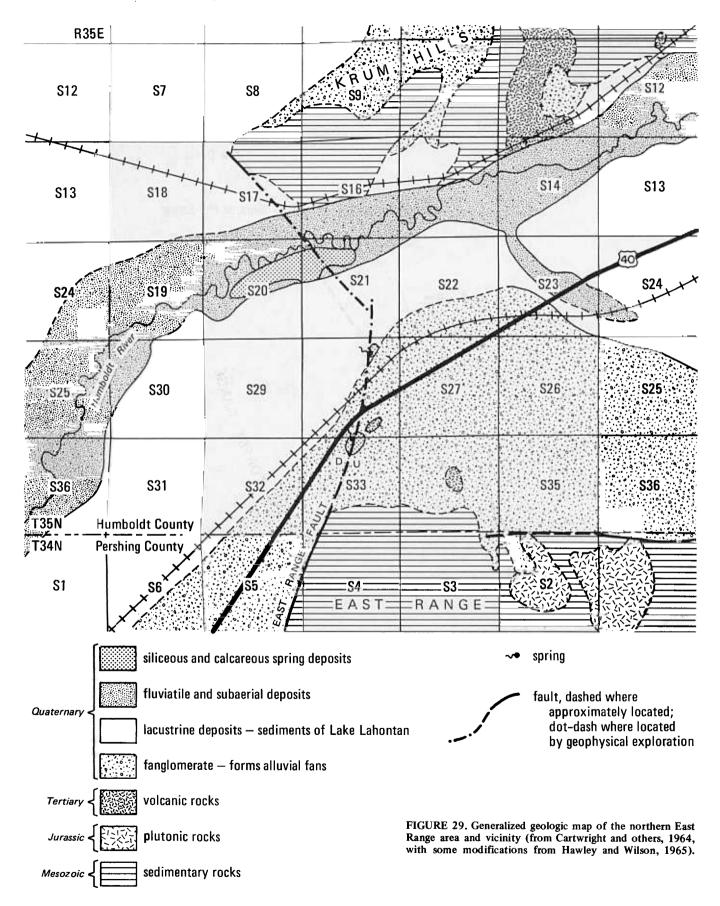



FIGURE 28. Relation of a lineament in northwestern Humboldt County to hot springs (modified from Hose and Taylor, 1974).

Northern East Range area [142]

Warm springs and wells are located at the northwestern corner of the East Range in S28,T35N,R36E (Cohen, 1962c, 1964). These springs are along the extension of a range-boundary fault which is believed to cross U. S. Highway I-80 near the center of S28, according to geophysical evidence (Cartwright and others, 1964). The springs are approximately 82° to 84°F and high in boron. Water wells down-gradient from the springs also contain 2 to 15 ppm boron (Cohen, 1964).

The East Range fault described above is believed to intersect a buried northwest-trending fault which has been extended southward from the Krum Hills (fig. 29). These

HUMBOLDT COUNTY (continued)

faults are projected on the basis of geophysical evidence plus the presence of thermal water in springs and wells along the fault. Also, the alluvial units are altered in the vicinity of the faults, and spring deposits are present at several areas. These spring deposits consist of both siliceous sinter and travertine (Cohen, 1962b). The deposit in S33 is at the approximate maximum level of Pleistocene Lake Lahontan, and is possibly related. In that case, the deposit would be younger than approximately 50,000 years. White (1955a) describes the travertine at one spring terrace (probably in NE/4 NW/4 S33,T35N,R36E) as being light brown in color and very porous. One sample contained 9 percent Mn and 0.3 percent WO₃. The present spring is not depositing travertine.

Tungsten-bearing manganese veins in E/2 SE/4 S5,T34N, R36E are along the west border of the East Range, and near the East Range fault. This property has been called the Victory Lode, and is located just inside Pershing County, but is included with this Humboldt County description because of its possible relation to the fault. The veins consist largely of calcite with films of manganese and iron oxides. Other gangue minerals are quartz, chalcedony, and gypsum. R. J. Roberts (quoted in White, 1955a), believes that these veins are the "roots" of spring deposits now removed by erosion. They are no doubt older than the travertine deposits to the north, but are probably genetically related (White, 1955a).

Sulphur area [141]

The Sulphur Mining District is an old sulfur-mining area, with minor associated mercury. No thermal activity is now evident, but White (1955a) reported that a strong odor of H_2S can be noticed in some of the short adits of the Devil's Corral workings (S30,T35N,R30E).

The sulfur was deposited by hot springs, and these probably had their greatest discharge when the level of Pleistocene Lake Lahontan and the surrounding ground-water level was high. All of the deposits are at or near the upper level of the lake, except for the Peterson deposit, which is in a fault zone considerably above the upper level of Lake Lahontan (Willden, 1964, p. 111).

LANDER COUNTY

Beowawe Geysers [94]

The geothermal activity at Beowawe Geysers is found in both Eureka and Lander Counties but most of the spring area is in Eureka County, and for simplicity the descriptions and water quality data are included in that county.

Spencer Hot Springs [162]

The hot springs and wells at Spencer Hot Springs are mainly located in the SE/4 S13,T17N,R45E (projected). There are also springs to the east of the main spring area (fig. 30), in S14,T17N,R45½E (Fiero, 1968). Meinzer (1917, p. 50, 91) reports the presence of a travertine terrace nearly 1 mile long and half a mile wide with spring deposits not more than 50 feet thick. According to Meinzer (1917), the main spring is 144°F, the north spring 117°F, and the east spring "normal." Hot water from the main spring is conducted by steel pipe to a concrete-lined pool

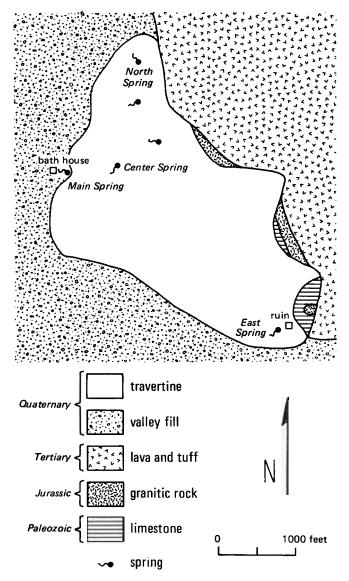


FIGURE 30. Geologic map of Spencer Hot Springs area, Lander County (modified from Meinzer, 1917).

(Sanders and Miles, 1974). Wollenberg (1974b) reports that the spring has slightly anomalous radioactivity (19 μ R/hr).

Except for Sanders and Miles (1974), who report that the springs are at the boiling point, the highest temperature, 162° F, was recorded by Mariner and others (1974), who suggest that the best estimate of the reservoir temperature is 253°F, using the silica geothermometer. Fiero (1968) believes that the water discharging at Spencer Hot Springs may originate in Monitor Valley to the east after flowing through the intervening Paleozoic carbonate and clastic rocks. The geology of the hot springs and surrounding area is also shown on the 1:62,000 geologic map by McKee (1968).

Smith Creek Valley [159, 160]

At least four hot springs are reported from widely separated areas in Smith Creek Valley. The northernmost of these (no. 102, pl. 1) is in NW/4 NW/4 S36,T20N,R40E at Peterson's Mill (Mount Airy 7½-minute sheet). Everett and Rush (1964) report an 85°F well at this location. The hot LANDER COUNTY (continued)

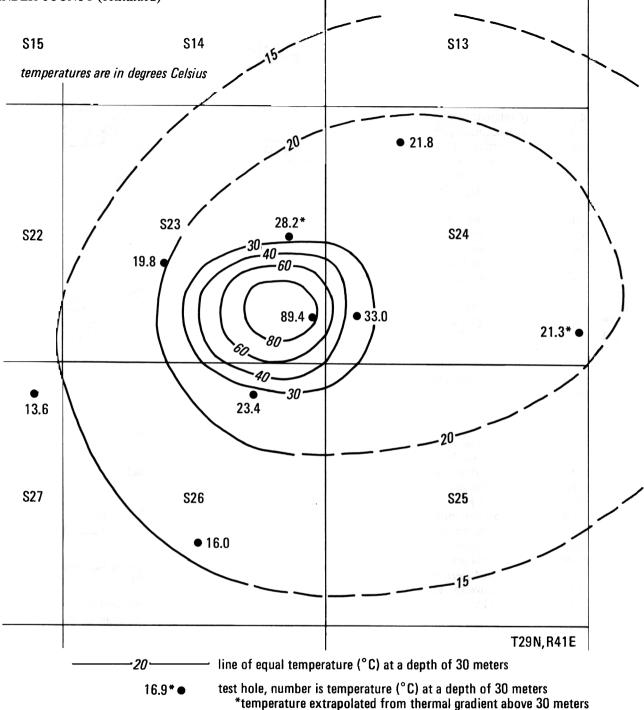
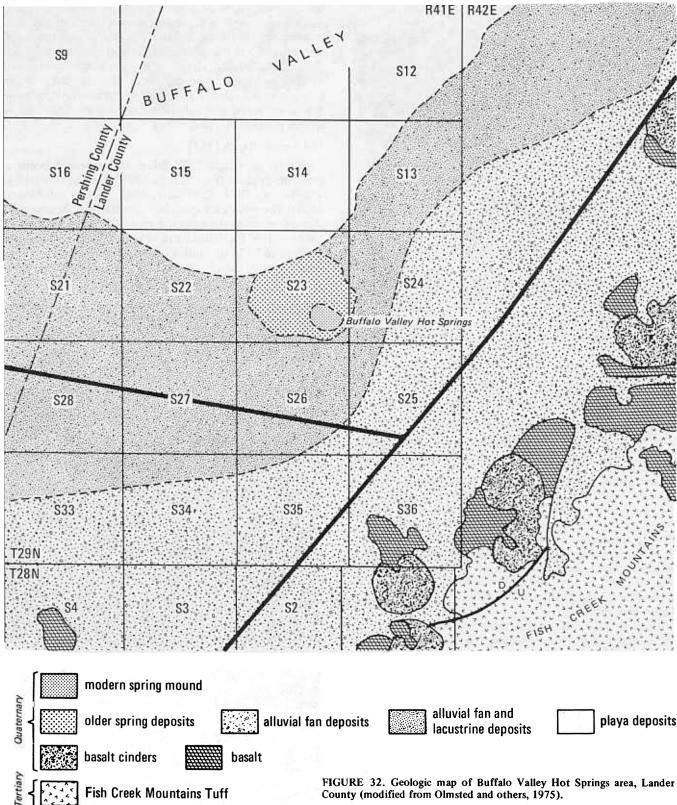


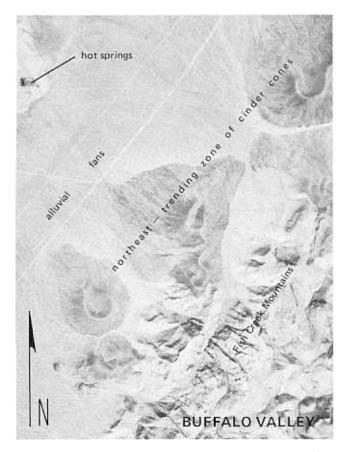
FIGURE 31. Map of Buffalo Valley Hot Springs thermal area, Lander County, showing temperature at a depth of 30 meters, fall 1973 (from Olmsted and others, 1975).


spring at Peterson's Mill is just down-gradient from a northeast-trending concealed fault in the alluvium (Stewart and Carlson, 1976b). Warm springs are also reported 6 miles north of Smith Creek Valley Hot Springs in S27(?),T18N, R39E by Waring (1965). No temperature information is available for these springs.

Mariner and others (1974) measured a temperature of 187°F at a spring in S11,T17N,R39E. A trace of travertine is reported, and the estimated thermal reservoir temperature is between 289° and 315°F for various chemical geothermometers. Smith Creek Valley Springs, in S25,26,

T17N,R39E, consist of about 20 hot springs which are near boiling. The springs appear to be associated with recent faults which cut the younger alluvium (Everett and Rush, 1964). A hot spring is also reported in S25,T17N,R40E by Waring (1965). No spring is shown on the Iron Point $7\frac{1}{2}$ -minute sheet, and the location may refer to Smith Creek Valley Springs.

Buffalo Valley Hot Springs [151]


Buffalo Valley Hot Springs are located in SE/4 S23, T29N,R41E and have reported surface temperatures up

to 174°F (Olmsted and others, 1975) mainly from 11 springs over an area of 3 acres (Waring, 1919). The estimated thermal reservoir temperature using the silica geothermometer is 257°F (Mariner and others, 1974). Thermal ground water is present over an area of approximately 2 square miles (fig. 31), with temperatures up to 193°F encountered in shallow test holes (Olmsted and

others, 1975). Heat-flow studies in Buffalo Valley indicate that the heat flow is near normal for this area of Nevada (2-3 HFU) and rises to greater than 50 HFU near the springs (Sass and others, 1976; Wollenberg and others, 1975; Olmsted and others, 1975). Hot springs are also present in S6,T29N,R41E (Wollenberg and others, 1977).

The Buffalo Valley Hot Springs are a subcircular group

of numerous springs of low flow. They emerge from a mound of marly material which is a few feet higher than the surrounding flat (fig. 32). A few of the hottest springs deposit travertine, but many are too cool or have too low a flow to accumulate any deposits (Hose and Taylor, 1974). A modern spring mound of about 40 acres is located within approximately 400 acres of older spring deposits (Olmsted and others, 1975). Wollenberg (1974b) reports anomalous radioactivity (30 to 38 μ R/hr) from Buffalo Valley Hot Springs.

Buffalo Valley is an assymmetrical graben, closed at its southern end. North-trending basin-and-range faults bound the valley on the west at the base of the Tobin Range (Wollenberg and others, 1975). Range-boundary faults are not as conspicuous on the east side of the valley where the hot springs are located. Wollenberg and others (1975) report that Buffalo Valley Hot Springs are associated with a recognizable fault which extends to the north of the springs along the west edge of the Fish Creek Mountains. In addition, Quaternary basalt cinder cones and flows are aligned along the west edge of the Fish Creek Mountains for approximately 12 miles (Wollenberg and others, 1975, fig. 7), suggesting that they were extruded along a basinand-range fault or fault zone. The age of these basalts is in question. Olmsted and others (1975) cite an age of approximately 3 m.y., from oral communication of E. H. McKee (1974). More recent dating by M. L. Silberman (written communication, 1977) indicates that basalt in NW/4 S31,T29N,R42E can be dated by K-Ar methods at approximately 1.4 m.y. (for 3 samples: 1.24 ± 0.21 m.y., 1.29 ± 0.04 m.y., 1.40 ± 0.14 m.y.). The morphology of the cinder cones also suggests that they are quite young. The younger age is further substantiated by the thin alluvial covering which overlies basalt penetrated in two test holes at depths of less than 100 feet (Olmsted and others, 1975). They suggest a slow rate of deposition along the east side of Buffalo Valley based on the 3 m.y. age date. If the younger date (1.3 m.y.) is assumed correct then rates of deposition would probably be normal for this thickness of alluvial material (Trexler, 1977).

Hot Springs Ranch [153]

Springs in S23,26,T27N,R43E have reported temperatures which range from 122° to 129°F (Waring, 1919; Hose and Taylor, 1974; Crostwaite, 1963; Lamke and Moore, 1965). The waters are quite low in silica, and the estimated thermal reservoir temperature using the silica geothermometer is 198°F (Mariner and others, 1974). The water is believed to be heated due to deep circulation along a fault which passes through the area (Waring, 1919). At least 11 springs are present, and the spring deposits are travertine.

LINCOLN COUNTY

Caliente Hot Springs [173]

The Caliente Hot Springs in S8 & SW/4 S5,T4S,R67E in Lincoln County have temperatures over $100^{\circ}F$ —temperatures up to $118^{\circ}F$ have been reported (Sanders and Miles, 1974). The town of Caliente derives its name from the springs. The springs no longer flow; much of the water apparently flowing underground into Caliente Creek. However, a 66,000-gallon swimming pool can be filled in 4 hours with a small pump lifting water only 7 feet (Smith, 1958). The springs are along a fault in Tertiary volcanic rocks (Adams, 1944; Hardman and Miller, 1948; Phoenix, 1948a).

Several water wells in the area have high temperatures. The highest is 145° F in the Wallis Health well near the Caliente Hospital (Sanders and Miles, 1974). The city of Caliente's North Well in the NE/4 S7,T4S,R67E is 130 feet deep, and has water temperatures of 78° F at 25 feet, 90° F at 100 feet, and 128°F at the bottom (Phoenix, 1948a). The Caliente Public Utility No. 4 well in the SW/4 S5,T4S,R67E also is 130 feet deep and has a temperature of 104° F (Rush, 1964). Another(?) well "near Caliente Hot Springs" has a temperature of 135° F (Smith, 1958).

Other springs northeast of Caliente

Several other hot springs extend in a line northeast from Caliente along Meadow Valley Wash. The location of these springs is obviously fault-controlled. This reach of Meadow Valley Wash follows the northeast extension of the Menard Lake Fault (Tschanz and Pampeyan, 1970, plate 3), a major transverse fault in this region.

Panaca (Owl) Warm Spring [170]. The Panaca Warm Spring is in the CN/2 S4,T2S,R68E just north of the town of Panaca. It has reported temperatures ranging from 85° to 88° F, and flow rates ranging from 1,800 to 6,277 gpm. The water issues from a fault contact between alluvium and Paleozoic limestone. The town of Panaca uses the spring as its water supply (Carpenter, 1915; Phoenix, 1948a; Rush, 1964).

Hot water occurs in a least six wells north and south of the spring, in S32,33,T1S,R68E, and S5,7,8,T2S,R68E. Temperatures ranged from 74° to 70°F (see Table 1 for analyses, etc.).

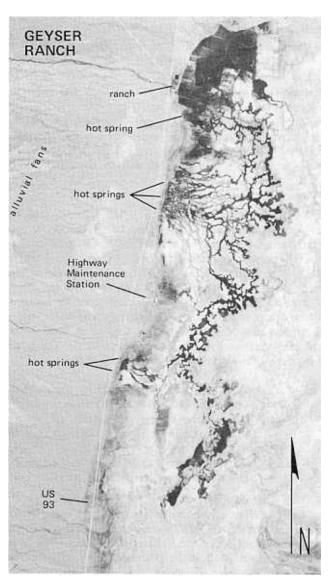
Delmue's Springs [168]. The two Delmue's springs are about 6 miles northeast of the Panaca Warm Spring in the NE/4 NW/4 SE/4 S13,T1S,R68E. The reported temperature is 70°F with a flow rate of some 200 gmp. The water is used for irrigation (Hardman and Miller, 1934; Rush, 1964).

Flatnose Ranch Spring [167]. The Flatnose Spring is about 6 miles northeast of the Delmue's Springs in the SE/4 S34,T1N,R69E. Temperatures up to 77°F and flow rates up to 400 gpm are reported. The spring is along a buried fault under Tertiary lava. The water is used for irrigation (Phoenix, 1948).

Springs in Pahranagat Valley

Several hot springs occur for a distance of about 12 miles along the east edge of Pahranagat Valley, along the west edge of the Hiko Range.

Hiko Spring [172]. Hiko Spring, in S14,T4S,R60E, is the northernmost of this group. Temperatures range from


90° to 80°F and flow rates from 538 to 2,400 gpm (Carpenter, 1915; Mifflin, 1968). The water issues from a contact between alluvium and dolomite. The water is used for irrigation and domestic purposes.

Crystal Springs [174]. Crystal Springs are south of Hiko Spring, in S10,T5S,R60E. Temperatures range from 90° to 81°F and flow rates from 9,000 to 2,680 gpm (Hardman and Miller, 1934; Eakin, 1963b). There are at least two springs; one flows from an orifice in limestone bedrock. The water has been used for irrigation and domestic purposes.

Ash (Alamo) Springs [175]. Ash (Alamo) Springs are south of Crystal at the corner of T5,6S and R60,61E. There are six main springs. Reported temperatures range from 97° to 88°F and flow rates from 10,300 to 7,630 gpm (Eakin, 1963b; Mifflin, 1968). The springs issue from a contact between alluvium and dolomite bedrock. The water is used for irrigation and domestic purposes. Carpenter (1915) mentions a "warm" spring in section 18, three miles to the south.

Other areas

Geyser Ranch Springs [165]. A series of warm springs occur at the Geyser Ranch in S1,12,13,23,T9N,R65E, at

LINCOLN COUNTY (continued)

the north end of Lake Valley, along the toe of the alluvial fan from the Schell Creek Range. Reported temperatures range from 65° to 70° F, with flow rates (one spring ?) of 50 to 1,400 gpm. The water is used for irrigation (Rush and Eakin, 1963; and Lamke and Moore, 1965).

Hammond Ranch [166]. A large hot spring issues from limestone at the head of Camp Valley (probably S17,T5N, R69E) on the Hammond Ranch. The water has a temperature of 84°F and is used for irrigation (Carpenter, 1915).

Sand Springs Valley [171]. Sand Springs in S26,T2S, R55E is the only reported hot spring in northwestern Lincoln County. It has a temperature of 86°F but a flow rate of only 0.2 gpm. The N. J. Gunderson well to the southwest in S19,T3S,R55E has a water temperature of 83°F, and two other wells in S5,8,T4S,R55E are reported to contain "warm" water (Van Denburgh and Rush, 1974).

Bennetts Springs [169]. Bennetts (Bennett) Springs in S7,T5S,R66E, have a temperature of 70°F and a flow rate of 10 gpm. There are two springs along a buried fault. The water is used to water cattle (Hardman and Miller, 1934).

LYON COUNTY

Hazen area (Patua) Hot Springs [177]

Patua Hot Springs consist of four springs and two mud domes, located in S8,13,T20N,R26E about 4 miles northwest of Hazen (Miller and others, 1953; Tischler and others, 1960). The springs are reported to be boiling. Only one published analysis is known from the springs.

In 1961 Magma Power Co. drilled three shallow cabletool exploratory wells in the area. These were reportedly 300 to 750? feet deep, with temperatures above 275°F (Koenig, 1971; B. C. McCabe, written communication).

Wabuska Hot Springs [181]

Hot springs, approximately 1 mile north of Wabuska, range in temperature from 138° to 162°F and occur over a large area in S14,15,16,23,T15N,R25E. Gas bubbles issue from the pools with a faint odor of H_2S (Stearns and others, 1937). According to Russell (1885, p. 48, 49), the springs occur along an east-west line that coincides with the course of a post-Lahontan fault which is plainly shown by an irregular scarp, in some places 20 feet high. The springs occur in circular mounds; the water is collected in small basins and evaporated, reportedly forming a saline deposit, a section of which is described below (Russell, 1885):

- 1 to 2 in. white, hard crust of sodium sulfate with sodium chloride, some calcium carbonate.
- 2 to 7 in. soft, mealy or clayey deposit of sodium sulfate, calcium carbonate, calcium sulfate, etc.
- 6 to 8 ft. clear, transparent crystals of sodium sulfate with some impurities; resting on saline clay.

The American Sodium Co., using evaporating ponds, refined and shipped sodium sulfate from here in the 1930's. Davis and Ashizawa (1960) have suggested that a chemical company might be able to use hot water from wells to refine sodium sulfate. Samples of mixed sodium chloride and sodium sulfate from surface incrustations reportedly show

Steam well at Wabuska Hot Springs, Lyon County.

minor amounts of potash but no lithium, rubidium, cesium, nitrate, phosphate, or borate salts (Moore, 1969, p. 40).

In 1959 Magma Power Co. drilled three steam wells at the Wabuska area. Two of the wells were shallow (less than 600 ft) and the third was drilled to 2,223 ft, with a maximum reported temperature of 227°F. Several water wells in this area have temperatures above 80°F. Also, a well about 4 miles to the southeast reportedly has 70°F water. Samples of water from the Magma Power Co. wells yield estimated reservoir temperatures of 293° and 306°F based on silica and Na-K-Ca geothermometers (Mariner and others, 1974).

In 1972 Agri-Technology Corp. began building greenhouses near the site of the steam wells. The company plans to grow vegetables hydroponically, especially tomatoes, using the steam and hot water from the wells to heat the greenhouses.

Long and Brigham (1975a) and Peterson (1975) have reported on audiomagnetotelluric and gravity data in the Wabuska area.

Hinds' (Nevada) Hot Springs [184]

The third hottest springs in Lyon County, after Hazen and Wabuska, are those found near the edge of the Pine Nut Mountains along the western margin of Smith Valley. These springs are named for J. C. Hinds, the first settler in the north end of Smith Valley. Hinds utilized the springs as early as 1860 for agriculture and in a spa built on the site (Loeltz and Eakin, 1953; Thompson and West, 1881). The flow of the springs was also used to turn a water wheel, which powered a rock arrastre employed to mill various ores from mines in the vicinity (Pioneer Nevada, 1951, p. 96).

The temperatures reported at Hinds' are as high as $149^{\circ}F$ (L. J. Garside, unpublished data), although cool sulfur water reportedly issues from a spring only a few hundred feet away. Thermal springs are also found along the edge of the valley from half a mile south of the main springs at Hinds' to a point due south of the alkali flat. Generally the flow of each spring is less than 5 gpm and the temperature is a little less than 70°F (Loeltz and Eakin, 1953). The water from these springs is probably rising from depth along a system of faults. The fluoride content of Hinds' Hot Springs has been reported as 2.7 and 3.1 ppm. Most water in Smith Valley whose temperature indicates little if any mixing with thermal water contained only 0.2 to 0.4 ppm fluoride. It appears that high contents of fluo-

LYON COUNTY (continued)

ride in this area are associated with the thermal water found along the south and west sides of Smith Valley, presumably along fault planes (Loeltz and Eakin, 1953). An estimate of the reservoir temperature of Hinds' Hot Springs, using the Na-K-Ca geothermometer, is 187°F, and deposits of travertine are reported (Mariner and others, 1974).

In the early 1960's, U. S. Steel Corp. drilled three geothermal exploration wells at Hinds' Hot Springs (Appendix 1). The temperatures encountered in these wells were reportedly lower than the maximum temperatures from nearby springs. Today the water from Hinds' Hot Springs is used to irrigate pasture and other salt-tolerant grasses, and in a swimming pool near the site of two of the geothermal wells. The third geothermal well is a short distance to the south of the pool.

Hinds' Hot Springs are only one of several thermal water areas along the eastern edge of the Pine Nut Mountains. The contact between alluvium and bedrock along the mountain front is a series of faults (Moore, 1969). Recent faulting is indicated in this area by discordant breaks in slope on some alluvial fans, such as on the small fan just south of Hinds' Hot Springs (Loeltz and Eakin, 1953). The other thermal areas are the Wellington area, 10 miles to the south, and the Artesia Lake area, 2 to 4 miles north of Hinds' Hot Springs.

Wellington area [187]

At least seven water wells near the town of Wellington have encountered warm to hot water at depths of 65 to 200 feet. The wells are located in S2,11,12,T10N,R23E. The deepest well (200 feet) has a reported temperature of $117^{\circ}F$, and there are indications that it may become hotter with increased pumping (Loeltz and Eakin, 1953). The water chemistry of this well is very similar to Hinds' Hot Springs 10 miles to the north, suggesting a common source for the thermal water. Water from the $117^{\circ}F$ well is used for a public swimming pool.

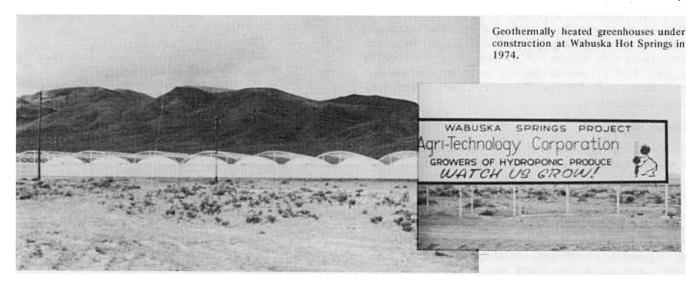
Artesia Lake area [183]

The Artesia Lake area is 2 to 4 miles north and northeast of Hinds' Hot Springs and is a continuation of the thermal anomalies along the Pine Nut Mountains from Wellington to Artesia Lake. Warm-water wells and springs are reported from S25,27,34,T13N,R23E and S10,T12N,R23E. Well temperatures are up to 82°F for the Ambassador well; no temperature data are available for the springs, except that they are warm (Moore, 1969, pl. 1). The Ambassador well is 540 feet deep and artesian. Measurements of uranium and radium in water from this well indicate that it may penetrate volcanic rocks at depth (Scott and Barker, 1962).

Other springs and wells

Four other hot springs are reported in Lyon County. Two of these are in southern Mason Valley along the east edge of the Singatse Range. Wilson Hot Spring (S34,T11N, R25E) was reportedly dry in 1969 (Alvin McLane, personal communication, 1973), and no information is available on the other Mason Valley hot spring in S34,T12N,R25E. Unnamed springs in the SW/4 SE/4 S4,T7N,R27E along the East Walker River in southern Lyon County are approximately 110°F and are reportedly slightly radioactive (possibly due to radon in the water). The spring is in the vicinity of several uranium occurrences (Davis, 1954). Stearns and others (1937) reported two springs and a public bathing area.

Two water wells in Dayton Valley have temperatures of 80° and 95°F. They are located in S7,T16N,R21E and S12, T16N,R22E. Also, the water flowing from the portal of the Sutro Tunnel is 81° to 83°F (Glancy and Katzer, 1975). The Sutro Tunnel was built to drain the mines of the Comstock Lode. The abnormal temperatures in this mining district are described in the Storey County section.


Eldorado Canyon travertine deposit [180]

A travertine terrace has been built up from hot springs, now inactive. The deposit is in the NW/4 SE/4 S36,T16N, R21E about 2.5 miles southeast of Dayton. During active mining on the Comstock Lode, the travertine was burned for lime in several stone kilns (Archbold, N. L., *in* Moore, 1969, p. 39).

MINERAL COUNTY

Wedell Springs [191]

The highest spring temperatures in Mineral County are found at Wedell Springs in the SW/4 S7,T12N,R34E. They

MINERAL COUNTY (continued)

consist of two main springs which range in temperature from 129° to 144°F (Eakin, 1962c). Schrader (1947, p. 146) reports that excellent water for domestic and other purposes was hauled to the mining camp of Rawhide, about 14 miles west of these springs.

Dead Horse Wells [190]

Water from Dead Horse Wells in S21,T12N,R32E is reported to be hot (Miller and others, 1953). This area is about 10 miles west of Wedell Springs and about 4.5 miles southwest of Rawhide. Dead Horse Wells lies on the west margin of a closed basin while Wedell Springs lies on the east margin of this basin.

Sodaville (Soda) Spring [193]

A pair of spring clusters in the NE/4 NE/4 SW/4 and the SW/4 SW/4 SE/4 S29,T6N,R35E near Sodaville (3.5 miles south of Mina) have temperatures up to 101° F. The total flow is 75 gallons per minute, and is unused at present (Van Denburgh and Glancy, 1970; Stearns and others, 1937). White (1955a) reports that the springs emerge from marshy ground and travertine, and have a maximum temperature of 100° F. Mariner and others (1974) have estimated the reservoir temperature at 208°F from a silica geothermometer.

In the 1880's the readily available water supply at Sodaville prompted construction of an ore smelter. A hotel and bathhouses, owned by Martin Brazzanovich, also occupied the site during this period (Myrick, 1962, p. 175).

A hot-springs-type tungsten-manganese deposit (the Black Jack Mine) occurs in pre-Tertiary chert in the NW/4 SE/4 SW/4 S29,T6N,R35E. This locality is about a third of a mile northeast of Sodaville. The deposits consist of veins of bluish-colored chalcedonic quartz, calcite, gypsum (often selenite), iron oxides, and tungsten-bearing psilomelane. The main vein trends approximately N50E, dips 75° southeast, and is up to 3 feet wide (White, 1955a; L. Garside, unpublished data). At one time, travertine probably capped the veins but has since been removed by slight erosion. The veins are believed to be the "roots" of former Pliocene hot springs (R. Roberts, *in* White, 1955a; Kerr, 1946).

Where manganese is high, tungsten also appears to be high. A sample with 40.3 percent manganese and 7.2 percent iron contained 3.0 percent WO_3 . Ore that is high in iron, on the other hand, is low in tungsten. Another sample with 1.2 percent manganese and 35.4 percent iron contained only 0.05 percent WO_3 (White, 1955a). Kerr (1946) reports 4.88 percent tungsten in a psilomelane sample, and Warner and others (1959) report 0.0075 percent BeO from the deposit.

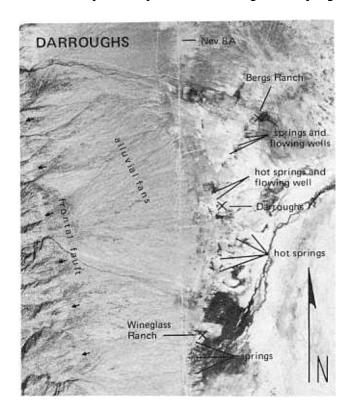
Double Spring [189]

A warm spring is reported from S23,T13N,R29E about 7 miles east of Schurz (Stearns and others, 1937).

Hawthorne area [192]

Several water wells in the Hawthorne area have reported water temperatures of 75° to $124^{\circ}F$. The wells are from 400 to 600 feet deep, and the deepest well penetrated sandstone gravels to a total depth of 602 feet (Everett and Rush, 1967; Scott and Barker, 1962). Wells with the higher temperatures seem to be located closer to the frontal fault along the east side of the Wassuk Range.

Other water wells


Three other water wells in Mineral County reportedly have anomalous temperatures. Two of these wells are U. S. Bureau of Land Management wells, one in Whiskey Flat (S19,T5N,R31E) and one in Huntoon Valley (S7,T3N, R31E), with reported temperatures of 110° and 78°F, respectively (Everett and Rush, 1967; Van Denburgh and Glancy, 1970). A third well in S32,T2N,R33E has a reported temperature of 113°F (CWRR, 1973).

NYE COUNTY

Darrough's Hot Springs [204]

Darrough's Hot Springs are located in S7,8,T11N,R43E in Big Smoky Valley about 60 miles north of Tonopah. The hot springs discharge several hundred gallons per minute of water that is near the boiling point for that elevation. An 812-foot-deep well drilled in 1962 (and redrilled in 1963) by Magma Power Co. and associates encountered temperatures up to 265°F with a very large flow of water and minor steam (Koenig, 1971). Ranch wells have also hit boiling water at shallow depths. Anomalous radioactivity (75 μ R/hr) is reported from near the edge of a fenced pool (Wollenberg, 1974b). Travertine and a trace of siliceous sinter are reported (Mariner and others, 1974).

The springs issue from valley fill on an alluvial fan. The mountain front, about 1.5 miles to the west, is a fault scarp of a major Basin-and-Range fault along the east side of the Toiyabe Range. The amount of displacement on this fault is unknown. Fiero (1968) has suggested that the hot springs are along a fault parallel to this major fault. Best estimates for thermal aquifer temperatures at Darrough's Hot Springs

from several chemical geothermometers are in the 200° to 275° F range. The upper limit of the range was nearly attained in the Magma well. Geophysical data for Darrough's Hot Springs are reported in Kaufmann (1976), Long and others (1976), O'Donnell (1976) and Peterson and Dansereau (1976a).

Other hot springs in Big Smoky Valley [198, 199]

Hot springs at McLeod's Ranch 15 miles north of Darrough's (NE/4 SW/4 S34,T14N,R43E) issue from a large mound in the alluvium and have a relationship to the major Basin and Range fault similar to Darrough's. Big Blue and Charnock Springs are in S16,29,T13N,R44E on the east side of Big Smoky Valley and have temperatures of approximately 80°F. Big Blue Spring is associated with a fault scarp cutting alluvium (Fiero, 1968). Springs reportedly issue from a large mound, and a travertine deposit is reported from an area in the vicinity of S28,T13N,R44E. Thermal waters are also reported from Turk's Ranch (T13N, R43E)? and R. O. Inc. Ranch (T12N,R43E)?.

Springs along Hot Creek Canyon [211]

There are a number of springs along Hot Creek Canyon (T8N,R49–50E), four of which are thermal (fig. 33). The thermal springs have a total discharge of about 850 gpm and temperatures ranging from 72° to 180° F. There are at least nine cold springs interspersed with the thermal springs.

Upper Warm Spring. The westernmost, upstream thermal spring is Upper Warm Spring (SE/4 SW/4 SW/4 S21,T8N, R50E), located just north of the road up the canyon. The spring is used by stock; otherwise it is undeveloped. A flow rate of 32 gpm at 94°F was recorded on March 18, 1967 (Fiero, 1968). It is in an area of Tertiary volcanic rocks underlain by Paleozoic carbonates. There is no evidence of structural control at the surface; however, it is thought to be along a permeable fault zone that allows water to rise from deep circulation within a regional, intrabasin groundwater flow system (Fiero, 1968). Upper Spring, upstream, a quarter of a mile to the southwest, is a cold spring.

Pat Spring. Pat Spring (SE/4 NW/4 SE/4 S21,T8N, R50E) half a mile northeast of Upper Warm Spring had an estimated flow of 50 gpm and a temperature of 72° F on March 19, 1967 (Fiero, 1968). There are two cold springs half a mile downstream from Pat Spring at the Old Page Place; the westernmost, Cress Spring, flows about 10 gpm at 47° F (April 19, 1967; Fiero, 1968); Cold Spring, the easternmost, flows at about the same rate and has a temperature of 43° F (April 19, 1967; Fiero, 1968).

Old Dugan Place Spring. The Old Dugan Place (Warm) Spring (NE/4 NW/4 S25,T8N,R50E) is near the center of the canyon, a quarter of a mile west of the Old Dugan Place (an abandoned ranch) on the north side of the canyon floor. Water issues from several orifices in thin alluvium overlying Paleozoic limestone. It is fenced and ditched to increase the flow into Hot Creek. In September, 1967, a gaging station consisting of a 90° V-notch weir and water-stage recorder was built by the U.S. Geological Survey; preliminary records indicate a steady flow of about 495 gpm. On October 15, 1967, a temperature of 97° F was recorded (Fiero, 1968). A flow rate of 359 gpm at 89°F had previously been measured in 1966(?) (Rush and Everett, 1966). Like other hot springs in this area it is believed to tap water from a deep, regional ground-water flow system. A cold spring between this spring and the Old Dugan Place has a flow of 1½ gpm and a temperature of 66° F on August 14, 1967 (Fiero, 1968).

Upper Hot Creek Ranch. The hot spring at the Upper Hot Creek Ranch (NE/4 SE/4 S33,T8N,R50E) is at the east end of the canyon 600 feet southwest of the ranch house. Discharge occurs from several orifices in thin alluvium overlying Cambrian Tybo Shale. The spring is fenced and ditched to take the discharge to Hot Creek; like the other springs, it contributes to irrigation and stock needs. Preliminary U. S. Geological Survey gaging records in 1967 indicate a flow of 280 gpm at 168° F (Fiero, 1968). A flow of 763 gpm at 160° F was recorded in 1966 Rush and Everett, 1966). A spring about 1 mile to the east, on the "Mine" fault, has an estimated flow of 125 gpm at 70° F (Fiero, 1968).

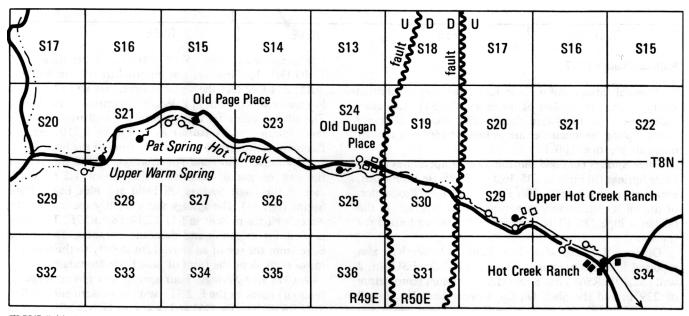
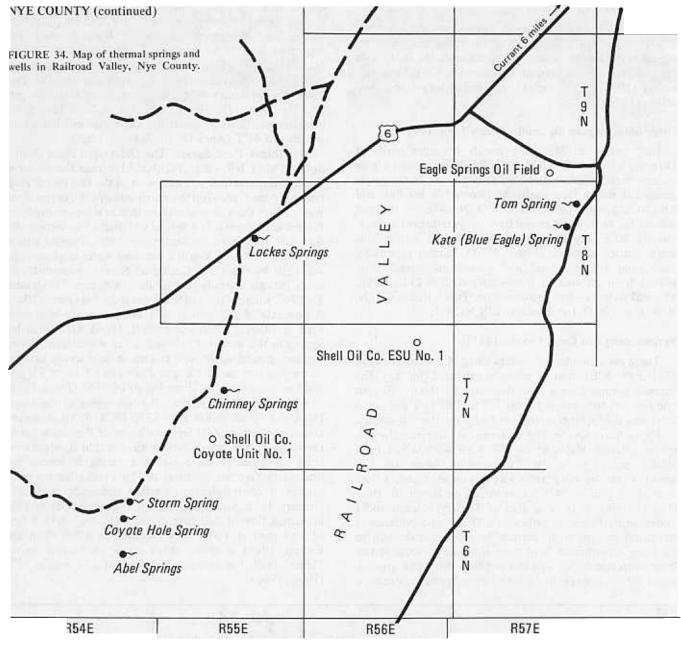



FIGURE 33. Sketch map of springs along Hot Creek, Nye County (thermal springs shown as solid dots).

Railroad Valley [207]

Thermal springs and wells in Railroad Valley are located mainly along the margins of the valley (fig. 34) either coincident with or basinward from major Basin and Range faults. Spring temperatures are as high as 160°F, although many are less than 100°F.

Eagle Springs Oil Field. Bottom hole temperatures at the Eagle Springs Oil Field in S35,36,T9N,R57E are anomalous, averaging approximately 200° F at 6,000 feet. Production of the oil is considerably improved due to this fact, as the oil has a high (75°F) pour point and must be heated for transport.

Other exploratory oil wells in Railroad Valley have also reported high temperatures. The Shell Oil Co. ESU No. 2 well (S2,T7N,R56E) has a reported maximum temperature of 229°F, and the Shell Oil Co. Coyote Unit No. 1 well (S28,T7N,R55E) had an artesian flow of water which was hot below 1,400 feet. The well was 1,711 feet deep, with estimated flows from 15 to 480 gallons per minute. At 1,403 feet, 129° F water was reported to contain 890 ppm NaCl; at 1,602 feet the water temperature was 140° F. The hot water was present in Paleozoic limestone and dolomite. The alluvial valley fill is present in the well from 0 to 950 feet, volcanic rocks (tuffs) from 950 to 1,310 feet, and Paleozoic carbonate rocks to the bottom of the hole.

Blue Eagle (Kate) and Tom Springs. Tom Spring is along the east margin of Railroad Valley about 1.5 mi southeast of the Eagle Springs Oil Field and Blue Eagle (Kate) Spring (fig. 34). The springs and a slightly thermal flowing water well are present in S11,12,14,T8N,R57E. The water is used for irrigation and domestic purposes. The springs issue from the toe of an alluvial fan slightly to the west of a major fault along the front of Blue Eagle Mountain.

Lockes Hot Springs. Four springs and several seeps (all thermal) occur in the E/2 S15 and the western edge of S16, T8N,R55E (see fig. 35) at Lockes on U. S. Highway 6 on the west side of Railroad Valley. The springs and seeps issue

from a low hill of calcareous tufa over half a mile in diameter. Reported water temperatures range from 93° to 101° F and the combined discharge rate is about 1,500 gpm. Analyses run on water from three of the springs by the Center for Water Resources Research (University of Nevada, DRI) were quite similar (Appendix 1). The water is used for irrigation, stock watering, and as a domestic supply for the Titus Ranch. The remaining water flows to ponds about $2\frac{1}{2}$ miles to the southeast which support abundant waterfowls. The springs are in alluvium (valley fill); the nearest bedrock is Tertiary tuff and Paleozoic limestone in the Pancake Range, two miles to the west. The springs "probably rise due to artesian head along a high permeability zone associated with range front faulting" (Fiero, 1968).

Big Spring (NE/4 SW/4 NE/4 S15, T8N, R55E) is atop the tufa hill a quarter of a mile north of the ranch house (fig. 35). It is used for irrigation and domestic needs. The earliest discharge records, February 7, 1934, showed a flow of 900 gpm at a temperature of 99°F (Eakin and others, 1951). On June 30, 1957, T. C. Frantz of the Nevada Fish and Game Commission measured a discharge of 540 gpm at 101°F, using the float method. On November 12, 1966, a flow of 520 gpm at 99° to 101°F was measured (Mifflin, 1968). Monthly pygmy-meter measurements by the U. S. Geological Survey showed an increase from 471 gpm on August 7, 1967, to 582 gpm on November 22, 1967. Although the period recorded is short, this may indicate response of the spring to seasonal recharge (Fiero, 1968).

Reynolds Springs (SW/4 SE/4 NE/4 S15,T8N,R55E) consists of two small pools about 40 feet apart at the base of the tufa hill about a quarter mile northeast of the ranch house. The water is used for pasture irrigation before flowing into the ponds to the southeast. The combined flow of the springs was 300 gpm on February 7, 1934 (Eakin and others, 1951); 300 gpm on June 30, 1957 (Nevada Fish and Game Commission, unpublished report); 323 gpm on Nov-

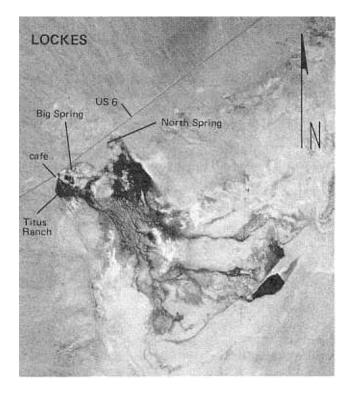



FIGURE 35. Sketch map of Lockes Springs, Nye County (adapted from Nevada Fish and Game unpublished field survey report).

ember 12, 1966 (Mifflin, 1968); and 275 gpm and 287 gpm on September 27 and November 22, 1967, respectively (U. S. Geological Survey measurements reported in Fiero, 1968). The easternmost pool had a temperature of 99°F on November 12, 1966 (Mifflin, 1968).

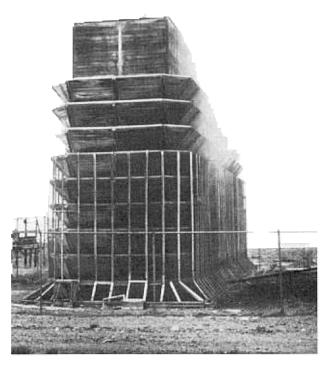
Hay Corral (Stockyard) Spring (SW/4 NW/4 NW/4 S14, T8N,R55E) is about a mile northeast of the ranch house at the base of the tufa hill. The flow is presently held by an earth dam forming a pool 100 feet in diameter. The water is used for stock watering and irrigation. A flow of about 600 gpm at 93°F was recorded on February 7, 1934 (Eakin and others, 1951); the Nevada Fish and Game Commission recorded a temperature of 95°F on June 30, 1957; the Center for Water Resources Research (University of Nevada) estimated the flow rate as 425 gpm on Novenber 12, 1966.

North (Lockes Hot) Spring (NE/4 NE/4 NE/4 S15,T8N, R55E) flows into a ditch just south of the U. S. Highway 6 fence-line about three-quarters of a mile northwest of the ranch house. Its water is used for pasture irrigation. A flow of about 200 gpm at 95°F was recorded on February 7, 1934 (Eakin and others, 1951); the Nevada Fish and Game Commission recorded a discharge of between 170 and 320 gpm at 94°F on June 30, 1957; U. S. Geological measurements indicated flows of 158 and 165 gpm on August 4 and November 22, 1967, respectively.

There are a number of thermal seeps a short distance east of the ranch house; their flow rates and temperatures are not known. Possibly this is "South Spring," although the name has also been applied to Reynolds Springs.

Chimney Hot Springs. Chimney Hot Springs in S16,T7N, R55E have reported temperatures up to 160°F, the highest spring temperatures in Railroad Valley. The water is used for cattle. Three springs issue from an extensive travertine mound, which is nearly half a mile in diameter and approximately 30 feet high (Fiero, 1968). The springs and mound are located at the base of a bajada about 2 miles from the nearest bedrock outcrop. They rise due to artesian pressure

probably along a high permeability zone associated with a range-front fault (Fiero, 1968). The location of Chimney Hot Springs is midway between Lockes Hot Springs to the north and Storm, Coyote, and Abel Springs to the south. All these springs are associated with faulting, and may, in fact lie along the same major fault.


Storm, Coyote, and Abel Springs. A group of warm springs are located in S11,12,13,23,24,T6N,R54E along a fault which cuts the alluvium. The springs range from 84° to 113°F and each is reported to be associated with travertine mounds about 300 feet in diameter and 10 to 15 feet high (Fiero, 1968). All springs are fenced, and Abel Springs is additionally improved by a short buried pipeline to a cattle trough (Fiero, 1968).

Gabbs area [201]

Many water wells drilled for a water supply for the magnesite-brucite mine and mill of Basic, Inc., near the townsite of Gabbs, have abnormally high water temperatures, ranging from 70° to 155° F (Eakin, 1962b). Some must be cooled in cooling towers before use. As the water is reportedly high in fluoride, bottled water is supplied by the local water company for drinking (Nevada State Journal, July 20, 1977). The thermal wells are located in S28,T13N, R36E, and S22,27,28,33,T12N,R36E, in a north-south-trending zone at least 5 miles long. This zone coincides in part with a north-south-trending fault along the west edge of the Paradise Range.

Diana's Punch Bowl-Potts Ranch [200]

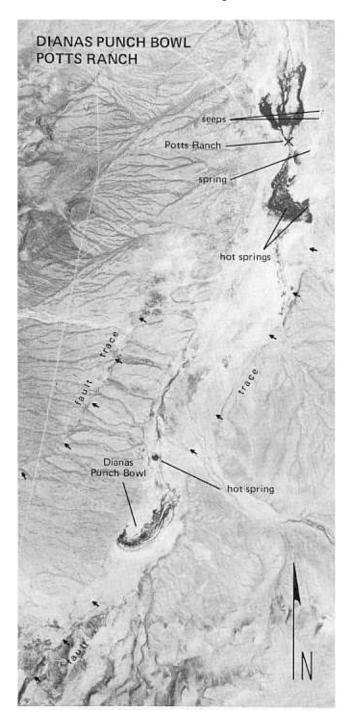
Diana's (Dianna's, Devils) Punch Bowl (S22,T14N, R47E) is a cup-shaped depression approximately 50 feet in

Cooling tower for well water at Gabbs, Nye County.

Aerial view of Diana's Punch Bowl, Nye County. Depression is approximately 50 feet across (photo by Phillip Hyde).

diameter at the top of a domelike hill of travertine approximately 600 feet in diameter. Warm water in the pool of the bowl is about 30 feet below the rim, while the top of the hill is about 75 feet above the level of Monitor Valley. A small warm spring, approximately 109° to 120°F in temperature, issues from the southwest corner of the travertine dome (Fiero, 1968). Temperatures up to 138°F have been reported, and the estimated minimum reservoir temperature by several chemical geothermometers is 190° to 208°F (Mariner and others, 1974; Hose and Taylor, 1974). Very slightly anomalous radioactivity (16 μ R/hr) is reported by Wollenberg (1974b). The thermal area lies on a north-trending, concealed fault in the central part of Monitor Valley (Stewart and Carlson, 1974; Fiero, 1968). Spurr (1905, p. 257) describes a report by J. L. Butler, the discoverer of Tonopah, that the water level had lowered and water became cooler in the years prior to 1905. Also, he reported that more gas was formerly emitted and occasional flames were seen.

Hot Springs at Potts Ranch are approximately 4 miles north of Diana's Punch Bowl, in S1,2,T14N,R47E, also in the central part of Monitor Valley. Maximum temperatures here are 113° F, and the estimated minimum reservoir temperatures are nearly identical to those at Diana's Punch Bowl (190° to 208°F). A number of springs and seeps are present in the area near Potts Ranch, and travertine mounds are present in a few areas. The springs lie along a northeasttrending fault which crosses Monitor Valley here (Stewart and Carlson, 1974). The outflow from the hot springs at Potts Ranch and Diana's Punch Bowl contains a small



Warm-water pool in Diana's Punch Bowl, Nye County.

minnow, the speckled dace (Hubbs and others, 1974). The stream courses from some springs have been ditched to improve their flow (fig. 36).

Warm (Nanny Goat) Springs [220]

Warm Springs is a small restaurant and gasoline station at the junction of U. S. Highway 6 and Nevada State Route 25, about 42 miles east of Tonopah. The springs are located about 100 yards west of the restaurant (S20,T14N,R50E) and emerge through alluvium approximately 30 yards east of the bedrock outcrop. They are located along the trace of a major range-front fault along the west side of Hot

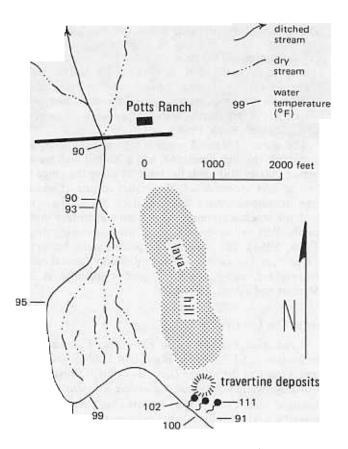
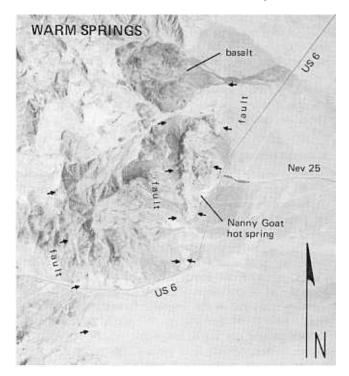



FIGURE 36. Map of warm springs near Potts Ranch, Nye County (after Hubbs and others, 1974).

Creek Valley. Fiero (1968) reports that this fault has as much as 2,000 feet of geologically recent movement, and the location of earthquake epicenters along the fault indicates that it is still active.

The thermal water is believed to rise along a fault zone, predominantly in limestone. Brecciation along the fault, as

well as solution of the limestone, contributes to a relatively high permeability. Most of the spring water probably originates from a regional ground-water system, after circulation to depths as great as several thousand feet. A small proportion of the spring water is probably of local, nonthermal origin (Fiero, 1968).

The water of Warm Springs is high in carbonate, due to its passage through limestone, and a 20-foot-high travertine terrace 200 by 400 yards has built up along the range front. Two springs are reported, the orifice of one of which has been developed with a five-foot deep ditch. The water is used for stock watering and as a supplementary domestic supply. Part of the flow has been used in a swimming pool (Fiero, 1968). The maximum reported water temperature is 140°F, and an estimate of the minimum thermal reservoir temperature, using the silica geothermometer, is 230°F(Mariner and others, 1974).

Little Fish Lake Valley [206]

Warm springs (104° to 108°F) in Little Fish Lake Valley are located in S7,T11N,R49E and S14,T10N,R49E near the lowest parts of the valley. They rise through alluvium which probably overlies Paleozoic limestone at a depth of a few thousand feet. Fiero (1968) reports that a large number of generally north-trending faults are present in the surrounding mountains as well as within the valley alluvium, and it seems likely that these warm springs rise along a high permeability zone created by faulting. They are undeveloped, but are used by stock.

Duckwater [202]

Two main warm spring areas are located near the small community of Duckwater, which is on the Duckwater Indian Reservation in northeastern Nye County. Big Warm Spring or Duckwater Spring is located in S32,T13N,R56E and has a reported temperature of approximately 90° to 91°F (Van Denburgh and Rush, 1974; Mifflin, 1968; Eakin and others, 1951). Little Warm Spring, in S5,T12N,R54E, is approximately the same temperature. Both springs rise in alluvium a short distance west of a north-trending, rangeboundary fault (Stewart and Carlson, 1974). The area may have been called the Burrell Hot Springs District in the past. The water is used locally.

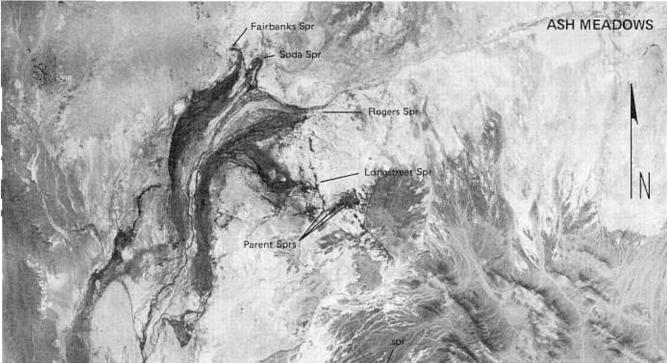
Tonopah mining district [221]

In several mines at Tonopah anomalous underground temperatures have been reported. In the Ohio Tonopah shaft, temperatures up to 78° F were found at 766 feet and temperature gradients reportedly vary from 26 to 54 feet per degree Fahrenheit in dry rocks at depths less than 800 feet (Spurr, 1905, p. 263–265; Darton, 1920). Water temperatures up to 106°F were reported by Bastin and Laney (1918, p. 29) from depths of 1,500 to 2,316 feet in the central part of the mining district. Large flows of hot water were encountered in the Tonopah Extension Mines (Broderick, 1949, p. 9), and during this period approximately 3 million gallons per day of hot water were pumped from the deeper mines. At that time some of the water was utilized in a greenhouse to grow fresh vegetables.

Sarcobatus Flat-Beatty [227]

Warm springs and water wells in the vicinity of Beatty are predominantly near U.S. Highway 95 to the north of the town. Two springs are also reported in Oasis Valley 7 miles north of Beatty, and warm-water wells are found in Sarcobatus Flat as far north as Scotty's Junction. The highest spring temperatures are at Hick's (or Amargosa) Hot Spring (S16,T11S,R47E), where the spring flows from alluvium near outcrops of silicified, opalized, and moderately argillized welded tuff (Malmberg and Eakin, 1962). The hottest of five springs (109°F) supplies bathing pools and related facilities. Burrell Hot Spring (S21,T11S,R47E), located 5 miles north of Beatty on U. S. Highway 95, is approximately 1 mile southwest of Hick's Hot Spring which is in S29?,T11S,R48E, between the Thompson and Silicon Mines. An area of intense silicification, opalization, and moderate argillization has been reported, and is believed to be due to the action of thermal waters which are still present at Hick's Hot Spring (Cornwall and Kleinhampl, 1961).

The municipal water supply for Beatty is obtained from Beatty Springs, a group of six springs that issue from alluvium about 1 mile north of town. The springs are about 80 feet higher in elevation than the town and discharge into concrete collection basins which connect to 8-inch city water mains. Reportedly, the springs discharge 100 to 200 gallons per minute of 75° F water (Malmberg and Eakin, 1962).


The ground water in Sarcobatus Flat has a relatively uniform temperature of 72° F, which is 16° F higher than the average annual air temperature (Malmberg and Eakin, 1962). This anomalous temperature may be due to the deep circulation that most of the ground water in this area has undergone.

Amargosa Desert [229]

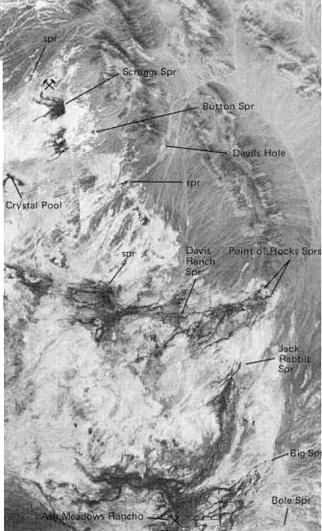
Warm springs and warm water wells are distributed over the southern third of the Amargosa Desert (a few wells are included under this heading in Appendix 1 that are located to the east of the Amargosa Desert). The temperatures reported are mostly less than 90°F, and many wells have temperatures no more than 10 to 15 degrees above the mean annual air temperature. The thermal springs are concentrated in the vicinity of Ash Meadows and the Death Valley National Monument and are almost certainly related to one or more north- and northwest-trending faults along the east side of Ash Meadows. Spring temperatures range from approximately 75° to 93°F, and extensive travertine deposits are present at some springs (Naff, 1973). The source of the spring waters is apparently carbonate aquifers which are exposed in an area to the northeast (Dudley and Larson, 1976).

Pahrump Valley [230]

Several warm springs and a number of warm-water wells are located in Pahrump Valley. The springs include Pahrump (Bennett's) Springs in S14,T20S,R53E; Manse Ranch Springs in S3,T21S,R54E; and Brown's Spring in S15,T22S,R54E, Clark County. Many of the warmer water wells are in the immediate vicinity of these springs, although a few are located elsewhere in the valley.

The mean annual air temperature in Pahrump Valley is 65°F, while spring and well temperatures range from 70° to 82°F. The average temperature gradient in the valley, as determined from water-well data, is approximately 1°F per 85 feet (Malmberg, 1967). All springs with temperatures of 70°F or greater were included in Appendix 1, the same practice followed elsewhere in this report. However, in Pahrump Valley, only water wells having a temperature of 70°F or greater combined with a temperature gradient higher than 1°F per 75 feet were used in this compilation (see fig. 15 for the Las Vegas Basin). Malmberg (1967) suggests that the spring temperature at Bennett's Springs, for example, indicates that the water probably originated from a single water-bearing zone approximately 850 feet deep. The abnormally high ground-water temperatures in Pahrump Valley are probably related to the deep circulation of much of that water.

Other warm springs and wells in Nye County


Most of the thermal springs and wells in Nye County which are not described in the preceding sections are in the northern half of the county. A few deep (1,700-1,800feet) wells in the Yucca Flat area on the Nevada Test Site are also included in Appendix 1 (see Schaff and Moore, 1964). Water temperatures at the other undescribed springs and wells in Nye County are usually 100°F or less, although a spring in Hot Creek Valley (S30,T7N,R51E) is reported to be 142°F (Hose and Taylor, 1974). Little detailed information is available on these springs and wells in most cases, although a detailed location map is available for Pedro and Reveille Mill Springs (fig. 37).

PERSHING COUNTY

Leach (Pleasant Valley,

Nelson's, Guthrie) Hot Springs [235]

Leach Hot Springs are located near the south end of Grass Valley in S36,T32N,R38E, slightly more than 1 mile

west of the major frontal fault on the west side of the Sonoma Range. The springs have several other names, including Pleasant Valley, Nelson's, and Guthrie Hot Springs. The spring temperatures reported at Leach are up to boiling, which would be 204°F at that elevation. Tempera-

PERSHING COUNTY (continued)

tures as high as 212° F are reached within 100 feet of the surface (Olmsted and others, 1975) as seen in Figure 38. The estimated thermal aquifer temperature is between 311° and 349° F for the various chemical geothermometers (Mariner and others, 1974). The spring flow is used for stock watering and irrigation at a ranch just west of the springs.

The springs issue from steeply inclined, fault-controlled conduits in Quaternary alluvium and Tertiary sedimentary rocks. Late Paleozoic and early Mesozoic sedimentary and volcanic rocks are exposed east of the springs (fig. 39) and probably underlie the spring area at depths of several hundred feet (Olmsted, 1974; Olmsted and others, 1975).

Leach Hot Springs lie on a prominent 20- to 30-foothigh fault scarp in the alluvium. This scarp is part of a system of faults related to the major north-trending boundary fault along the Sonoma Range. This major fault can be traced for several miles to the north of the springs, and probably continues to the south through Mud Spring and somewhat to the west of the Goldbanks Mining District on the eastern edge of the East Range. In the Goldbanks Mining District, a mercury-bearing silica "apron" of chalcedony and minor opaline silica forms a north-trending, linear mantle over Miocene fanglomerates and silicic tuffs (Dreyer, 1940; Noble and others, 1975). The silica deposition here is of hot springs origin (Dreyer, 1940) and appears very similar to the sinter deposits in the Leach Hot Springs area. However, Noble and others (1975) report that the Goldbank mineralized rocks are intruded and overlain by

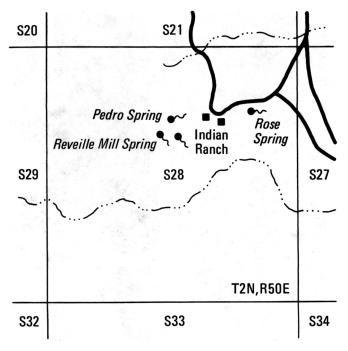
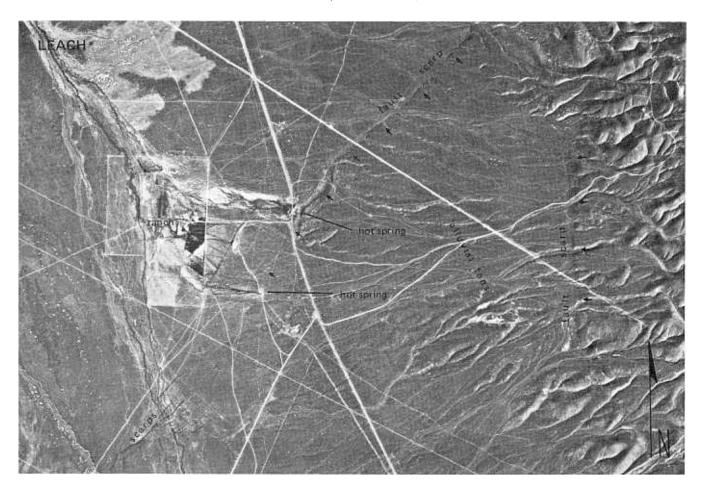



FIGURE 37. Reveille Mill and Pedro Warm Springs, Nye County (from sketch map by Alvin McLane).

12 to 15-m.y.-old basalts and rhyolites, indicating a Miocene age for the Goldbanks deposits. Therefore, it seems likely that the Goldbanks mineralization is a shallow manifestation of the hydrothermal systems which produced the many 14 to 16-m.y.-old precious deposits in northern

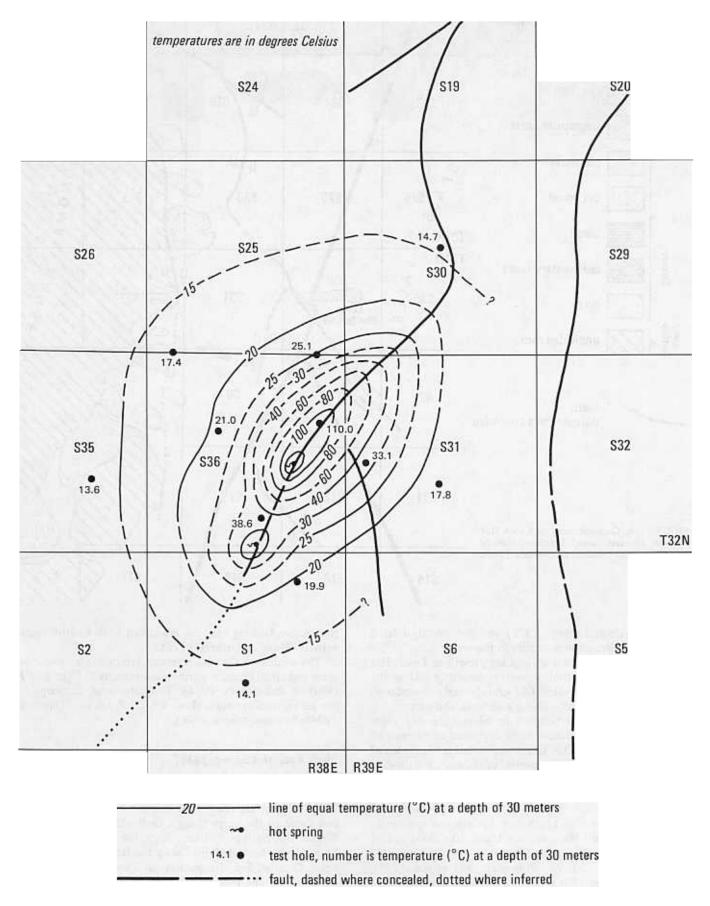
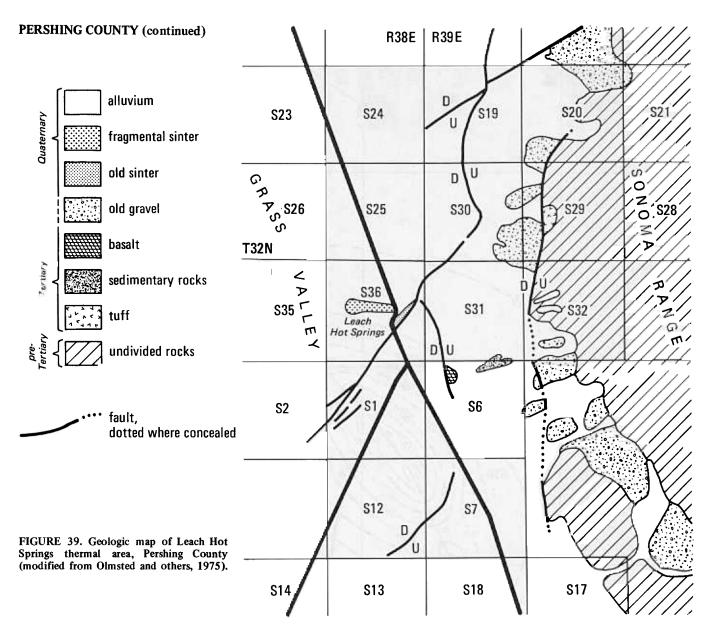
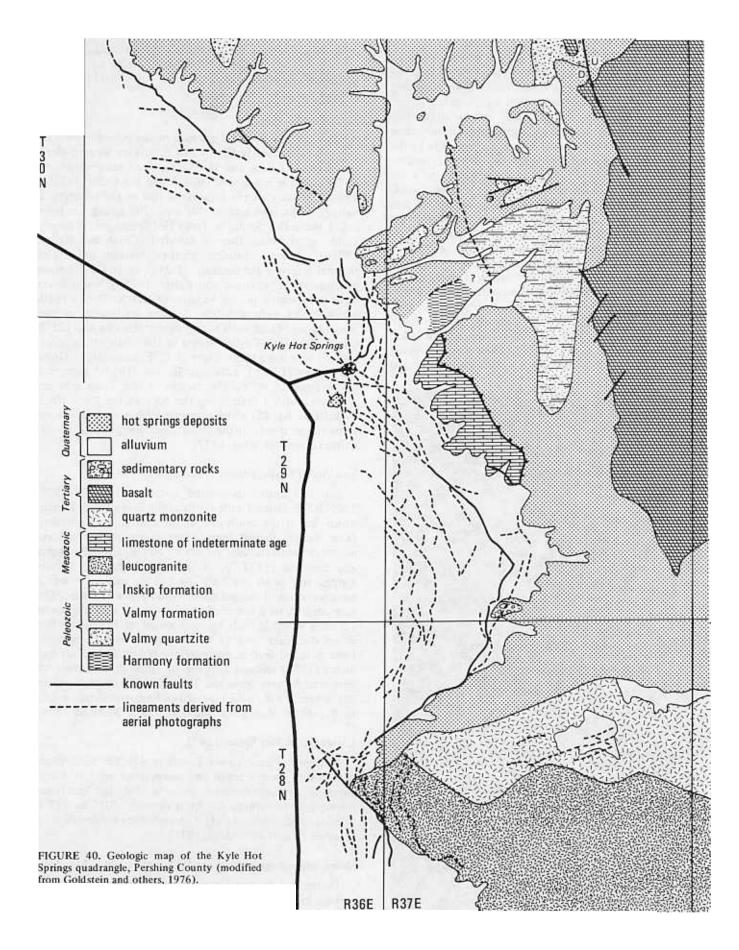



FIGURE 38. Map of Leach Hot Springs thermal area, Pershing County, showing temperatures at a depth of 30 meters, December, 1973 (modified from Olmsted and others, 1975, figs. 31 and 33).

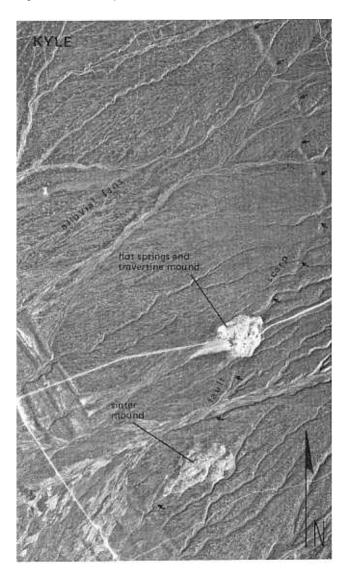
Nevada (Noble and others, 1975), and not directly related to the present hot-springs activity in the area.


More than 30 separate springs are present at Leach Hot Springs, and the material depositing presently and in the past is predominately silica. Old sinter, mainly chalcedony, is exposed along a half-mile-long zone to the east of the springs. This sinter is believed to be considerably older than the opaline sinter now being deposited to the east of the springs (fig. 39). This fragmental sinter is composed of pebble- to sand-sized fragments of white to light-gray opaline silica down gradient from the springs. The fragments have been distributed by spring runoff (Olmsted and others, 1975).

The fault system at Leach Hot Springs was apparently established in early Miocene, as a basalt dike along one of the faults in the spring area (fig. 39) is 14 to 15 m.y. old (Noble and others, 1975; Wollenberg and others, 1975). Many of these faults cut some of the alluvial deposits in the valley and act as ground-water barriers. A zone of intersecting lineaments southwest of the springs corresponds to an area of appreciable microearthquake activity, suggesting that active faulting may be associated with hydrothermal activity (Majer and others, 1976).

The estimated thermal reservoir temperature, based on silica and alkali-element geothermometers, is 311° to 349° F (Mariner and others, 1974). The total heat discharge of the geothermal system is about 1.8 x 10° cal/sec. (Olmsted, 1974b; Sass and others, 1976).

Black Rock Hot Springs [131]


Springs in S3,10,T35N,R26E just inside the north boundary of Pershing County have temperatures up to 204°F. These are related to springs at Black Rock Point and those to the north along a fault which passes through Double Hot Springs. For simplicity, the springs in Pershing County have been described with the larger group in Humboldt County. See the section on Double Hot Springs-Black Rock Hot Springs. The fault at Black Rock Hot Springs crosses the Black Rock Desert and joins with a basin-margin fault at Trego (see the following description of the Trego area).

PERSHING COUNTY (continued)

Kyle Hot Springs [238]

Kyle Hot Springs are located in S1,12,T29N,R36E. The locality is on the east edge of Buena Vista Valley less than 1 mile west of a mountain-front fault which cuts alluvium (Stewart and Carlson, 1976b). The springs and spring deposits are clearly associated with several intersecting sets of faults (fig. 40). North-trending faults seem to be the principle conduits for thermal water (D. C. Noble, written communication, 1974). The spring area consists of a circular pool 6 feet in diameter which has little if any visible discharge. A low mound of siliceous sinter about 450 feet in diameter is present, and siliceous sinter and sulfur are presently being deposited. The odor of H_2S is noticable. The area has been used in the past as a health resort by a few people from Lovelock and other communities (Loeltz and Phoenix, 1955, p. 30-31). Wollenberg (1974b) reports that the pools are anomalously radioactive (250 to 500 μ R/hr). The maximum temperature has been variously reported as 159°F (Loeltz and Phoenix, 1955), 171°F (Mariner and others, 1974) and 204°F (Sanders and Miles, 1974). Mariner and others (1974) report that the spring deposits are mostly travertine with a trace of disseminated

silica, and they estimate the thermal-aquifer temperature to be 340° to 381° F by use of the silica and Na-K-Ca geothermometers. D. C. Noble, (written communication, 1974) reports that spring deposits about 0.7 miles southeast of the present Kyle Hot Springs contain considerable amounts of siliceous sinter.

Trego area [233]

Hot springs about 1.8 mi east of the railroad siding of Trego (approximately S31?, T34N, R26E) are located along the railroad tracks and have a reported temperature of 187°F (Mariner and others, 1974; Grose and Keller, 1975b). The uncertainty of the location is due to the unsurveyed nature of the land grid in this area. The spring has been called Butte Hot Spring or Trego Hot Spring, and is clearly visible on airborne thermal infrared (Grose and Keller, 1975b). Various chemical geothermometers indicate a thermal reservoir temperature of 248° to 262°F (Mariner and others, 1974; Grose and Keller, 1975b). Warm water wells are located in the vicinity of Garrett Ranch (S10, T33N,R25E) approximately 2 miles southwest of the Trego siding. These wells have temperatures of up to 125°F (Sinclair, 1963a). Coyote Spring to the north of the ranch about 1 mile has a temperature of 72°F, according to Grose and Keller (1975b), although Sinclair (1963a) reports a temperature of 60°F. The springs at the Trego area are associated with a fault along the edge of the Black Rock Desert (see fig. 41) which connects with a long fault zone along the west side of the Black Rock Range (L. T. Grose, written communication, 1977).

Sou (Seven Devils, Gilbert's) Hot Springs [243]

Sou Hot Springs is located mainly in the SW/4 S29, T26N,R38E about 1 mile north of the Seven Devils Ranch, which lies at the south end of the Sou Hills in northern Dixie Valley. Recent temperature measurements indicate maximum temperatures are about 163°F, although Hague and Emmons (1877, p. 705) reported that the hottest springs and pools are 160° to 185°F, and there was a great variation of temperatures within a short distance. The area consists of a low mound of travertine covering about 12 acres which is built up to a height of at least 60 feet above the plain. Ten to twelve circular hot-spring pools from 6 to 60 feet in diameter are reported. Mariner and others (1974) estimate that the minimum thermal-reservoir temperatures may be in the 212° to 237°F range. Senterfit and others (1976) have reported audiomagnetotelluric data in the Dixie Valley Known Geothermal Resource Area.

Lower Ranch Hot Spring [247]

Hot springs near Lower Ranch in S16,T25N,R39E are reported to have a maximum temperature of 104°F and chemical geothermometers indicate that the minimum reservoir temperatures are approximately 201° to 212°F (Mariner and others, 1974). Calcareous spring deposits are reported (Muller and others, 1951).

Other hot springs in northern Dixie Valley [244, 246, 248]

Cohen and Everett (1963) report that virtually all the springs in Dixie Valley are thermal. Hyder or Cone Hot Springs in S28,T25N,R38E have reported temperatures from 83° to 175°F (Cohen and Everett, 1963), and McCoy

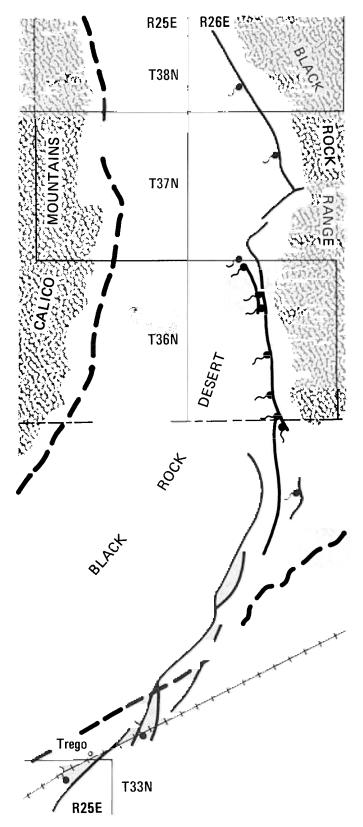


FIGURE 41. Map of Black Rock Fault and associated thermal springs, Humboldt and Pershing Counties (after unpublished map by L. T. Grose, 1975).

Springs in S33,T26N,R39E are approximately 120°F. In addition, a warm spring (83°F) is reported in S19,T25N, R39E near the end of a long line of springs along a northwest-trending fault system which cuts the alluvium

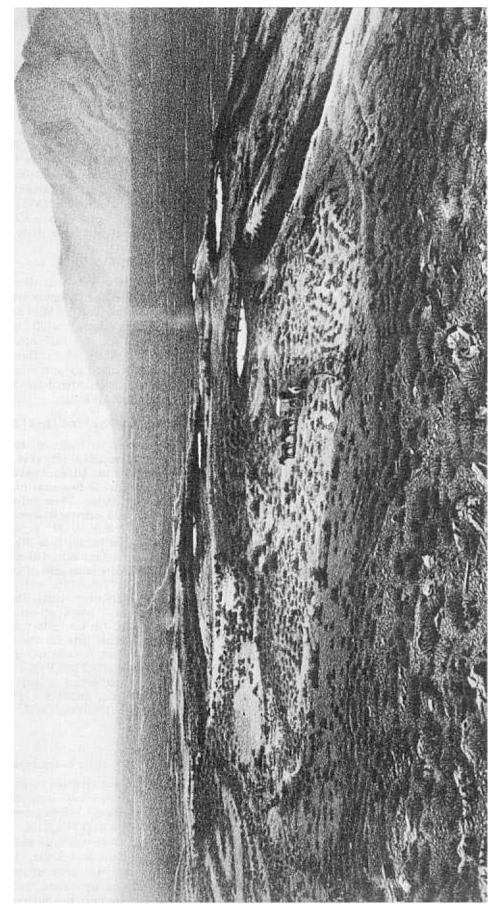
and intersects the McCoy Springs area approximately 4.5 miles to the northwest (Stewart and Carlson, 1976b; Cohen and Everett, 1963). Hot springs in southern Dixie Valley are described in the Churchill County section of this report.

Jersey Valley [242]

Springs in S28,29,T27N,R40E along the east side of Jersey Valley have temperatures of 84° and 135°F (Cohen and Everett, 1963; Mariner and others, 1974). The springs appear to lie along a possible projection of a mountainfront fault shown by Stewart and Carlson (1976b). A low hill of travertine and siliceous sinter over half a mile long is present in the spring area in SW/4 SW/4 S28,T27N,R40E (Ferguson and others, 1951b). Estimated thermal aquifer temperatures are 288° and 360°F for the silica and Na-K-Ca geothermometers respectively (Mariner and others, 1974).

Colado [239]

A water well (Mineral Materials well) in SE/4 S33,T28N, R32E has 150°F temperatures; 155°F water was reported in a drill hole in NE/4 SE/4 SE/4 S27,T28N,R32E, and hot water was noted in a 30-foot-deep shaft about 350 feet southwest of this drill hole (Everett and Rush, 1965; Pruss and others, 1961). This area is named for the railroad siding of Colado about 6 miles northeast of Lovelock. The hot waters encountered may be related to faults along the West Humboldt Range.


Humboldt (Rye Patch) area [236]

Humboldt or Humboldt House, 32 miles north of Lovelock, was founded in 1868 as an eating station along the Central Pacific Railroad. Siliceous and calcareous spring deposits occur as low domes in two areas to the south and to the west of Humboldt House. These hot-spring deposits contain sulfur, gypsum, and detectable amounts of mercury (Vanderburg, 1936, p. 17; Russell, 1885, p. 54, 55; Bailey and Phoenix, 1944, p. 107). One locality is in SW/4 SE/4 S33,T32N,R33E, and consists of a sinter mound about 1,000 by 700 feet. The second locality occurs in an area of Quaternary sandstone in NW/4 SW/4 S32,T32N,R33E, and is about 500 feet in diameter (Olcott and Spruck, 1961). The area is about 1 mile west of a major fault which separates Mesozoic rocks and surficial deposits. No hot springs are known in the area. Audiomagnetotelluric data for the area is available in Long and Batzle (1976c). A warm spring was reported from the site of Rye Patch (S20,T30N,R33E) by Crofutt (1872), but it has not been recognized in any more recent studies. Phillips Petroleum Co. drilled a 1,853-foot-deep geothermal test in SE/4 S21,T31N,R33E in 1977. Temperatures up to 325°F were reported.

New York Canyon kaolin deposit [245]

Steam was reported to issue from a development drill hole at the New York kaolin deposit in 1963. The drill hole is approximately 140 feet deep, and is located in the vicinity of SW/4 S1,T25N,R35E. The kaolin deposit is of the shallow, hot-springs type and contains irregular bodies of associated siliceous sinter. The sinter is exposed at the surface and was encountered during drilling (K. Papke, personal communication, 1977). The sinter and thermal water occur near the mountain front along a fault scarp

PERSHING COUNTY (continued)

Sou Hot Springs in Dixie (Osobb) Valley, Pershing County (from lithograph, Hague and Emmons, 1877, plate 20).

PERSHING COUNTY (continued)

which cuts the alluvium. This fault is probably part of a young Basin-and-Range fault shown by Stewart and Carlson (1974) cutting the alluvium in southern Buena Vista Valley.

STOREY COUNTY

Comstock mining district [252]

The silver-gold mines along the Comstock Lode were known for their extremely hot, difficult working conditions (Lord, 1883, p. 389–406); the miners commonly worked in temperatures ranging from 100° to 125° F. Church (1879, p. 289) considered the Comstock mines "to be the hottest in the world." Smith (1943, p. 245) states that "no other mines in the world have encountered such heat and such floods of scalding water."

Because of variations in ventilation, air temperatures in the workings varied considerably over short distances and are difficult to interpret. Rock temperatures also were modified by ventilation and water removal, thus temperatures taken in drill holes or immediately after a rock face was exposed are more useful. As Locke (1912) put it, the "temperatures are deranged by the presence of the mine workings which make possible the presence of the observer."

In a general way rock temperatures in these mines increase $3\frac{1}{2}^{\circ}F$ for every 100 feet of depth (Becker, 1882, p. 230; fig. 42). This gradient persisted for some distance away from the Lode, but water temperatures taken at the face of the Sutro drainage tunnel while it was being driven showed that temperatures rose rapidly as the Lode was approached, even though the depth of the tunnel below the surface remained relatively constant (fig. 43). Water presently flowing from the portal of the tunnel in Lyon County is 83°F (Glancy and Katzer, 1975).

The highest rock temperature recorded was 167° from a dry drill hole on the 3,000-foot level of the Yellow Jacket Mine (diary, Superintendent Thomas G. Taylor). Mr. Cosgrove, foreman of the Yellow Jacket measured rock temperatures of $139\%^\circ$ and 136° F on the 2,200-foot level. Temperatures of about 130° F were recorded at numerous spots at depths of 1,900 to 2,000 feet in the Ophir, Chollar, Potosi, Crown Point, and other mines. All these temperatures were measured in drill holes immediately after a hole was finished. The rock surface temperatures of workings in the same area were 123° F or less.

The highest temperature of any considerable quantity of water was recorded during the flooding of the 3,000-foot level of the New Yellow Jacket shaft in November, 1880 (Becker, 1882, p. 230); 170°F water under considerable pressure was struck in a drill hole at a depth of 3,080 feet in the bottom of the shaft and soon flooded the mine. On February 13, 1882, a flood of 157°F water from the 2,800foot level of the Exchequer Mine again drowned the pumps in the New Yellow Jacket shaft; all the mines in the vicinity were flooded, the water rising to the level of the Sutro drainage tunnel (annual report, Superintendent Thomas G. Taylor, July 1, 1882). A small flow of water in the east crosscut on the 2,000-foot level of the Crown Mine had a temperature of 157°F (Church, 1879, p. 291). The body of water that flooded the Savage and Hale, and Norcross Mines in 1877(?) still had a temperature of 154°F two years later

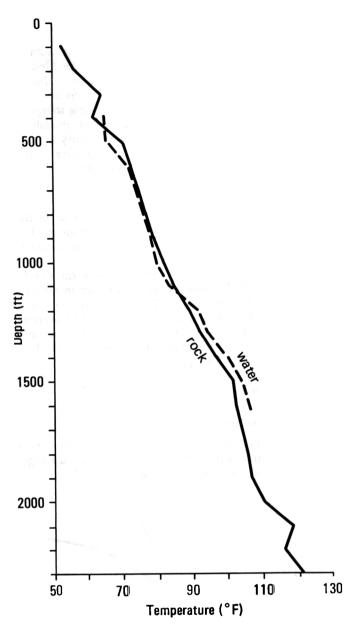


FIGURE 42. Temperatures in the Forman Shaft, Comstock Lode, Storey County (after Becker, 1888). Measured as the shaft was sunk.

(Church, 1879, p. 291) even though over a million tons of water had been removed.

As would be expected, the circulation of water was eccentric. Numerous clay seams sealed off the flow. Cutting such a clay seam frequently released dammed-up bodies of water which flooded the workings. The seams also appear to have greatly inhibited the upward convective flow of the hot water; there were no hot springs along the Lode's surface croppings, and the water encountered in the upper workings was cold, suggesting that the upward flow of hot water was feeble compared to the downward percolation of meteoritic water. The "perched," imprisoned nature of much of the water encountered is illustrated by the fact that once the water level was lowered below the Sutro tunnel, the water never rose to that level again (as long as the workings remained open to observation), even after pumping had stopped. The Comstock Lode obviously did not provide as easy a passageway for the upward flow of hot water as one might expect.

STOREY COUNTY (continued)

The restricted flow strongly suggests that the volcanic and intrusive wall rocks were the source of the heat, rather than the heat being introduced from some more distant source by hot-water flow. Exothermic reactions involving vein materials have been proposed as a possible source of the heat, but the low acidity and relatively unmineralized condition of the water (Appendix 1), and rarity of exothermic reaction products in the vein material suggest that little heat has been generated by this mechanism.

Other areas [249, 250, 251]

Although abundant hot water was encountered in the mine workings on the Comstock Lode, there are no hot springs in the vicinity. In fact, hot springs and evidence of past springs are rare in the entire county.

Waring (1965, Nevada no. 58) lists a warm (73°F) spring in T19N,R23E; probably this is Biddleman Springs, the only springs shown on the Churchill Butte 15' topographic map. He mentions also a large area of travertine in S2,T17N,R22E (no. 251, pl. 1) and a small terrace and some fissure-filling of travertine in the center of the W/2 S21,T19N,R21E (no. 249, pl. 1).

WASHOE COUNTY

Truckee Meadows area

The Truckee Meadows area (fig. 44) includes the Reno-Sparks urban area between the Carson and Virginia Ranges on the west and east, respectively, and from Peavine Mountain to the north to the Steamboat Hills on the south. In general, the data in Appendix 1 in T17,20N and R19,20N would be generally considered to fall within the Truckee Meadows. This would include also a few warm-water wells in Pleasant Valley, which is technically outside of the Truckee Meadows. This area is just to the south of Steamboat Hot Springs and probably associated with that system. In Appendix 1 most of the water-quality data has been separated into several groups: Lawton Hot Springs, Moana Hot Springs, Steamboat Hot Springs, Pleasant Valley, etc. This separation, in a few cases, has been done somewhat arbitrarily.

Wedekind Mine [274]

In 1903 the Wedekind shaft in the Wedekind Mining District (SW/4 S28,T20N,R20E) encountered hot, acid water at 213 feet. A 150-gallon-per-minute pump was able to hold the water at the 100-foot level. The water was heavily charged with H_2S , and several miners in the bottom of the shaft were overcome by heat and H_2S (Morris, 1903; Overton, 1947, p. 84). No other evidence of thermal ground water is available, as there have been few recent water wells drilled in this area.

Lawton Hot Springs [275]

Hot springs along the Truckee River about 6 miles west of downtown Reno (SW/4 NE/4 S13,T19N,R18E) were named for Sam L. Laughton, who was the proprietor of a spa on the site in the mid-1880's. They were originally called Granite Hot Springs, but the name Lawton was used for a station on a spur of the Southern Pacific Railroad

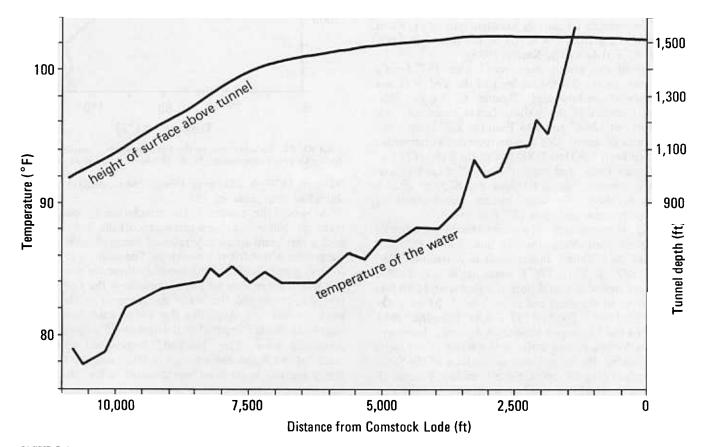


FIGURE 43. Water temperatures in the Sutro Tunnel (after Becker, 1888). Measured as the tunnel was advanced.

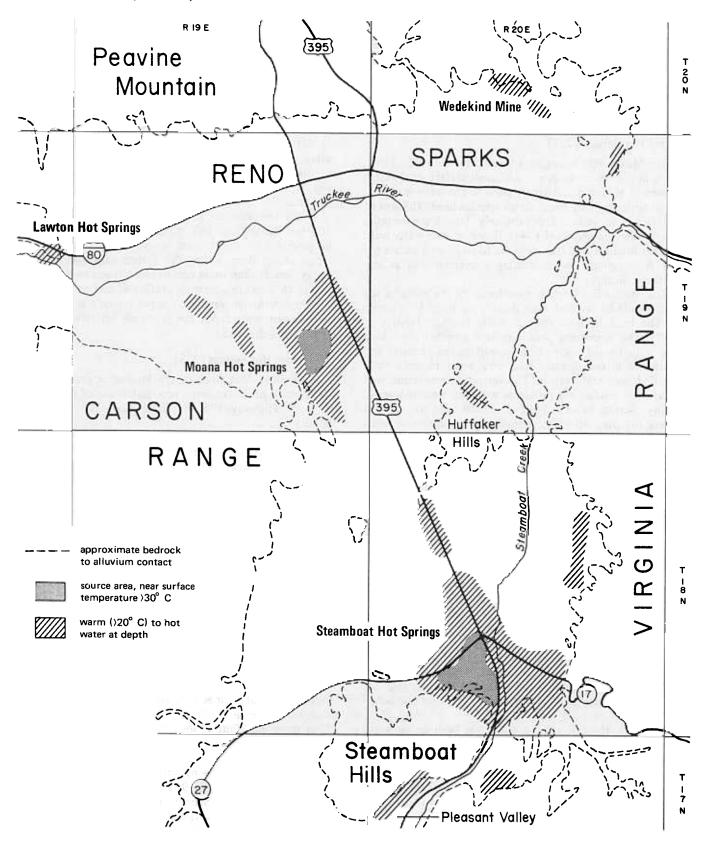


FIGURE 44. Map showing areas of known thermal ground-water occurrence in the Truckee Meadows, Washoe County (modified from Bateman and Scheibach, 1975).

WASHOE COUNTY (continued)

(Carlson, 1974). The springs had a temperature of 120° F, and an artesian well is reportedly 140° F (R. B. Scheibach, written communication, 1975). Lawton Hot Springs lie at the northwestern end of a 12-mile-long zone of thermal ground water which extends from Steamboat Hot Springs to the southeast. The hot water at Lawton Hot Springs is used today in a bathhouse at the River Inn hotel-casino.

Moana Hot Springs [277]

The Moana Hot Springs are located in NE/4 S26,T19N, R19E in southwestern Reno. Although surface discharge is at present almost nonexistent, some of the wells drilled in the surrounding area maintain an artesian head. The area of thermal water wells is approximately 4 to 5 square miles centered on the springs (fig. 44). However, cold water wells are also found within this area, and having a well within the area is no guarantee of striking a thermal well at any particular locality.

The Moana Hot Springs were formerly the site of a spa which could be reached from downtown Reno by a streetcar line built in 1907 (Nevada State Journal, January 2, 1977). The swimming pool was also supplied for a long time with heated water from a well in the vicinity, and water was mixed directly with city water to maintain a specified pool temperature. This operation was terminated because of production problems with the well and water quality. Several homes in the area have used the thermal waters for over 40 years, although the number of wells has increased markedly in the past 10 years as the Reno residential area has expanded. Over 30 homes and three commercial establishments now utilize the geothermal waters for space heating; other uses include the heating of domestic hot water and water for swimming pools. Most of the systems use down-hole heat exchangers, and circulate city water through finned-tube baseboard heaters. Thermostatically controlled pumps are installed in most systems. Bateman and Scheibach (1975) discuss the utilization of the Moana geothermal waters in more detail.

Location of the Moana thermal system is thought to be controlled by north-south-trending faults that parallel the front of the Carson Range to the west (Bateman and Scheibach, 1975; Bonham and Bingler, 1973). Several faults in this area cut glacial outwash deposits of Illinoian age (E. C. Bingler, oral communication, 1977). It has also been noted that there is a striking north-south alignment of those wells with artesian head (past and present) and that the alignment may mark a fault trace (Bateman and Scheibach, 1975).

Although thermal ground water has been encountered in wells over an area of several square miles (fig. 44), the highest temperatures, as well as the area of maximum use for space and domestic hot water heating, is concentrated in an area slightly over 2 square miles (fig. 45). The wells in the Sweetwater Drive-Manzanita Lane area (SE/4 NE/4 S26,T19N,R19E) are usually 100 to 300 feet in depth and many have temperatures of 160° to 185° F. To both the north and west of this area, it has been necessary to drill deeper wells to encounter thermal waters. These hot waters when encountered in drilling are associated with a "blue" clay zone which directly overlies the Tertiary bedrock units here and may be up to 150 feet thick. The hot water is not generally found above this "blue" clay zone (Bateman and Scheibach, 1975). If the water moves upward through faults in the bedrock, this clay zone may act as a relatively impermeable cap, forcing the water to diffuse laterally (and vertically) away from the fault zone. Noticeable increases in water temperature were observed when certain wells were drilled through the contact between the clay and underlying bedrock. The existence of an artesian head only in wells drilled along a certain alignment, presumably a fault, may further support this theory of near-surface operation of the system. Wells drilled into or through the clay at some distance from such an input zone would tend not to display artesian conditions due to the hydraulic head loss involved in moving water laterally through the clays and andesite.

Water temperatures encountered at depths in excess of 100 feet range from 167° to 205° F. Deeper wells do not in general have the highest temperatures, suggesting that temperatures deep within the system may not be appreciably greater than those encountered nearer to the surface. Figure 46 shows temperature profiles of several wells within the area. Although variable, the pattern of a leveling off of temperature with depth can be clearly observed (Bateman and Scheibach, 1975).

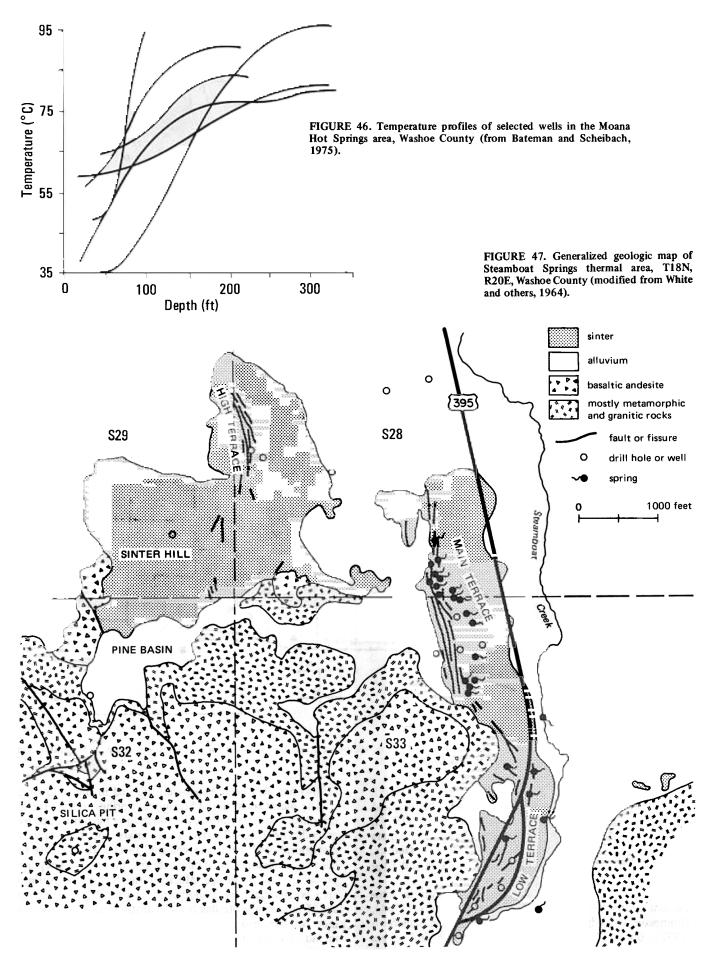
Steamboat Hot Springs [278]

Steamboat Hot Springs are located approximately 9 miles south of downtown Reno, just south of the junction of U. S. Highway 395 and State Route 27 (S33,T18N, R20E).

The springs have a long history as a resort and health spa. They were first located in 1860 by Felix Monet. They are so named because, when discovered, escaping steam reportedly produced a noise resembling the puffing of a steamboat. The area had several owners and developments before 1871, when the Virginia and Truckee Railroad was completed to this point and a small town sprang up (Hummel, 1888). A post office was established in 1880 and exists to this day. Some of the resorts have used the names Reno Hot Springs, Mount Rose Hot Springs, or Radium Hot Springs. The deposits of sulfur and cinnabar were first opened up in 1876, and numerous attempts have since been made to mine these deposits (Overton, 1947).

The Steamboat Hot Springs area is the best known and most extensively studied geothermal area in Nevada, and one of the better known thermal areas of the world. The geology and geochemistry have been described in detail by White and others (1964). Other references on the geology of the hot springs area and the surrounding vicinity include: White and others (1946), White (1952, 1953), Thompson and White (1964), Bingler (1975), Bateman and Scheibach (1975), and Tabor and Ellen (1975). The rock alteration has been studied by numerous persons and reported in the following articles: White (1947, 1954), Sigvaldason and White (1962), Schoen and White (1965, 1967), Ehrlich and Schoen (1967). The geochemistry (including isotope geochemistry) and heat flow has been discussed by the following: Brannock and others (1948), White and Brannock (1950a, b), Craig (1953), White and others (1957), White and Craig (1959), White (1957, 1968), and Silberman and White (1975). The mercury, antimony, silver, and gold mineralization has been described in a number of publications, including: Phillips (1871, 1879),

WASHOE COUNTY (continued)


FIGURE 45. Map showing locations of shallow thermal wells in southwest Reno that are used for space heating, domestic hot water, and swimming pools (from unpublished map by R. B. Scheibach, 1974).

Le Conte (1883), Becker (1888, 1889), Lindgren (1905), Jones (1914), Bailey and Phoenix (1944), Gianella and White (1946), White and others (1949), and White (1974).

Geophysical studies are reported in White and others (1964), Hoover, Batzle and Rodriquez (1975), Hoover, O'Donnell, Batzle, and Rodriquez (1975), Long and Brigham (1975b) and Peterson (1975).

Much of the following geologic description is summarized from White (1968), White and others (1964), Thompson and White (1964), and Bateman and Scheibach (1975). Bonham's (1969) summary of White and others (1964) has also been extensively quoted in the following.

The oldest rocks in the Steamboat Springs area are metamorphosed sedimentary rocks which have been intruded by granodiorite (fig. 47). The sedimentary rocks are largely metamorphosed water-lain volcanic tuffs with intercalated beds of sandstone, conglomerate, and limestone. They are probably Triassic in age. Much of the Steamboat Springs area is underlain by granodiorite of probably Cretaceous age. The granodiorite has been hydrothermally altered over most of the area, and near-surface bleaching is prevalent in and adjacent to the thermal areas.

WASHOE COUNTY (continued)

Flows of soda trachyte, correlated with the Tertiary Alta Formation, crop out at a few localities in the district and have also been recognized in several of the drill holes located within the thermal area. The soda trachyte overlies granodiorite. Two small erosion remnants of an andesite flow are the only rocks of the Kate Peak Formation that crop out in the district. Rocks of the Kate Peak Formation, however, crop out over extensive areas immediately adjacent to the Steamboat Springs district.

Basaltic andesite flows extend over much of the southern and eastern parts of the Steamboat Springs district. The flows overlie granodiorite and alluvial deposits. These prebasaltic andesite pediment gravels and alluvium are present over much of the district. They rarely crop out, because they are usually concealed beneath younger rocks, but they

have been encountered in a number of the drill holes. The oldest deposits of hot-spring sinter are also of prebasaltic andesite age. Several areas of this early hot-spring sinter are present in the district.

The Steamboat thermal area lies on a line connecting several rhyolite domes that occur to the southwest and northeast of the thermal area. These rhyolite domes have been named the Steamboat Hills Rhyolite. The emplacement of the large dome that lies southwest of Steamboat Springs was preceded and accompanied by extensive pyroclastic eruptions that mantled much of the adjacent area with a layer of rhyolite pumice. It has been proposed (White and others, 1964) that another rhyolite intrusive may underlie the hot-spring area.

White and others (1964) have differentiated several different types of Quaternary deposits in the Steamboat Springs district, including pre-Lahontan alluvium, postbasaltic andesite sinter, opaline hot-spring sinter, alluvium of Lahontan age, and Recent alluvium and hot-spring deposits. Their detailed mapping of these Quaternary deposits has contributed greatly to an understanding of the history of the Steamboat Springs area.

The hot-springs system formed in the early Pleistocene, prior to the eruption of the basaltic andesite flows in the Steamboat area. The basaltic andesites have been dated at approximately 2.5 m.y., and the rhyolite domes have given K-Ar ages of 1.15 to 1.52 m.y. Also, hydrothermal potassium feldspar which replaces basaltic andesite gave an age of 1 m.y. (Silberman and White, 1975). Thus, the hot-spring system is seen to have been active, possibly intermittently, for over 2.5 m.y. The source of the energy for the thermal convective system is most probably the rhyolitic magma chamber from which the rhyolitic domes were emplaced (Silberman and White, 1975). It has been estimated that about 0.001 km³ of new magma would have to be provided each year to supply the heat at Steamboat at the present rate of heat loss.

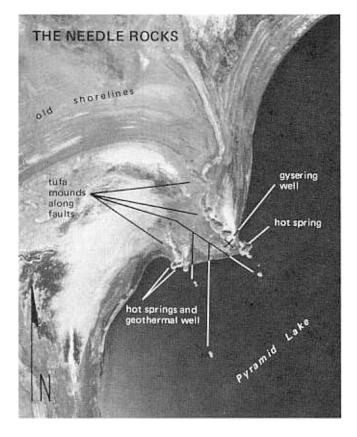
The thermal waters contain small amounts of metals, including mercury, antimony, silver, and gold and have deposited small amounts of stibnite, gold, and silver, and larger amounts of cinnabar in both hot-spring sinter and in the altered wall rocks adjacent to the hot-spring vents.

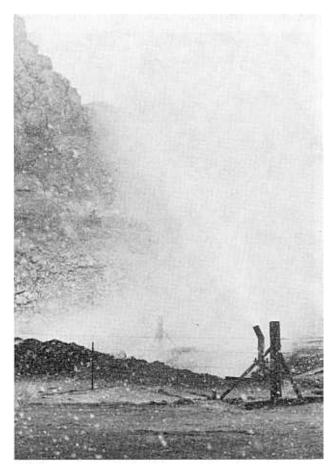
The thermal waters at Steamboat are high in Na, Cl, HCO_3 , and SiO_2 , and have a significant Li content. Also, they are anomalous in As, Sb, Hg, Cs, and B (see Appendix 1). Mercury vapor is commonly detected in the steam from springs and wells. The relative abundance of these highly soluble elements which have a low crustal abundance, coupled with the long life of the geothermal system, creates great problems with maintaining the supply of these elements by rock leaching. White (1974) suggests that the spring waters include a continuing small supply of magmatic water enriched in the previously mentioned constituents. Oxygen isotope data show that there could be no more than 11 percent magmatic water supplied to the hydrothermal system, and it is probably less than 5 percent.

All of the wall rocks in the thermal area have been altered. Near-surface acid bleaching is the most obvious visible effect at the surface, and it has strongly affected the granodiorite and the basaltic rocks. The near-surface acid bleaching extends to depths of 100 feet or more. Below this zone the rocks adjacent to the channelways of migrating thermal waters have been hydrothermally altered. A type of propylitic alteration is prevalent in this zone.

The main terrace at Steamboat Hot Springs is made up of siliceous spring deposits, primarily opaline sinter. It is believed that with time this will change to chalcedonic sinter. A large area of chalcedonic sinter is present in Pine Basin to the southwest of the main terrace and is believed to be the most extensive chalcedonic hot-spring sinter known in the world. It contains disseminated cinnabar. Also, small amounts of siliceous sinter are present about

Nevada Thermal Power Co. Steamboat No. 3 geothermal well in Pine Basin at Steamboat Springs, Washoe County.


WASHOE COUNTY (continued)


1.5 miles south of Steamboat Hot Springs in C NE/4 S5, T17N,R20E, and a small deposit of spring travertine is located in SW/4 SW/4 SW/4 S5,T17N,R20E on the southeast flank of Steamboat Hills about 100 feet above the floor of Pleasant Valley (Thompson and White, 1964).

The springs at Steamboat are near boiling, and exploration steam wells have reported temperatures as high as 369° F. One well encountered temperatures of up to 280° F at only 160 feet (White, 1968). The hot water is reported to have 5% to 10% steam flashover (Koenig, 1970). Preferred estimated reservoir temperatures from chemical geothermometers are approximately 400° F (Mariner and others, 1974). Six steam wells, ranging in depth from 716 to 1,830 feet were drilled in the late 1950's and early 1960's by Nevada Thermal Power Co. (see Appendix 2). Also, the U. S. Geological Survey drilled eight core holes for a total of 3,316 feet, and, in the past, several other wells have been drilled in the area for spas. Several years ago the hot water from one steam well was used as a flameless source of heat for the manufacture of plastic explosives.

The Needle Rocks [269]

Pyramid Lake is on the Pyramid Indian Reservation, about 30 miles northeast of Reno and lies along the probable trace of the Walker Lane, a major right-lateral strike slip fault zone in western Nevada. The Needle Rocks are at the northeast corner of Pyramid Lake (S12,T26N,R20E and S6,7,T26N,R21E), along north-northeast-trending faults that are presumed to be part of this Walker Lane fault zone (Bonham, 1969). Warm springs are also present at Pyramid Island (S3,T24N,R22E) and on Anaho Island (S16?,T24N,R22E); both localities are also within the Walker Lane fault zone.

Western Geothermal Inc. Needles No. 1 well at Needle Rocks, Washoe County, shortly after drilling in 1965 (photo by Harold F. Bonham, Jr).

Both the Needle Rocks and Pyramid Island are spectacular masses of tufa which were deposited in Pyramid Lake when its level was higher than at present. The collection of tufa into needles, spires, and pyramids is believed to be related to underwater warm springs (Russell, 1885), and divers report that underwater hot springs are present near the Needle Rocks today.

Springs at the Needle Rocks are reported to range from 151°F (Grose and Keller, 1975b) to a maximum of 208°F (Waring, 1965) which is near boiling for that elevation. A number of the springs are shown on the Needle Rocks 7½-minute topographic map. The spring on Anaho Island is reported to be 120°F (Waring, 1965). In the early 1960's Western Geothermal, Inc. drilled 3 geothermal wells at the Needle Rocks. The deepest of these was 5,888 feet, and another was approximately 4,000 feet deep. The maximum recorded temperature was approximately 240°F. From examination of drill cuttings from the deepest well, it is believed that Tertiary basaltic andesites overlie Mesozoic metamorphic rocks at approximately 5,050 feet (H. F. Bonham, written communication, 1964). This well flowed continuously after its completion, but geysered or pulsed, a complete cycle taking about 1 minute. A 35-second eruption, with hot water reaching 30 feet in height above the well, was followed by 32 seconds of diminished activity. During this period the well flowed at a rate of about 100 gallons per minute. A thin film of siliceous sinter (geyserite) collected on the well casing during this time; a slight odor of H₂S was also noted (H. F. Bonham, Jr., written com-

WASHOE COUNTY (continued)

Western Geothermal Inc. Needles No. 1 well at Needle Rocks, Washoe (ounty, in 1971. munication, 1964). Mariner and others (1974) report that their best estimate of the thermal reservoir temperature is 279°F, using the silica (adiabatic) geothermometer. thrown. Di

Ward's (Fly Ranch, Hualapai Flat) Hot Springs [258]

Ward's or Fly Ranch Hot Springs are located in Hualapai Flat about 15 miles north of Gerlach (mainly in S1,2,T35N, R23E). The springs are the largest in northwestern Nevada, discharging into 30 to 40 pools over an area of 75 acres. The surface flow is used for irrigation (Sinclair, 1962b). A number of warm-water wells are also present in the area (Harrill, 1969).

The oldest rocks in the Hualapai Flat area are Permian and Triassic metavolcanic and metasedimentary rocks (fig. 48) that have been tentatively correlated by Bonham (1969) with the Happy Creek volcanic series in Humboldt County. Cretaceous granodiorite intrudes the sequence to the south in the Granite Range. In the vicinity of Hualapai Flat, the Tertiary is represented by a sedimentary unit of tuffaceous sands and air-fall tuffs; this is overlain by a finely crystalline, black basalt. Elsewhere in the vicinity andesitic to rhyolitic flows and tuffs also underlie the basalt. Grose and Keller (1975b) also describe a number of different Quaternary units.

North and north-northeast-trending normal faults cut all of the lithologic units, and Late Quaternary fault scarps and tectonic cracks transect the floor of Hualapai Flat, which is a small structural-topographic basin (Sperandio and Grose, 1976). Many of the normal faults occur along the western side of Hualapai Flat and have their eastern sides downthrown. Displacements appear to be dip slip, amounting to tens to hundreds of feet on any one fault, but totaling several thousand feet between the Tertiary volcanic rocks and Cretaceous granodiorite along the southwest margin of Hualapai Flat (Grose and Keller, 1975b).

The faults at Hualapai Flat are believed to be part of a regional and probably deep-seated fault zone that may extend 40 to 45 miles from Winnemucca Lake north along the west side of the Selenite Range, through Gerlach Hot Springs, along the east side of the Granite Range, along the west side of Hualapai Flat, and northward to High Rock Lake. Sperandio and Grose (1976) suggest that the localization of the thermal anomaly at Ward's Hot Springs is probably due to deep hydrocirculation along deep-seated fractures where the north-south fault zone intersects a major northwest-trending fracture system that terminates the north end of the Granite Range west of Hualapai Flat. Quaternary alluvial units in Hualapai Flat record rifting, normal faulting, and subsidence in Late Quaternary (Grose and Keller, 1975a). These features indicate extension of the area, generally along a northwest-southeast axis. The development of the thermal system at Ward's Hot Springs is favored by this extensional tectonic regime, and the major spring area is located on the upthrown side of a 4-mile long fault scarp that has a maximum relief of 30 feet.

Spring deposits at Ward's Hot Springs consist of both siliceous sinter and calcaerous travertine (Sinclair, 1962b).

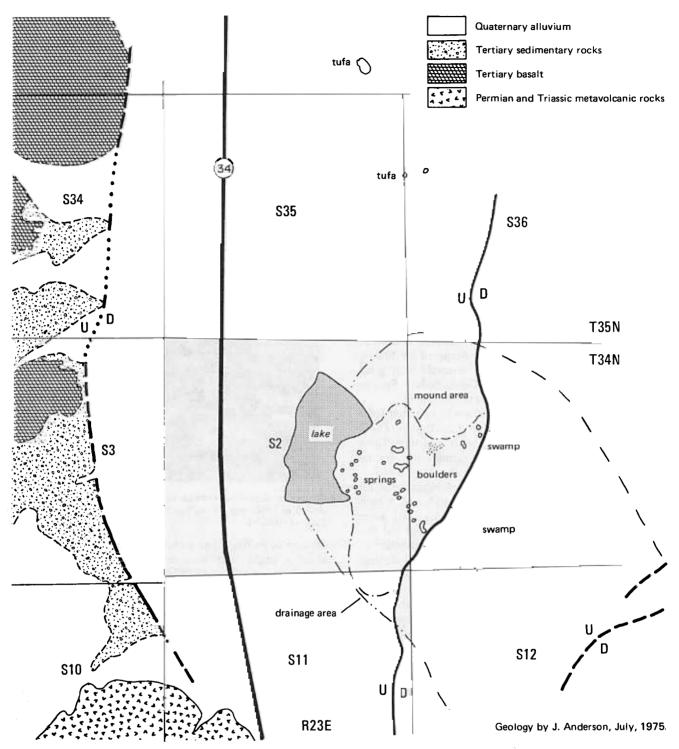


FIGURE 48. Geologic map of the Fly Ranch thermal area, T34 and 35N,R23E, Washoe County (after Grose and Keller, 1975b).

A shallow well (the "Geyser Well") was drilled in the hotspring area in 1916 and has been discharging steam and boiling water since that time. The water is highly mineralized and precipitation of the chemical constituents at the surface has created a tower of travertine 15 feet high. Water temperatures in wells and springs of the hotsprings area and vicinity range from near normal to over 220° F (Appendix 1), and Mariner and others (1974) report a 257° F estimated minimum thermal reservoir temperature using the silica geothermometer.

Granite Ranch [259]

A thermal area of unknown extent is present near the south end of Hualapai Flat about 1 mile south of Granite Ranch in S35,T34N,R23E and S2,T33N,R23E. A presently abandoned water well in the area first hit hot water, and in 1965(?) Western Geothermal, Inc. drilled an 800-foot geothermal test in the area (see Appendix 2). Additionally, thermal water was encountered in temperature test holes drilled by Cordero (now Sunoco Energy Development Co.) and the U. S. Geological Survey. The temperature profile

WASHOE COUNTY (continued)

in the Cordero test hole indicates a reversal in thermal gradient below a depth of 150 feet, which suggests a lateral flow of thermal water through an aquifer at that depth. The thermal water presumably moves into the aquifer from much greater depth along a concealed conduit, probably a fault (Olmsted and others, 1975, p. 128).

Gerlach area [261]

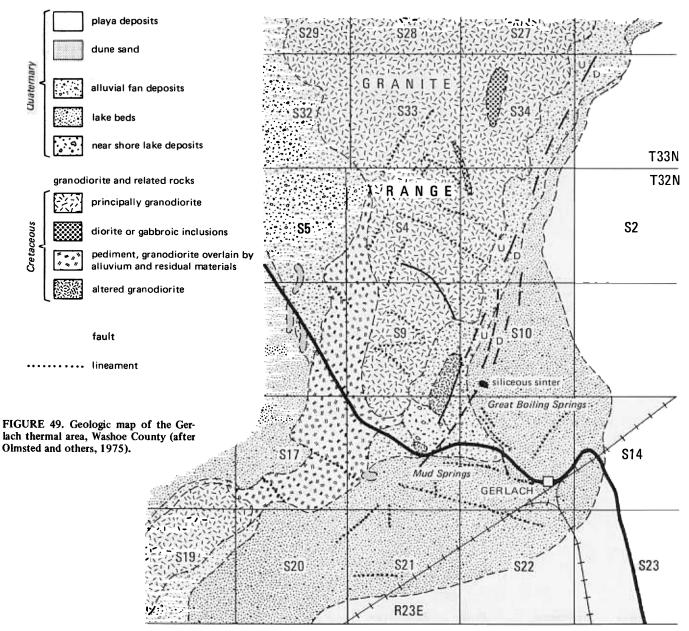
The Gerlach thermal area is at the south end of the Granite Range in the southern Black Rock Desert (fig. 49). It includes two major groups of springs, Great Boiling Springs in S10,15,T32N,R23E about 0.8 mile northwest of Gerlach and Mud Springs in S16,T32N,R23E about 1.1 miles west of Gerlach. These areas have been described together for simplification, but water quality and temperature data in Appendix 1 are subdivided into the separate spring areas.

The springs were first described by Frémont (1845) who reported them as "The most extraordinary locality of hot springs we had met during the journey." He mentioned that one large, circular pool was entirely occupied by boiling water, which boiled up at irregular intervals with great noise. Presumably this was at the Great Boiling Springs area. Frémont measured temperatures up to 208°F.

It has been reported that a borax works operated for a short time at Gerlach Hot Springs, but Papke (1976) believes that this information is probably not true. There is not a large amount of boron in the spring water, and no borates can be found at the site.

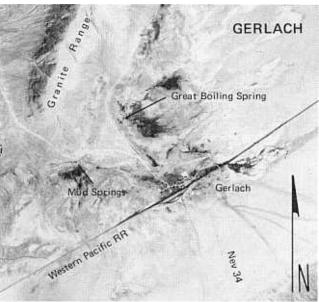
Great Boiling Springs have been used extensively for bathing for a number of years and a bathhouse, steamhouse, and warm pools are at the site today (fig. 50). Some pools are too hot for swimming; a 19-year old girl was scalded to death in one of these in 1973, an indication of the danger inherent in geothermal areas. Mud Springs (fig. 51) has mainly been used for stock watering and irrigation.

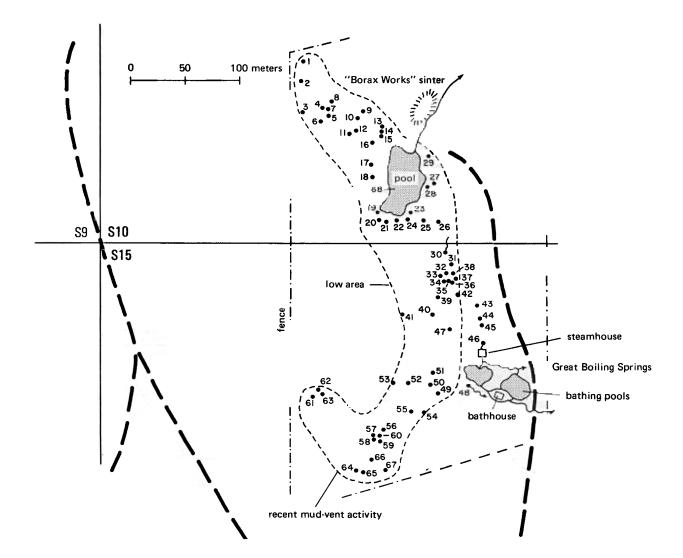
The hot springs issue from unconsolidated lacustrine and alluvial deposits, and hydrothermally altered granodiorite crops out nearby (fig. 49). Both the unconsolidated deposits and the granodiorite are hydrothermally altered along a fault west of Great Boiling Springs and in places are difficult to distinguish from each other. To the west of the thermal areas, the southern end of the Granite Range consists of relatively uniform medium-crystalline granodiorite which contains several scattered, somewhat elongate inclusions of diorite or gabbro. The thermal water has probably been in contact with granodiorite and related plutonic rocks of the Granite Range throughout most of its path from probable recharge areas high in the range to where it rises into the unconsolidated deposits beneath the springs (Olmsted and others, 1975).


The hot-spring clusters are associated with northeasttrending Basin and Range faults along the east side of the Granite Range (fig. 49). Fault scarps that are inches to several feet high appear to control the location of the spring clusters. The west side is usually the upthrown side on these faults (Grose and Keller, 1975b), and some offset deposits are as young as Holocene. Some faults in lacustrine and alluvial fan deposits near the hot springs may represent

Travertine deposit developed over "Geyser Well," a water well drilled in 1916 near Ward's Hot Springs, Washoe County (photo by Patricia Garside).

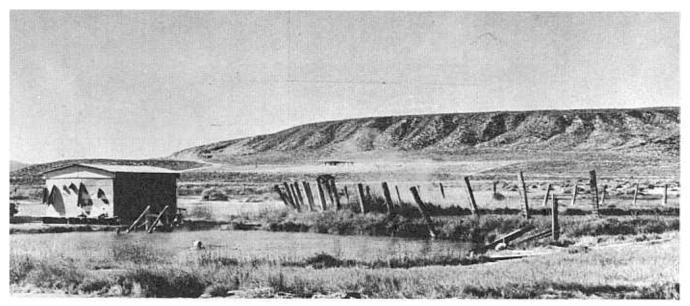
rupture of incompetent materials in response to movement along a single fault zone in the underlying granodiorite (Olmsted and others, 1975). An upfaulted block of altered granodiorite between the Great Boiling Springs and the Granite Range is believed to represent an exposed part of an ancestral Gerlach Hot Spring system. Several geophysical studies (Grose and Keller, 1974a, 1975b; Long and others, 1975; Christopherson and others, 1977) also provide data that may be useful in structural and geologic interpretations. Sperandio and Grose (1976) suggest that the Gerlach thermal area may be along a deep-seated, north-south fault zone which extends from Winnemucca Lake to High Rock Lake (see section on Ward's Hot Springs).


The spring deposits of the Gerlach thermal springs are predominantly siliceous sinter, and the concentration of dissolved solids in the waters is high in comparison with most other hot-spring waters in northern and central Nevada (Mariner and others, 1974). Some spring deposits are reported to be anomalously radioactive (60 to 65 μ R/hr), according to Wollenberg (1974b). Also, the Great Boiling Spring area is well known for its mud volcanoes and other mud vent activity (Russell, 1885, p. 52; White, 1955b). The mud volcanoes have been reported to erupt clots of mud to heights of at least 100 feet. They are characterized by sporadic and apparently unpredictable intervals of activity separated by very much longer intervals of quiescence (White, 1955b).



The temperatures measured in springs and pools range up to a maximum of $208^{\circ}F$ (Grose and Keller, 1975b) and shallow subsurface measurements are over $248^{\circ}F$ or $120^{\circ}C$ (fig. 52). In addition to shallow temperature-gradient holes drilled by the U. S. Geological Survey in 1973, Cordero (now Sunoco Energy Development Co.) drilled several gradient holes to depths of 300 to 600 feet in 1972. Mariner and others (1974) have estimated the reservoir temperature at $333^{\circ}F$ using the silica-quartz geothermometer and $347^{\circ}F$ using the sodium-potassium geothermometer.

San Emidio Desert (Mud Flat) [265]


An altered zone up to 100 feet wide and two miles long is present in S9 and 16,T29N,R23E (unsurveyed) along the east side of the San Emidio Desert. Cinnabar, sulfur, gypsum, siliceous sinter, opal, chalcedony, quartz, kaolinite and other alteration minerals occur in sands and gravels of Pleistocene age along the north-south zone. These altered deposits are covered by younger, unaltered alluvial

Orifice number	Temperature (° C)	Orifice number	Temperature (°C)	Orifice number	Temperature (°C)	Orifice number	Temperature (°C)
1	60.6	18	50.6	35	27.2	52	44.4
2	40.0	19	96.1 (boiling)	36	50.6	53	34.4
3	49.4	20	48.3	37	48.9	54	70.0
4	42.2	21	59.4	38	64.4	55	77.8
5	50.0	22	40.6	39	52.2	56	58.9
6	33.3	23	48.3	40	35.6	57	86.7
7	36.7	24	33.3	41	58.9	58	47.8
8	43.3	25	48.3	42	28.9	59	43.3
9	72.2	26	61.7	43	43.3	60	55.6
10	50.5	27	33.3	44	56.7	61	66.1
11	31.7	28	42.8	45	59.4	62	73.3
12	33.9	29	47.8	46	86.7	63	67.8
13	70.0	30	63.3	47	51.1	64	57.7
14	36.7	31	74.4	48	92.2	65	57.7
15	35.6	32	29.4	49	51.1	66	61.1
16	36.7	33	48.9	50	61.1	67	32.2
17	57.8	34	53.3	51	60.0	68	58.3

FIGURE 50. Sketch map of Great Boiling Springs, S10 and S15,T32N,R23E (after Olmsted and others, 1975).

Bathhouse and swimming pool at Gerlach Hot Springs (Great Boiling Springs), Washoe County.

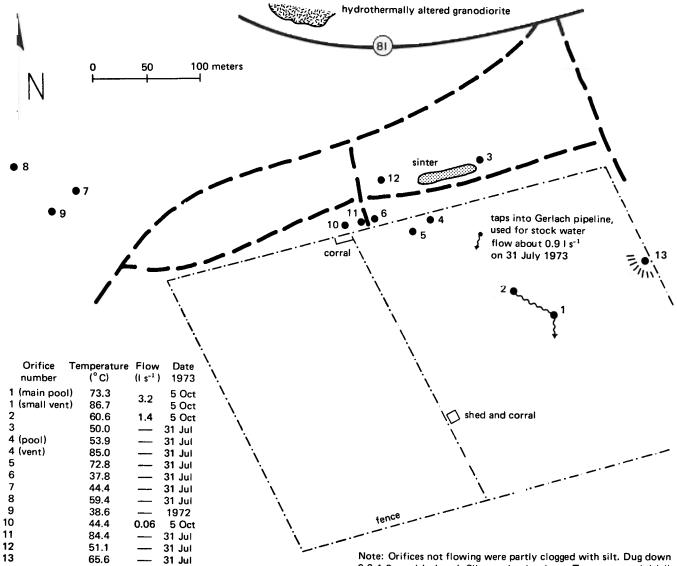


FIGURE 51. Sketch map of Mud Springs in S16,T32N,R23E, Washoe County (after Olmsted and others, 1975).

Note: Orifices not flowing were partly clogged with silt. Dug down 0.3-1.0 m with shovel. Silt acted as insulator. Temperatures initially measured at orifices 3 (75.5° C), 7 (48.3° C), and 8 (67.2° C) were significantly hotter than temperatures measured after digging.

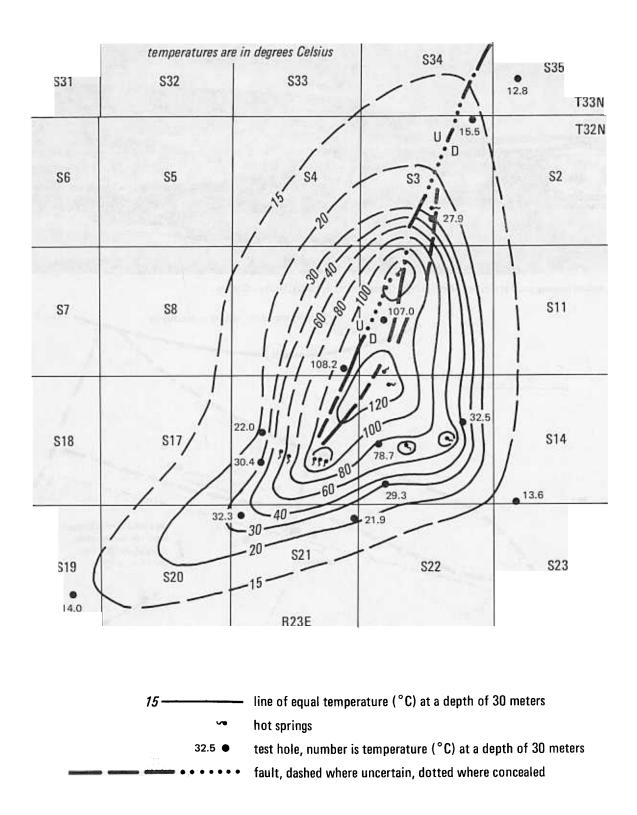


FIGURE 52. Map of the Gerlach thermal area, Washoe County, showing temperature at a depth of 30 meters, October, 1973 (from Olmsted and others, 1975).



FIGURE 53. Geologic sketch map of the San Emidio cinnabar prospect, Washoe County (after Bonham, 1969).

and lacustrine deposits (Bonham, 1969). The alteration and mineralization represent the deposits of hot springs which were probably more active in the past. The zone is near the high-water level of Lake Lahontan, to which the mineralization may be related in some way (Papke, 1969).

The zone is still thermally active, and the ground is often warm 2 to 3 feet below the surface. Water standing in shallow bore holes is up to $128^{\circ}F$ 3 feet below the ground surface, and a flowing spring or old well in S9 is approximately $86^{\circ}F$. Also, a drill hole encountered boiling water at 87 feet in 1955 in this same section (fig. 53), according to T. A. Alberg (written communication, 1975). Chevron Oil Co. drilled a 4,013-foot geothermal test to the west of this area (S8,T29N,R23E) in 1975. No information is available on the temperatures encountered. Peterson and Dansereau (1975) have reported principal facts for gravity stations in the San Emidio Known Geothermal Resource Area.

Bowers Mansion (Franktown) Hot Spring [280]

Bowers Mansion is a recreational park located to the west of Washoe Lake and developed around a mansion built in 1864 by Sandy Bowers, a prosperous miner on the Comstock Lode. The restored two-story sandstone structure is operated by the Washoe County Department of Parks and Recreation. Two swimming pools are open to the public during the summer season.

The hot spring has been utilized for the swimming pools in the past, but is now used for irrigation (Peterson, 1976). In 1962 an attempt to drill a cold-water well encountered $117^{\circ}F$ water at 207 feet, and this well now supplies the thermal water for an olympic-size pool and a 15- by 25-foot pool for younger children. The pool waters are reduced to 76° to 78°F by addition of 54°F water from Riter Springs, about 5,500 feet northwest of the mansion.

The hot spring issues from the granodiorite-alluvium contact, which is an obvious fault scarp along the east side of the Carson Range. The hot water well probably intersects this same normal fault at depth. The geology of the area has been mapped by Tabor and Ellen (1975).

WHITE PINE COUNTY

Monte Neva (Melvin, Goodrich) Hot Springs [288]

The Monte Neva (Melvin, Goodrich) Hot Springs in SW/4 S24, NW/4 S25,T21N,R63E on the west edge of Steptoe Valley, are by far the hottest in White Pine County. Although a temperature of 193°F was reported by Stearns and others (1937, no. 98) other observers reported the temperature as 174°F in 1917 (Clark and others, 1920, p. 47), again in 1966 (Mifflin, 1968), and in 1974 (Hose and Taylor, 1974).

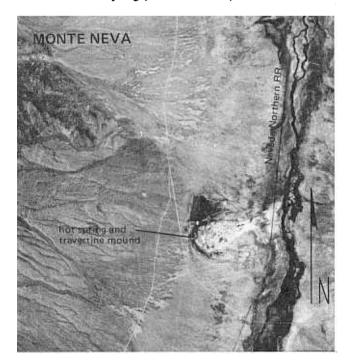
There is one main spring plus several smaller ones, all issuing from alluvium. The main spring flowed 625 gpm in 1917 (Clark and others, 1920, p. 47). A 20- to 40-foot-high mound of travertine, covering about 12 acres, has been built up. Mineral water is presently being deposited, and considerable CO_2 (?) gas is escaping from the springs.

Magma Power Co. drilled a 402-foot well at the springs in 1965. Hot water but no steam was encountered; the maximum temperature reported, was 190°F (Koenig, 1971). Audiomagnetotelluric data for the geothermal area is reported in Long and Batzle (1976a).

WHITE PINE COUNTY (continued)

Cherry Creek (Young's) Hot Springs [284]

The Cherry Creek (Young's) Hot Springs on the west side of Steptoe Valley, in the north part of T23N,R63E, are the second-hottest springs in White Pine County. There are three small springs, which had temperatures of 188° F, 124°F, and 135°F, and a total flow of 3.6 gpm in August 1918 (Clark and others, 1920, p. 48, 49). In 1918, the water was being used to supply a bathhouse. Small amounts of gas (CO₂) escape from the springs; one is slightly radioactive (Davis, 1954, p. 21).


Waring (1965, no. 96) reports that Shellbourne Hot Springs are "about 100 feet from Cherry Creek Hot Springs," consist of two springs, have a temperature of 124°F and are used for bathing and irrigation. If this location is correct, they should be considered part of the Cherry Creek Springs. Some miles to the southeast are the Upper and Lower Schellbourne warm springs (see below). An 8,406-foot-deep exploratory oil well in S19,T24N,R64E (Shell Oil Co. Steptoe Unit No. 1) reported a maximum temperature of 304°F. This well is 7 miles northwest of Cherry Creek Hot Springs.

Williams Hot Springs [294]

Apparently the third-hottest group of springs in White Pine County are the Williams Hot Springs at the intersection of S29,30,31,32,T13N,R60E. There are two springs with temperatures of 124° to 128° F and flow rates reported at 50, 50–135, and 185 gpm. The water is used for irrigation (Stearns and others, 1937, no. 103; and Maxey and Eakin, 1949).

Other springs in Steptoe Valley

Most of the hot springs, including the two hottest groups in White Pine County, occur along the margins of Steptoe Valley. The Monte Neva and Cherry Creek Springs are described above. A spring (name unknown) with a flow rate of

450 gpm and temperature of 83°F is reported (Snyder, 1963) in S31,T24N,R65E, on the east edge of the valley.

Collar and Elbow Springs [282]. The Collar and Elbow Spring is at the north end of Steptoe Valley in S33,T26N, R65E. It had a temperature of 92°F and flow rate of 18 gpm on August 2, 1918. It is in old lake beds and has formed a "tufa" mound (Clark and others, 1920, p. 44, 49).

Schellbourne Springs [288]. There are two hot springs in Schellbourne Pass in the Schell Creek Range on the east flank of Steptoe Valley. The Lower Schellbourne Warm Spring has a temperature of 77° F and issues from the alluvial fan at the mouth of the canyon in S12,T22N,R64E. The Upper Schellbourne Spring has a temperature of 73.5° F; it is near or on a fault in SE/4 NW/4 S8,T22N, R65E. Both reportedly flowed at 450 gpm in 1966 (Mifflin, 1968).

Campbell Ranch (North Group) Springs [291]. Numerous springs ranging in temperature from 58°F to 76°F occur in a line at the foot of the steep alluvial fan, nearly parallel to the Egan Range, These springs have also been called the Campbell Springs or North Group Springs.

McGill-Schoolhouse zone [292]. There are springs for a distance of about 5 miles along the base of the steeper alluvial slope paralleling the Duck Creek Mountains on the east side of Steptoe Valley. The springs increase in temperature from north to south. Schoolhouse Spring at the north end of this zone, in the NW/4 SE/4 S3,T18N,R64E, had a temperature of 76°F and flow rate of 450 gpm on July 5, 1918 (Hardman and Miller, 1934).

The McGill Warm Springs at the south end of the zone range up to 84° F in temperature and flow 4,500 gpm (Clark and others, 1920). There are three main springs; a pool has been excavated at the largest. Several additional springs apparently are covered by tailings from the huge Kennecott Copper Corp. mill. The water is used in the mill and in a municipal swimming pool (Eakin and others, 1967).

Ely-Lackawanna zone [293]. Hot springs occur just north of Ely along the west edge of Steptoe Valley. The northernmost five springs in NE/4 S3,T16N,R63E, are called the Lackawanna Hot Springs. They flow 135 gpm and have temperatures variously reported as 70°F and 90° to 95°F. In 1966 the water was being used in the Silver King Mines mill. (Eakin and others, 1967; and Holmes, 1966, p. 21).

The Ely Warm Springs, to the south in section 10, had a flow rate of 22 gpm and temperature of 85° in April 1918. There are no spring deposits at the springs, but "tufa" occurs nearby (Clark and others, 1920, p. 43, 46). In some cases "Ely Warm Springs" has been used for all the springs in this zone including the Lackawanna Springs.

Other White Pine County thermal springs

Giocoechea (Simonsen) Warm Springs [287]. The Giocoechea Warm Springs (Simonsen Warm Springs; Warm Springs Ranch; Moore's Ranch Springs) are in Newark Valley in the NE/4 NE/4 S1,T22N,R56E and S36,T23N, R56E. Reported temperatures range up to 76°F and flow rates from 900 to 270 gpm. The springs form several ponds in alluvium and sand dunes; their levels are up to 20 feet above the general water table in the area. The water is

WHITE PINE COUNTY (continued)

used for irrigation. (Eakin, 1960, p. 12; Snyder, 1963; Waring, 1965, no. 102a; Lamke and Moore, 1965; Mifflin, 1968).

Big Blue Spring [294]. Nothing is known about the Big Blue Spring in S23,T14N,R56E except that the water is warm and has been used for bathing (Stearns and others, 1937, no. 103).

Preston Springs [296]. There are a number of warm springs near Preston in T12N,R61E. These springs include the Preston Big Spring in SW/4 NE/4 S12, Nicholas Spring in SW/4 SE/4 S12, Arnoldsen Spring in SE/4 S12, and Cold Spring in SW/4 NW/4 S12. All the springs issue from alluvium. Temperatures vary from 70° to 72° F, flow rates from 630 to 5,700 gpm. Williams Hot Spring, the thirdhottest spring in White Pine County, is 8 miles to the west.

Warm Sulphur Springs. Stearns and others, (1937, no. 106) locate Warm Sulphur Springs in T11N,R65E at the head of Warm Creek, in the south end of Spring Valley. The water is "warm," flows at 972 gpm, and is used for irrigation. Its exact location could not be determined.

Others. Stearns and others (1937, no. 99) mention a "warm" spring at the east base of the Kern Mountains in about T21N,R70E. There are also one or more warm springs at the head of Big Spring Creek (Stearns and others, 1937, no. 107, 107a; Waring, 1965; and Maxey and Mifflin, 1966). Temperatures up to 64°F and flow rates of 4,570 gpm are reported. The USGS Lund 1° x 2° sheet suggests that the spring or springs are in S33,T10N,R70E.

Water wells

Four water wells, all in Spring Valley, are known to have temperatures higher than one might expect. Only the 600foot-deep flowing Lawrence Henroid well at the north end of the valley in S31,T23N,R66E had a significantly higher temperature—89°F; the nearby Hans L. Anderson well also is artesian, is 1,040 feet deep, and has a temperature of 79°F.

Two Bureau of Land Management artesian wells (396 and 407 feet deep) at the south end of the valley in S2, T12N,R67E and S35,T13N,R67E have water temperatures of 75° and 73° respectively (Rush and Kazmi, 1965).

APPENDIX 1 NEVADA THERMAL WATER DATA

This appendix is a listing of the available data on Nevada thermal waters. A somewhat arbitrary lower limit of 70° F was established; waters of lakes and streams heated above 70° F by the normal surface air temperature are not included. The temperatures reported can be converted from Fahrenheit to Celsius by use of Appendix 3.

The names of geothermal areas are usually those of the largest, best known hot spring or a well-known geographic feature in the area. Alternate names are also listed. The names used for individual springs or wells are usually from the cited reference.

The location of the spring, well, drill hole or mine shaft is given using the section-township-range system; more detailed locations within a section use the quarter-quarter-quarter system (for example: NE/4 SE/4 NW/4 S5,T20N,R30E indicates that the occurrence is located within approximately a 10-acre parcel which is the northeast quarter of the southeast quarter of the northwest quarter of section 5, Township 20N, Range 30E). Locations by section-township-range were estimated in a few cases by projecting the land grid from adjacent areas. The available topographic maps were often used to refine location data.

The discharge in gallons per minute (gpm) from springs or flowing wells is re-

ported if given in the original reference. The date given is usually that for the temperature or discharge measurement. The analytical results reported were usually rounded to three significant figures, and were reported in parts per million (ppm) unless otherwise stated. Some older analyses which were originally in grains per gallon or reported as compounds were converted to the ionic constituents, expressed in parts per million (ppm). For the range of values in this appendix, ppm are essentially equal to milligrams per liter (mg/l), and ppb (parts per billion) are equivalent to micrograms per liter (μ g/l). The values reported for total dissolved solids are those in the cited references; these can be either the sum of the ionic constituents or the value obtained by evaporation to dryness. The pH is reported in this appendix to two significant figures.

The specific conductance is a measure of the ability of water to conduct an electrical current and is expressed in micromhos per centimeter (μ mhos/cm) at 25°C (77°F). Because the specific conductance is related to the number and specific chemical types of ions in solution, it can be used to approximate the salinity of the water. In general, the specific conductance times 0.65 ± 0.5 equals the total dissolved solids (in ppm).

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 tppm}	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	p]]	Reference
								CAI	RSON C	ITY										
[1] Carson Hot Springs																				
springs SEMNEMS5,T15N,R20E	120	75	5 30Mar63			2.6	0.4	9	6)	36	28	96	29	5	5	$\langle \Sigma \rangle$	275	506	9.3	Worts & Malmberg, 1966
springs SEMNE%\$5,715N,R20E	-1	80 Remarka: Fe		44	17	6	2	1)4	41	27	84	34		1		326			Adams, 1944
springs SEMNE%S5,TTSN,R20E	1458				-						2	-	2				12		-	Waring, 1965, No. 59
[2] Nevada State Prison Spring SE4S16,T15N,R20E	wärm		N 22	2	-	6	12		8	225	\odot		2	-						Waring, 1963, Nu. 55A
[3] Pinyon Hills																				
well \$23,115N,R20E	114	Remarks: De	193an75 pth = 172		0.01	275	3	2	53	29	ô.	135	33	4.3	Ξ	\approx	$\langle \cdot \mathbf{e} \rangle$	14	8,6	CWRR, 1973
well \$23,T15N,R20E	112	emarks: De	14May71 pth = 127		0.01	8	1983	27	1	1.0	8	112	201)	1.6	0.5	1	16			CWRR, 1973
Wheat well SE4S23,T15N,R20E	113		1950			÷.	0		2		\geq	×		1	Ξ					Peggy Wheat, perional communication, 1975
Pinyon Hills suburban area wel SE%S23,T15N,R20E	to tot	Cemarks: Ar	ulysis is the	general co	0.4 empositio	280 m of hot,	minetaliz	100 ed ground	water in	the area		900 Boreau En	- vironmenn	4.2 a Health	- Memo, 7	Jun 711	1500			Glancy & Katzer, 1975
well \$25,T15N,R20F	980 1	- Remarks: De	- 28Jan71 pth = 200	- 11.	Ξ.	13	175	-	Ξ	572	5	5		1.7	8	0	366			CWRR, 1973
								CHURC	HILL O	OUNTY										
[4] Senator Fumaroles NE34S31,T25N,R37E	bailing F	Romarks: Sti	cam vents: v	vater table	at 60 ft.	=			s		s			5	2	5	5			Lowrence, 1971
springs T24N,R36E	warm	small Remarks: No	-	1 - 14 1 1 1 1		n Vana nse nsens	y; the eas	et location	s of these	springs is	unknowa	n, possibly	in the vici	nity of S	mator F	umaroles	8	2	-	Waring, 1965, No. 70

		harge em)	Date	SHD2 (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO ₄ (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/em)	pH	Reference
							CHU	RCHILL	COUNT	Y (cont	nued)									
[5] Dixie Constock Mine 514,T23N,R35E	hot Remar	ks: Inte	nse heat ar	nd large vo	dume of	hot wate	encount	ered in wo	rkings at	less than '	5 ft.	1	190	355		200	\geq	. e :	-	Vanderhurg, 1940, p.
spring T23N,R35E	hot Remar	small ks: This	locality m	ay be in t	he vicini	ly of the	Dixie Cor	nstock Mir	18.	\sim	100	185	1		1	-		181	-	Waring, 1965, No. 71
[6] Dixie Hot Springs	212.201		111000																	
Dixie Valley Hot Springs SE455 & NE458,T22N,R35E	162 Remar	53 ks: Li =	1973 0.38; num		springs a	3,2 ind nearb	0.02 y cold spi		6.5		п	111	126	16.3		0.89	5	914	8,6	Mariner & others, 197
SE%55 & NE%S8,T22N,R35E		kā: Al =	0.015, P	0.06, Rb	= 0.07,	Ce = 0.1,	- Hg = 0.00	010, δD(⁰ /		26.1, 5 0 ⁴	(⁰ /00) =	-1.5.89						-		Mariner & others, 197
spring T22N(?),R35E	warm Remari	small ks: Ptob	ably Dixie	Hot Sprin	urs. Five	miles sou	- th of War	- ine's sprin	e No. 71	12	+	-					-			Waring, 1965, No. 71/
[7] well SW4836,T21N,R34E	73	1000?	23Jul63 th - 200 fi	0.54	0.01	16	2.2	68	3.0	86	0	80	26	6.0	1.1	0.3	J	435	7.6	Cohen & Everett, 196
[8] well NW4S19,T21N,R35E	70 Remari		21 Aug51 th - 200 f	l.; flowing	144 1		-	÷.	-			-		1		1	2	- -	-	Cohen & Everett, 196
well NE44S20,T21N,R35E	71 Remark		1May52 h - 162 fr	63 L; flowing	0.04	12	0.9	72	2.0	98	30	60	24	6.9	0.9	0.08	287	381	Ħ.2	Cohen & Everett, 196
well NE%\$20,T21N,R35E	71 Remark		22Aug51 h - 212 0	.; flowing	-	242	÷.	÷	-	÷.	\rightarrow				- 10	-	-		-	Cohen & Everett, 196.
well NE4S20,T21N,R35E	71		1May52	1. S. C.	0.04	12	0.9	-	9	98	-	60	21	6.9	0.9	÷	287	-	8.2	CWRR, 1973
[9] Tom Ormechea well SE%S6,T20N,R38E	76 Remark	50 cs: Dept	1950 h – 100 fi	L; flowing	1	-	\overline{a}	-	-	\gtrsim				25				8 7 0	5	Everett, 1964
 Brady's (Springer's, Fernley) Hot Springs 																				
springs 1 \$12,T22N,R26E	58-209 Remarl	50 ks: Fum	aroles and	 hot spring	16		<u>(</u> 2)		8 2 9	53	20	20	(7)	57)	67/	17.1		1.00	2	Waring, 1965, No. 72
springs \$12,T22N,R26F	Remark	s: AI =	1. 1.i = tr.	278	(5)	31	17	774	66	5		355	967			3	(Ξ)			Russell, 1885
springs 512,T22N,R26E	194 Remark	cs: All w	aters samp	pled are so	dium ch	toride-typ		5	2종상	2	9 7 ,9	27	27	5					5	Koenig, 1970
Magma Power Co. and Vulcan Thormal Power Co. wells S12,T22N,R26E	334	<u>.</u>	<u>P</u>	-522	171	17.1	2			25		-	5	1	-		£2		it.	White, 1965, p. 7
geothermal well CS12,T22N,R26E	Remar		1960 0.52; Mn	242 - 0.00; Ci	0.08 = 0.00;		1.2); Zn = 0.)	780 00;Li = 1.	65 8; As = 0	162 15; PO ₄ :	0.22 (th	377 e name ol	978 f the well s	7.6 unpled is	0.4 not kno	6.8 wn).	2600	4890	7.3	Harrill, 1970
Union Oil Co. SP Brady's No. 1 well NEMSWMSEMS1 (T22N,R26E	371	-	11Jun74 Ih - 7275	-	-		2	1	- 194 1945	1999 (1999) 1999 (1999) 1999 (1999)	140,800	191	5000-550 (El 1	(11) (11)	23	10907 1291	\simeq	12	4	unpublished data, NB
Magma Power Co. Brady No. 4 well SEMNW4512,T22N,R26E	Remark	- ks: H ₁ S	- 3. NH3	190 = 0.02; C0) ₂ = (); 1	33 1. Mn, Cu	tr , Li = tr.	813 Geotherm	6 al well; de	13 spth - 72	56 Fft.	336	986	\$		0.3	2440	2100	8.8	Middleton, no date
Magma Power Co. Brady No. 4 well (condensate) SEMNW4S12,T22N,R26E	12	na internet	= 7; NII.3	49	na oran Desembra	9	en 22	277		an san san san san san san san san san s	Satura Line		352			0.2	860	850	5.5	Middleton, no date
Magma Power Co. Brady No. 5 well SWWNE%512,T22N,R26E	Remar	ks: H25	- 5; NH3	166 - 0.05;C0); = 35;	14 Mn, Ti. C	tr 'u, Li = tr	738 Geotherr	5 tal well; c	- lepth - 5	- 13 ft,	282	834	<1	-	0.2	2130	1800	6.4	Middleton, no date
Magma Power Co. Brady No. 5 well (condensate) SWWNE4512,T22N,R26E	Remark	ks: H ₂ S	= 16; NH	5 (= 0.14; C	- O ₂ = 78	1	-	i.	-	÷		0.1	0.5		30	0.1	15	20	5.2	Middleton, no date
Eagle Salt Works Spring \$34,35,T22N,R26E	hot Remari	ks: Seve	ral springs	Location	in refer	ence is T2	0N,R27E	, which is	prohably	incorrect	100					3	-	1	÷	Waring, 1965, No. 73
springs 834,35,T22N,R26E	8508-0	1.00	- 37 -	259	82.23	32 reference	2		39	61	19	334	955	17.5	-	-	2495	-	-	Adams, 1944

		ischarge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µinhas/cm)	pH	Reference
							CH	URCHILL	COUN	TY (cont	inued)									
12] Desert Peak area																				
Phillips Petroleum Co. Desert Peak No. 21-2 well NE44NE44S21,T22N,R27E	390 Rem	arks: Dept	Feb77 h - 3192	ft.; geother	mul well.	=	5	ō	33	0	17.1	17. 17.	3	30	3	ŝ,	7500	1.71	5	unpublished data, Phillips Petroleum Co.
[3] Soda Lakes-Upsal Hoghack thermal area																				
well CDAII-2A NE44SW34NW34S22,T20N,R281	88 E Remi		6May77 h - 87 ft.;		ir - 3.8.	26	9	940	100	354	122	22	1400	0.8	0.2	6.1	2	4980	22	unpublished data, USGS
well? \$28,T20N,R28E	210 Remi	atks: Orifi	ee covered	by concre		-	-	12		<u> </u>	-		-	-			-	100		Hose & Taylor, 1974
well NW4SW4SW4S28,T20N,R281	boiling E Remi	arks: Dept	– h about 60	- I.fr.	-	-	-	1	+	-	+	-	14 C	-	-	-	-	-	-	Morrison, 1964, p. 117
well CDAH-37 NE45W45E4528,T20N,R28E	135 Rem	arks: Dept	6May76 h - 45 ft.;	1.i = 2.0, I		160	46	1800	160	305	-	2500	1800	0.6	0.10	3.4	×	10000		unpublished data, USGS
well CDDH-30A SW45E45W4528,T20N,R28E	102 Rem		4May76 h - 133 fi			100 as 102°C	2.4 . Li =	1100 1.7, Br = 4.5	50	181	-	480	1400	0.6	0.0	5.3	-	5630	-	unpublished data, USGS
well BRCDDII-14A NW4NE45E4528,720N,R28F	144 8 Rem		27Jal77 h - 523 ft			170 as 144°C	0.8 Ar = (1650).15, Li = 3.(50), Br = 1	105 0.	୍ଷ	68	2800	1.9	-	13.5	9	8960	-	unpublished data, USGS
well CDDII-32A SE4SW4NW4S28,T20N,R28I	136 5 Rem		6May76 h - 148 ft				17	1300	90	205		450	1900	0,5	0.3	3.3	5	7110		unpublished data, USGS
well CDDH-31 NW4NE44NE4532,T20N,R28	95 E Rem		5May76 h - 127 ft	2.6 ; Li = 1,6, 1	- Ir = 4.2.	53	17	960	74	350	70	300	1300	1.0	0.1	3.4	3	5130	5	unpublished data, USGS
spring north of Soda Lake	70 Remi	arks: Wate	r has high	- soda conte	- nt.	127	-	-	-	15	20	20	2		25	-	5	-	5	Thompson & West, 188
Big Soda Lake SEMNE4S7,T19N,R28E	86 Rema	arks: Som	1967 t warm spr	ings appare	ntly ente	er the both	om of	 Big Soda Lai	- ke near	– its center,	which is	over 200	fi deep.	-		22				Breese, 1968, p. 25
4] Stillwater thermal area													0.529-52925							
Elmer Weishaupt Ranch well S1,T19N,R30E	Rem	flowing arks: Dept 0.6%; Samj	h – 200 (t ple 2 – 3 J	- ; cased to 1 an 47 – C(.50 ft. Gr D ₁ = 1.65	- is analysis i%, CH4 =	- Samp 47.189	le 1 – 27 No E, C ₂ H ₆ + hi	w 27 – 1 igher hy	- CO ₂ = 0.8 diocarbor	%, CH ₄ - s = 10.43	- 61.8%, (5%, N = 4	aH ₆ + higt 0.72%, Q =	et hydros 0.0%, Wa	carbons iter used	= 1.4%, N for dom		- poses.	÷	Morrison, 1964, p. 115
O'Neill Geothermal Inc. (Oliphant) Reynolds No. 1 well NE45W45W456,T19N,R31E	277	-	1964 h - 4237 i	-			2		140		5 - 6699 541	12	12 12	12	-	4	2		2	unpublished data, NBM
well SW%S7,T19N,R31E	205 Rema	arks: Li =	1.94; well i	170 is flowing.	- 1	08	1.7	1480	42	90	<1	190	2200	5.0	-	15		6910	-	Matiner & others, 1974
well SW4S7,T19N,R31E	Rema	asks: Well	is flowing;	N = 3.4, R	b = 0.22,	Ce = 0.2,	- Sr = 5.	7,δD(%aa)		2, 80 ¹⁸ 0	(00) = -	12.36.	-		-	2	-	-	-	Mariner & others, 1975
SW4SE487,T19N,R31E	bolling Rema		23Nov71 h - 204 ft.	-	(1) (91	1	140	0	104	0	190	2080		1	9	-	7420	7.5	Glancy & Katzer, 1975
L. H. Greenwood's store well \$7,T19N,R31E	Rema	flowing arks: Dept de 2 – CO	h - 230 ft	cased to 3 CH ₄ = 12	- 00 ft. Ga 08%, C ₂	s analysis: H ₆ + high	Sampl tr hydr	- e 1 - CO ₂ = ocarbons = (- 1.75%, 0.81%, N	CH ₄ = 6.4	485, C ₂ 1 6, O = 0.4	l _e + highe 19%, Non	r hydrocarl combustibl	– bons – 4,3 r gas accu	- 38%, N = imulates		– O = 0% radiator	-	-	Morrisan, 1964
5) Churchill Drilling Corp. T.C.I.D. No. 1 well SEMNWANW4S15,T22N,R301	hot Rema	arks; Dept	– h – 3758 t	t; reported	- ly perfor	_ ated 3125		_ fl. Explorat	_ lory eil	and gas we	II. Well v	- vas flowža	g hot wate	- in 1974.	E E	E.	S	1933	3	R. Forest, oral communication, 1974
b) U. S. Bureau Reclamation heat flow hole NE%SW%NW%S10,T22N,R311	77 Rema	arks: Dept	- h - 500 rt	2	<u></u>	121)	5	5 <u>5</u> 5	4	-	Æ	5	52	13	ت	5	σ.;	170		Olmsted & others, 1975
7] test hole AH-13 SW%NE%NW%S7,T21N,R29E	72	- 1	6May73	Щ. Ц	-	2		025	2	92E		\sim	1	\sim	ŝ	3		34	2	Olmsted & others, 1975
8] well N%\$7,T17N,R30E	158 Rema		13Mar77 ing. Possib	y in SVaS6	1	-	4	14	<u>11</u>	623	22	5	10	3	3	3	23	24		C. W. Klein, oral communication, 197
9] test hole DH-I	72					121														Olmsted & others, 1975

	(°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (pmhos/cm)	pН	Reference
							CHU	RCHILL	COUNT	TY (contin	ued)									
[20] Eightmile Flat																				
Kerr-McGee Eightmile Flat hole no. 1 NWKNWKS12,T17N,R30E	hot F	- Cemarks: Dep	ch - 500 f	- hit verv	hot wat	er ar 400	ft. Cuttin	es and low	available	at NBMG:	trilled f	or saline r	ninerals		-			-	7	unpublished, NBMG
Borax Spring NEWS14,T17N,R30E	178	Remarks: See	25 N 77 C			ist.	-			ar, 13003300	121	=	E.	5	-		5		2	Waring, 1965, No. 74
[21] Lee Hot Springs			00000000000000	00000000																
springs SW%NW%S34.T16N,R29F	boiling	10	18A ug 70	-	4	123	-	4		-	-	0	-	4	-	-	2	-23	-	Glancy & Katzer, 1975
springs CNW5534,T16N,R29E	172	25	2	-	30	-	14		-	23	-	-	1	9		1	ų,	12	4	Wating, 1965, No. 74A
well CNW4S34,T16N,R29E	196 F	Remarks: Tem	perature 1.	ken J ft	- below su	rlace. Thi	s well is s	ource of h	ot water (presently fi	awing fo	om Lee F	_ lot Springs.	- 24	-	-	-	-	9	Don Miller, personal communication, 1977
Allen's Hot Springs NW4NE4S34,T16N,R29E	F	- Cemarks: This	14Ju(47 analysis m	 ay be fro	m Lee H	49 ot Spring	16 s.	431	=	132	17	440	374	<u>_</u>	-	-	2	-		Miller, Hardman & Maxin, 1953
Allen's Hot Springs NWWNE%S34,T16N,R29E	P	- Remarks: This	13Nov44 analysis m	ay be fro	n Lee H	68 ot Spring	18 s.	416	-	122	-	491	379	÷	90	-	×	-	æ	Miller, Hardman & Mason, 1953
Allen's Hot Springs NW4NE4534,T16N,R29E	F	Remarks: This	29Jul40 analysis m	ay be fro	m Lee H	41 ot Spring	Q	464	(8) (22)	126	30	446	385	- 28	1	- 27	Ξ.		3	Miller, Hardman & Mason, 1953
spring	190 R	34 temarks: Li =	1973 0.70,	180		44	0.6	450	26	114	<1	470	380	7,9	1	2,4		2430	7,4	Mariner & others, 1974
spring lat. 39°12'N, long. 118°43'W	H S	lemarks: Al = O ¹⁸ (%00) =	0.027, N =	0.22, P	0.04, A	.s = 0.04,	- Br = 1, 1	0.1, Rb	- 0.22, Ce	e = 0.1, Sr =	1.0, Fe	e <0.02, M	4n = 0.06, C	(a = 0.01	, Hg = <	0.0001,	δDi900	= -125.8,	e	Mariner & others, 1975
22] spring \$6,T16N,R32E	hot R	temarks: Seve	ral springs	water sm	ells of H	25. On F	- ourmile F	- lat.	-	10		2	28	-	βH		÷	\rightarrow	Ξ	Waring, 1965, No. 75
								CLA	RK COU	INTY										
(23] well 75-73 (test well 3) 36°48'40", 115°51'50"	100 B	– temarks: Dep	10May62	24 It Acmile	0 is Paler	SI Tais cul	21	83	7.6	328	0	84	23	1,5	0.9	-	444	710	7.3	Schaff & Moore, 1964
24] Bunkerville area		and a second second	11 - 1020	est respects		20010.000	00000000	n. ni - v.												
Hafen Daity well SEMSEMSEMS13,T138,R70E	70 R	lemarks: Dept	15Nov67 th - 60 ft.	9	3	244	126	5	22	209	70	1320	510	3			3100	4000	8.0	Glancy & Van Denburg 1969
Bruna Biasi well SWMS34,T13S,R70E	70 R	lemarks: Dep	11Nov67 th - 118 fi		127	310	169	6	31	341		1510	701	άž.		62	3900	4900	7,8	Glancy & Van Denburg 1969
well SW%SW%S35,T135,R70E	75 R	_ lemarks: Depi	10Nov67 th 300 ft.		-	38	29	-	12	-	_	128	42	14	4	4	460	730	4	Glancy & Van Denburg 1969
Bunkerville Water Users Association well SW4SW4SE44S35,T13S,R70E	77 R	emarks: Dep	10Nov67 th - 300 ft		:50	28	28		21	N7:	5	72	22			ŝ	350	560	Ξ.	Glancy & Van Denburg 1969
Mesquite Farmstead well SE%SW%S20,T135,R71E	73 R	emarks; Dept	1952 th - 210 ft	32	20	37	19	5	5	141		109	38	Ξ.	8.8	2	369	\$68	3	Glancy & Van Denburg 1969
Mesquite Farmstead Water Association well NEMNWMNWMS29,T13S,R711	70 E R	emarks: Dept	14Jan52 th - 225 ft	35	(7)	36	15		-11	148		73	17	s.	9.3	Ø	300	486	<i>(</i> 7	Glancy & Van Denburg 1969
25] Moapa area																				
Clarence Lewis well NW4NE458,T145,R65E	80 R	360 Iemarks: Depl	1949 th - 57.5 f	_ t; Nowing	-	23	4	241	-	-	-	12	2		92	-	1	4	11	Eakin, 1964
Woodruff and Perkins well NW4SE458,T14S,R65E	82 R	285 leinarks: Oper	n dug well;	flowing		-		84) 1	4	-	-		1	2	5 <u>4</u>	54	21	14	-	Eakin, 1946
well SW4SW4SW4S15,T14S,R65E	90		25Jun68	-	-	65	27	24	-	265	-	186	64	2	14	÷	23	1	9.7	CWRR, 1973
Muddy River Springs CNE4816,T145,R65E	90 R	3240 emarks: Larg	15Apr63 est thermal		Nevada	65	28	99	10	288	0	174	60	2.4	2.3	0.3	614	985	7.7	Eakin, 1964
springs T14S,R65E	90 R	emarks: Seve	- ral springs;	- water us	d for ba	- thing.	+	() -	24	(.	ie.	14	8	æ	2	R	÷		×	Waring, 1965, No. 150

Identification number, T name, location	emp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	(ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	CI (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	рH	Reference
							CL	ARK CO	UNTY	(continu	ed)									
Muddy Spring CNE%S16,T14S,R65E	warm Re	ematks: Tri	tium ≲.4 T.	$U_{\cdot}; -\widetilde{\delta}C^{1}$	* = 912 :	13(19,5		B.P.); in al	luvium.	-							-	-	-	Mifflin, 1968
Peterson (Pederson) Spring NW%S16,T14S,R65E	90 R Ci	emarks: PO, r <0.02, Ag	19Jan74 4 = 0.2, As <0.02, Ba	= 0.002, B	0.01 a = 0.1, <0.1, Ca	Cu = 0.02	26 Ph = 0.1 s = 1.00	107 02, Sr = 0.7 Hg < 0.5 μ	74, Zn	284 - 0.82, Ni = .01, Ni =	0 = 0.02, Li .02, Rb =	189 - 0.17, N 0.54, Sb	59 (₄ = 0.2, = <0.1, Se	2,13 He <0.00 <1.0µm/	1.9 5, Cu <0 5, Sn <0.	0.02, Ph 05.	854 <0.02,	1012	7.9	Sanders & Miles, 1974
Muddy River Springs \$9,15,16,T14S,R65E	90 R	emarks: Ove	1968 er 40 similar	r analyses	from sia	65 different	27 springs re	ported (th	is analys	264 is is a rou;	gh average	180 of the 40)	68	-	0	-			7.7	CWRR, 1973
well NEWNEWS16,T145,R45E	90 R	emarks: Ave	1968 trage of 4 at	nalysea.		66	28	-	•	266	1000	187	6.8	1	-	-		0.62	7.7	CWRR, 1973
Moaps (Iverson*s) Warm Springs NWMNEMNE4S21,TI4S,R65E	9() R	emarks: Fe	+ Al = 12.	42	Ŧ	98	26	7:	5	281	0	184	66	(),	÷	-	617	1	-	Adams, 1944
Moapa (Iverson's) Warm Springs NWWNEWNEWS21,T14S,R65E	90	1696	1966	-	540	1943		-	-		-			51					-	Millin, 1968
Moapa (Iverson's) Warm Springs NW43NE48NE4821,T148,R65E	90 R	1020 emarks: In 2	l 2Sep63 Illuvium. Se	29 vetal sprir	igs. Wate	70 r used for	26 bathing :	101 and irrigati	ti on.	274	0	179	64	2.3	2.2	0.3	620	964	7.5	Eikin, 1964
26] W. Wipple well NW%NE%S34,T15S,R67E	75 R(emarks: Dep	110ct49 eth - 87 ft.	36		106	54	17	7	371		421	92		0.6		1070	1610	-	Rush, 1968c
27] Test Well 10 NE%NE%\$1,T165,R54E	81 Re	marks: Al -	28Jun64 0.12, Mn	15 - 0, PO4 -	0	41	17	7,6	1.0	200	Ø	14	5.3	0.2	1.6	0.08	238	350	7.2	Naff, 1973
well \$1,T165,R54E	81 Re	emarks: POa	23Feb63 = 0.06.	100	0.03	37	18			194		15	6.7		2.1		177		7.7	CWRR, 1973
well \$1,7165,854F	81	22	28Jun64			41	17	2	(Ξ)	200		14	5.3	0,2	1.5		200		7.2	CWRR, 1973
28] Indian Springs area																				
Indian Spring S16,T16S,R56E	78 Re	410 marks: Wat	er supply fo	or tailroad	and for	irrigation	-	-	4	2	4			-		-	-	-	4	Wazing, 1965, No. 13
spring NWGNE%S14,T16S,R56E	79		230ct64			50	20	+	1	239	-	16	3.7	0.1	1.1		223		7.3	CWRR, 1973
spring NW4NW34S16,T16S,R56E	79	324	15Dec12	17	-	48	15	31	-	239	0	28.0	5,0		-	-	330	1	2	Hardman & Miller, 1
spring NW4NW4S16,T16S,R56E	79 Re	410 marks: Wat	15Dec12 er supply fo	17 or tailpoad		-48 d for irrae	15 ation.	21	9.7	239	0	28	5		0		330	1	4	Carpenter, 1915
spring NW4NW4S16.T16S,R56E	79		5Aug27	1.4	-	-		73.		-	142	9	9	-					2	Mifflin, 1968
spring NWSNWSS16,T16S,R56E	353	400	18Mar46	10 171	-	3	240220	12	-	5	5.7	1		÷	Ξ.	$\overline{\alpha}$	H			Lamke & Moore, 196
spring NWMNWMS16,T16S,R56E	Re	500 marks: Isso	1970 es from allu	viura.	52)		22		-	-				-	27	17	$\dot{\pi}$	-	-	Rush, 1970
Indian Springs NW%NW%S16,T16S,R56E	79		230ct64	13	0.	50	20	4.5	1.1	238	0	16	3.7	0.1	1.1	0.14	335	401	7,4	Naff, 1973
29] spring SW%SE481,T16S,R67E	70		120c149	54		153	104	25	6	338		805	175	17	5.4	17	1720	2420	3	Rush, 1968c
30) springs (Virgin River Narrows) S6(?),T17S,R69E	75 Re	270 marks: A la	19Aug32 rge number			441 the narios	125 vs of the	3177 Viroin Riv	er have o	509 wite unif:	-)	283 atures va	401 vine from	25 ^a to 8	u ^a F		1249	52	Ξ	Hardman & Miller, 1
31] Rogers Springs area			10000000000				0.00000000	0.02603-0023	110005383	5557-52995	10110300000	W6001100.30	4.098-1077	321023	10110-0					
Blue Point Spring NW&NE&S7 & SW&SE%S6,T185,R68E	81	400	1966	-	2	-	÷	-	1	1.00		×	2	i i	iii		÷	-		Mifflin, 1968
Hue Point Spring NW/2NE/457 & SW/4SE/456,T185,R68F	82 Re	150 marks: Issue	1945 Gefrunn juns	- stion of 2		472	167	31	7.0	122		910	355		-	2	3300	12.1	9	Rush, 1968c
Rogers Spring	warm	MARING COL	1966	17	0.6/2	441	140	296	22	166		680	334	13	0.5	1.2	3020	3750	4.4	Rush, 1968c

Identification number, name, location	(°F)	Discharge (gpm)	Date	SiO ₃ (ppm)	Fe. (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							C	LARK C	OUNTY	(continu	ied)									
Rogers Spring NEMNEWS13,T185,R67E	18	– Remarks: Li Sn <0.05, Cr Public bathin	<0.02, Ag	<0.02, Bi		/I. Ba = 0					- 0.02, Ni				2, Be <0			3960	7.5	Sanders & Miles, 1974
Rogers Spring \$12.T185,R67E	warm	5	5	E		451	149		395	185		1670	343	575	\sim	5		3.773	-74	Miller, Hardston & Maten , 1950
Rogers Spring SEMSE4512,T185,R67E	81	880 Remarks: (<u>ep</u>		- 12.75,0	la + Mg +	34.73,0		-43,37,t	ritium ≤5	т.u., -ð(14>927	(>21,000	yrs. B.P.1.	80	29.)					Mifflin, 1968
Rogers Spring SE44SE44S12,F18S,R67E	-	780-880	<u> </u>				2	-	(-)	-	-	80	-		-					Runh, 1968c
Rogers Springs	81	900	28Sep12	24.0		428	151	220	-	159	0	1638	331	\geq		250	3266			Bardman & Miller, 195
32] White Rock Spring NEMNEMS33,T205,R58E	78	1450 963	×	-	240	2	-	2	145	2	4	-	-		24	-		390		Hughes, 1966
33] Las Vegas Valley																				
wells \$36,T19\$,R62E	80-84	÷	-	100	383		2	8	-	1	-	180	980) 2407		1931 X	-	8		-	Godwin & Johnson, 19
Kyle Spring SW%SE%S15,T205;R61E	75		16Sep12	8	0.01	53	27		26	251	-	33	55		2		258			Maxey & Jameson, 194
North Las Vegas Airport well \$18,T20\$,R61E	8	– Remarks: De Aug 77 throu emperatures	gh Mar 76;	temperatu	ues taker	n in Sep (& Nov rath	ge from 6	1-70°C.	those for a	other mor	ths from	17-23°C.	The N.L.	is Vegus .	Airport s		ly frein	ά.	unpublished data, USG
City of North Las Vegas well SEMSWMSEMS22,T205.R61F.	73	- Remarks: Dep		-	-	-	Ξ	2	20	-	-20	-	12							Maxey & Jameson, 194
Tony Bruno well SW\sNW\sSW\s23,T20S,R61	73 E 1	- Remarks: Dej	pih - 210 f				2		20	2							-		1	Maxey & Jameson, 194
Las Vegas Springs	73	2600 Remarks: Tw	o springs; w	ater used	for dome	estic and	– industrial	- parposes	_ and irriga	- tion	:20	4	-12	-		-	2		5	Wanng, 1965, No. 182
Las Vegas Springs (Joe Brawn Well) SW44NF445E14531_F205,861E		950-1700 Remarks: Mn		14	0.05	48	25	8.1	3.6	222	0	51	6.5	0.2	1.0		266	ddT	7, d	Scott & Barker, 1962
Las Vegas Springs (Joe Brown Well) SW/4NE44SF/4S31_T205.R611	73		235ep12	13	II.	56	23	11	ĥ	239	4	43	2.8		6		267		2	Carpinier, 1915
Las Vegas Springs (Joe Brown Well) SWWNE%SE%S31,T20S,R61E		950-1700 Remarks: A1			0.03 0.3)qm/	50 I., U = 2.	25 0;ce/1_	8.0	3.5	229	0	52	3.8	0.3	1.5	5	260	452	7,8	Scott & Barker, 1952
Las Vegas Springs SF4SF4S50 & NE3SF45 S51,720S,R61E	15	t) Remarks: Th	1963 rec springs;	Big. Little	r, and Op	en.		5		5	172		-	.7	100	12				Lanice & Moore, 1955
Las Vegas Springs SF451/9530 & NF4N1/9 S31.7208.R614	73	0	1966	1	2			-				24	2	24	-	-	Ξ		÷,	Miffilm, 1988
Las Vegas Springs SI 4514530 & NE4ANE5 S31,7205,R617		1490	1924- 1946	*	-			÷.	-	-	-	9	æ	-	-	4	R	9	×	Markey & Jornema, 194
James Filhey well NW4SE44532.T205.R61F	79 		24Aug38 pth - 616 fr	: flowing	in 1938.	-			5	24	\sim	14			5.E		R	-		Livingston, 1940
J. H. Umbaugh well SW4N1/456.T215.R611	73		12Sep38			-	-	-3	-	×	-	1	(4	2	94	÷	$\frac{1}{2}$	3. 4 .1	÷	Livingston, 1940
I. M. Pinjuv well SWGNF/656,T215,R611	73	Cemarks: Dep	12Sep38 oth - 270 ft	t; flowing	in 1938.	30	-	-		<u>.</u>	-	1	1	1	27	2	÷	10		Livingston, 1960
W. N. Hinson well SW5NF5/S6.T215,R611	73 1	emarks: Dep	125ep38 oth = 275 ft	ttowing	in 1938.		÷		=		Ξ.	2	1	1	2	2	Ξ	(∞)		Livingston, 1940
A. J. and L. C. Weed well NW5NW5NW5S26 T21S.R61	79 E J	temarks: Dep	13Nov45 pth - 595 ft	(75) (1		100	~				10	10	1	1		\overline{a}	÷			Maxey & Jameson, 1941

	femp. ("F)	Discharg (gpm)	e Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO ₄ (ppm)	CI (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	рH	Reference
							CL	ARK CO	UNTY ((continue	d)									
W. L. and B. Jenison well SW4SW4SW4S27.T21S,R61E	73 R		 21Aug44 epth = 263 ft. 	÷	-	~		-	-	-	ેલ્લ	-	-	-	-		9		a)	Maxey & Jameson, 194
W. L. and B. Jenison well SW45SW45SW4527,T215,R61E	75 R		 17Oct44 epth - 263 ft. 	÷	1.00	61	31	20	a -	253	0	101	11	*			478	-	3	Maxey & Jameson, 194
Tollackson well SWMNWMNEMS34,T21S,R611	73 R	emarks: D	- 6Jan47 epth - 246 ft.	100		64	30	1	10	223		107	6	0.3	3.9	8	332	560	(e)	Maxey & Jameson, 19
Tollackson well SW%NW%NE%S34,T21S.R611	75 R		- 12Apr44 epth - 246 ft.	1	1		\approx	\approx		-	~		(\mathbf{a}_{i})	(\mathbf{r})		1	æ	200		Maxey & Jameson, 19
Roy Wood Martin Estate well NW%SW%SW%S35,T215,R611	77 R		 28Apr44 epth – 300 ft. 	-	-		æ	÷	-	-		$\dot{\epsilon}$	140	-	-	-	ж	(1 41)	90	Maxey & Jameson, 19
I. R. Bond well SW45W45W4529,T215,R62E	81 R	emarks: D	- 13Jul42 epth - 404 ft.	25		110	50	2	X	215	tr	327	20			(Φ_{i})	715		9	Maxey & Jameson, 19
U. G. Camphell well NWWNWWSEMS30,T215,R62E	77 R		- 34Aug44 epth - 390 ft.	÷.		-	\sim	Ξ.	2	Ξ	\otimes	-	(Θ)	-		-	8		3	Maxey & Jameson, 19
U. G. Campbell well NWMNWMSEMS30,T215,R62F	77 R	emarks: D	4Ang42 epth - 390 ft.	12		110	42	11	8	160	0	315	20	570	-	3	602	100		Maxey & Jameson, 19
U. G. Campbell well NWWNWMSEMS30,T21S,R62E	77 R	emarks: D	24Aug44 epth = 405 ft.			575	\sim			-			10				1	222	-	Maxey & Jameson, 19
Chris Wilson well SEMSWMNWMS30,T21S,R62E	79 R		– 26Jun46 epth – 455 ft.	$\langle \mathcal{H}_{i} \rangle$	(***)		\approx	+2	-	\sim		-	-	-		(#3)	÷	-	-	Maxey & Jameson, 19
Iohn Graham and Tip Rowe well NW45W45E4451,T225,R61E	79		- 9Apr46 opth - 503 ft.	-	-	-	-	23		÷.	123	-	-	S.	1	2	÷	-	1	Maxey & Jameson, 19
vell NE%SE%SW%S1,T22S,R61E	79		9Apr46 epth - 230 ft.	(\mathbf{m})	+	3 8 3	÷	÷		=	\rightarrow		24			9	-	-	ii.	Maxey & Jameson, 19
. K. Houssels well NWMNWMSWMS1,T225,R61E	79		epth - 340 ft.	(\pm)	-	100	÷	-		÷	(+)	340	14	-	\sim	-	\approx	æ	æ	Maxey & Jameson, 19
ohn Graham and Tip Rowe vell SEMNE%SW%S1,T22S,R61E	79	ii.e	- 9Apr46 epth - 505 ft.				×	÷	:40	-	:43	-	34	54 I.		5	2	-	2	Maxey & Jameson, 19
. K. Houssels well NW45W4NW4S1,T22S,R61E	79	1	5Dec43 opth - 340 ft.	-		(\pm)	÷		(m):	-	(1))	-	9	÷	$(\hat{\sigma})$	-	×	2 4 3	÷	Maxey & Jameson, 19-
. K. Houssels well NWWSWWNWWS1_T22S_R61E	79 R	marks: De	epth - 455 ft.		(π)		÷	÷ =	-		-	-		-	-	-	i.	-	5	Maxey & Jameson, 19
K. Houssels well NW45W4NW4S1,T22S,R61E	79	=	epth - 225 ft.		1	$(\overline{\sigma})^{2}$	÷	÷	(=)	\approx		-	-	9 0			£		÷.	Maxey & Jameson, 194
lenry Wick well SW4SW4SW4S2,T22S,R61E	84 R	emarks: De	7Feb46 opth - 600 ft.		1	1	÷	-	-	$\overline{\mathbf{w}}$		2	\approx			-	×	-	Э	Maxey & Jameson, 19-
I. F. Reed well SWMNWMSWMS2,T22S,R61E	79 Re		- 15Aug44 epth - 600 ft.			(0)	≂		-		-	÷	\sim	19	26		1	(#);	8	Maxey & Jameson, 194
M. M. Sweeney well NWSNESSNWSS2,T225,R61E.	75	0 W 195	- 13Apr44 epth - 350 ft.		-	-	5	÷.	1711	378	-	\overline{a}	\approx				E		÷.	Maxey & Jameson, 194
awrence Watden well SEMNW4NE452,T225,R61E	77	s=145-437	9 Apr46 pth - 290 ft.	3 20		-	-	-	-		2			375	17	\overline{c}	\overline{a}	573	×.	Maxey & Jameson, 19-
Nate Mack well NEMNWMNEMS2,T22S,R61E	79		13Apr44 pth - 200 ft.	170	8 7 8	836	5	-	-		-	1		67	25	37	2		÷	Maxey & Jameson, 19
L. H. Irvin well NE4NW4NE452,T22S,R61E	79 Re		13Apr44 pth = 200 ft.	1	2	134	57	2.3		198	0	353	30			17	775	1090	Ξ	Maxey & Jameson, 194
lenry Wick well NEMSEMSEMS3,T22S,R61E	84		15Jun45 pth - 335 ft.	20	24	158	53	0.7	ł	176	9.0	441	0.5	57.		35	838	1140	-	Maxey & Jameson, 194
Ionry Wick well NE4SE4SE4S53,T22S,R61E	84	vertrasta da la	11Feb46 pth - 335 ft.	21		5	2	25	3	-	5	5	-55	5	12	5	5	150)		Maxey & Jameson, 194
I. Nickerson well NEMNEMSWAS3,T22S,R61E	84	1911 (M. 1919) 1911 (M. 1919)	아니는 것을 많은 것이다.	21	S11	150	44	40		171	0	453	22	-		-	863	20 B	5	Maxey & Jameson, 194

		scharge gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (amhos/em)	pН	Reference
							c	LARK C	OUNTY	(continu	ed)									
H. Nickerson well NEWNEWSWWS3,T22S,R61E	84 Rema		15Jan44 oth – 395 fi	142	-	1	-	-	-	-	-	-	-		-	24	2	4	-	Maxey & Jameson, 194
H. H. Hair well NE%SE%NW%S3,T225,R61E	82 Rema		15Aug44 h - 374 ft	((H) 2	(m)	-	-	-	-	-	-	1	-		4	-	-	=	÷,	Maxey & Jameson, 194
T. P. And G. G. Water well NW4SE4NE453,T225,R61E	84 Rema		11Feb46 nh - 565 fi	(#))	5 4 5	(\rightarrow)	÷	100	(H)	-	28	9	-	-	×	$\hat{\pi}$		-	-	Maxey & Jameson, 1948
Gladstone Corporation well NE4/SE4/NW4/S10,T225,R61E	90 Rema		185ep12 th - 325 ft	30	331	155	50	Ĩ	15	205	Ø	405	35	ŝ.		i i	857	600	2	Maxey & Jumeson, 194
Gladstone Corporation well NE4SE4NW4S10,T22S,R61E	91 Rema		13Feb44 th = 325 ft		(7.)	57	-	15				3	a.	ŝ	S	Ξ	-			Maxey & Jameson, 194
welt SW4SW%NW%S16,T225,R611	106 E Rema	sks: Dep					Ξ.	1.7	-77	15	5		5	5	5	5	72	172	2	Malmberg, 1965
well NWMNWMS21,T22S,R61E	106 Rema	rks: Dep	rh – 460 n			2	22	1		1	-		5	-	5	5	-	50	5	Malmberg, 1965
T. A. Wells well SW4NW4SW4S1,T22S,R62E	91	-	27Mar46 th - 1135 :	÷.	of water	from abo	e 670 ft.	 Driller rei	morted "s	_ hale" from	670 0 6	- total de	-	52	12	3	27	22	÷	Maxey & Jameson, 194
T. A. Wells well SW4NW4SW4S1,T22S,R62E		11 OT 17.	15Mar45		-	106	20	197710.836	36	84	0	1027	112	2	2	\sim	1785	2480	2	Maxey & Jameson, 194)
A. G. Klinger well NWWSEWSWWS9,T22S,R62E	75 Rema		30Aug44 th – 125 ft	1		-	240	-	9	24	14	-	-	\leq	2	\leq	-	10	2	Maxey & Jameson, 194
[34] National Park Service, Callville Bay Campground well NW45E459,T215,R65E	84		120ct67 th - 200 ft	38	0.00 ter	298	113	8	28	98	12	1200	1190	1.5	2	2	3720		7.0	Rush, 1968c
[35] Brown's Spring NE%SE%\$15,T22S,R54E	75	0.2	-	-	1	-	24	2.40	4	26	\sim	-	-	-	2	2	23	460	÷	Hughes, 1966
[36] Black Canyon																				
spring(*) SW4SW4NE46S32,T225,R65E	145 Rema	rks: Mn	11Feb76 = 0.72	45	0.01	200	4.5	480	12	84	0	780	480	4.1		1.0		3500	8.2	unpublished data, USGS
spring NW%SW%NW%S32,T22S,R651	91 E Rema	314 :ks: CO;	15Jan76 = 0.9.	44	0.000	160	5.8	410	11	90	0	720	380	-	2	1.0	27	3000	8.2	impublished data, USG3
spring(?) NEWSEWNWWS32,T22S,R65E	117 Rema	rks: CO2	11Feb76 = 1.4; Mn	54 = 0.02.	0.01	140	10	290	10	136	0	610	180	4.1	-	0.66	1 H	2150	8.2	unpublished data, USG
spring SEMNWMSWMS5,T23S,R65E	86 Rema (show	rks: CO;	15 Jan 76 = 0.8; two ighold1 Rap	40 hot spri ids 7%	0.01 ngs in a s heet).	290 ide canyo	4.8 n ½ mile	680 west of Co	17 slorado R	41 iver, and a	Ü third to	730 the cast-r	1000 tortheast or	3.9 The Arizi	ona side	J.4 of the ri	2790 ver	5600	7.9	unpublished data, USGS
spring SE%SE%SW%S8,T235,R65E	81	45	15Jan76 = 1.2; hot	34	cricod)	290 myon, %	10 mile west	650 of Colora	15 do River	48 Ishown ar	0 Ringbal	66D tt Raeids	1100 (7%' sheet)	0.01		1.2	2790	5200	7.8	unpublished data, USGS
spring NEMSWMNWMS21,T23S,R65E	78	5	15Jan76 = 3.2; ther	25	0.01	37	6.9	160	3.1	79	0	180	180	1.4	\$76 T 30	0.7 N R 23W	e de la composition de la comp	1040	7.6	unpublished data, USGS
[37] well \$29,T245,R63E	83		57	Ę	-	1	15					-		-	<u> </u>	=		-	1	Godwin & Johnson, 196
[38] well NW%NW%NW%S13,T25S,R60	81 F Rema	rks: Den	1Jul68 th - 400 ft	-	0.22	110	94	2	88	98	2	85	790	2	-		1538		7.9	CWRR, 1973
[39] well \$9,T30S,R63E	87	-	-	S (2	\overline{a}	÷		-	эž	-	\odot	÷.	÷	\sim	-	\overline{H}	2 .4 3	-	÷	Godwin & Johnson, 196
[40] U. S. Bureau of Land Management Tenmile Well NW859,T315,R65E	88 Rema		29Apr65 th - 825 ft	18	17	3.8	D.9	e	57	114	5	24	22	8	5	÷	3 72	334	8.5	Rush & Huxel, 1966
[41] well NW%\$24,T325,R66E	81	-	19Jan71 th - 500 ft	÷	0.16	75	22		81	162	3	171	100	6.0	7,0	2	1025		26	CWRR, 1973
								DOUG	LAS CO	UNTY										
[42] Hobo Hot Springs																				
spring SE%SE%S23,T14N,R19E	114 Remai		3May60 - 0.00; As =	47 0.00; P	0.03 04 * 0.01	6	0,7	125	1.7	53	17	109	74	7.1	0	1,5	415	662	8.9	Glancy & Katzer, 1975

ldentification number, name, location	Temp. (F)	Discharge (gpm)	e Date	SiO2 (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO ₄ (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							DO	JGLAS C	OUNTY	(contin	ued)									
[43] spring NW4NW4S19.T14N.R20E	90	-	70ct70	š =	0.02	2	-	(1)	20	93	247		10	7.6			372	Ξ.	8.4	CWRR, 1973
spring NW4NW4S19,T14N,R20E	84	12	7Oct70	9 2	0.01	3		1	26	98		96	0	9.7	5	÷.	372	<i>.</i>	8.8	CWRR, 1973
<pre>spring NWWNWWS19,T14N,R20E</pre>	83	-	70ct70		0.03	2	-	1.	24	98	18	83	-	7.5	1	-	373	-	\$.7	CWRR, 1973
spring NWMNWMS19,T14N,R20E	76	-	70et70		0.01	8		33	21	107	12	84		7.7			381	-	8.9	CWRR, 1973
[44] Saratoga Hot Springs	10.00																			
spring SE%SE%SW%S21,T14N,R20E	122	350) 14May70	20	-	172	0	10	60	-34	$\overline{2}$	678	39				429	1500	9.0	Glancy & Katzer, 1975
[45] Walley's Hot Springs area																				
spring SE%SW%S21,T13N,R19E	R) 1961-64 = 0.19, OH		a = 0.06.	9.6	0.5	137	2.9	40	2.7	200	46	5.0	0.3		493	8	9.0	Lamke & Moore, 1965
spring		=	before 1944	55	2	12	tr.	14	1	146	19	94	42				480		-	Adams, 1944
SE%SW%S21,T13N,R19E	R	emarks: Fe																		
spring SEMNWENE4822,T13N,R19	Е —		13Dec56	5 F	-	11	1.1	150	3.1	5.5	24	233	48.3		22	0.83	544	761	9.4	U. S. Bureau Reclamation unpublished data
springs I SE%SW%S21,T13N,R19E	36-160	-	1 34	3 2	-	ġ.		-	1	+	-	-	-	20	-	-	-	-	+	Waring, 1965, No. 60
(Genoa) Hot Springs NW44NE4522,T13N,R19E			22Jan74 = 0,19, As As <0.05µg	= 0.001, P														644	8.0	Sanders & Miles, 1974
spring NE4S22,T13N,R19E	142	20 emarks: Li	1973		9	10	0.01	145	3.6	50	9	235	44	4.9	-	1.2	2011 2 4 0	726	8.8	Mariner & others, 1974
spring NE34S22,T13N,R19E	R	emarks: Al	= 0.032, N	= 0.12, P	<0.02 0.04, S	= 0.30, C	u = <0.03	 Hg = 0.0	003, 6D(0/00) = -	_ 119.5,δ0) ^{1 8} (⁰ /00)	15,55,			-	-	2	-	Mariner & others, 1975
spring	145 Re	emarks: Li	10Nov59 = 0.2.	61	0.01	9.6	0.5	137	2.9	12	24	200	46	5.0		-	499	730	9.0	unpublished data, USGS
spring	- R:	emarkš: Al	1911? 2O3 = 0.5,		4	П		90	5.2	8	151	183	50	(-)	+)	63	-	~	-	Lindgren, 1911, p. 189
spring SWMNW4SW4S22,T13N,R19	146 E Re	emarks: PO	10Nov59 4 = 0.06.	6I	0.01	9.6	0.5	137	2.9	12	24	200	46	5.0	0.3	-	492	730	9.1	Glancy & Katzer, 1973
U. S. Steel Corp. wells NE44S22,T13N,R19E	181 Re	emarks: Tw	1962 enty holes.	, depth -		8 ft; the n	u suraura	- temp. (18	l°17 was	hit when	 crossing t	he range l	- ault at 64 1	-	23	-		\sim		Koenig, 1970
[46] Doud Spring SEMSWMS20,T11N,R21E	70	180	7May70	5 #	**	-		50	÷.		÷.	÷.	53	5	7 :	7	673	-	-	Glancy & Katzer, 1975
								ELK	O COUN	TY										
[47] springs SW4SW4SU1,T47N,R65E	wann	10	-	e (#				3	=	-		5	-	$\overline{\tau}$	-	π_{i}^{2}	-	×	÷	Delaplain 15-minute quad
[48] well NW\\SW\\S18,T47N,R65E	t00 Re		24Jan68 pth = 126		. n	37	3.6	17	8,4	184	0	20	1.8	0.7	0.8	a	205	332	7.9	Moore & Eakin, 1968
[49] spring SE%NW%S9,T47N,R67E	86	2	1973	ŧ	×.	-	100	575	.		\approx		151			7 .1		2		Hose & Taylor, 1974
[50] warm spring at Mountain City T46N.R53E	APRILITY	-	12Nov37	() 8		36		12	5	68		5	8		5	-	+	5	-	Miller, Hardman & Mason, 1953
[51] spring SW%NW%\$14,T46N,R56E	104 Rs	55 emarks: Sev	veral spring	s	2	2	12		22	2	25		7		\mathbb{Z}_{2}^{+}			2	ιπĺ	Waring, 1965, No. 22
[52] Goose Creek area																				
Nile Spring SW4S30,T47N,R70E	109 Re	emarks: Li	1973 - <0.2; Na		- nal reser	40 volr estima	11.5 te (111°)	10) near spi	5.6 Ing temp	£49 crature.		37	8.7	0.4	151	< 0.02	25	321	7.2	Mariner & others, 1974
Nile Spring SW4SW4S30,T47N,R70E	106	6		-	- 1	-	-			le.				1	100	-	1 7 3	5		Piper, 1923; Waring, 1965, No. 24

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	5)O ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppra)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO ₃ (ppm)	B (ppm)	TD\$ (ppm)	SC (µmhos/cm)	pН	Reference
							1	ELKO CO	DUNTY	(continu	ed)									
Trout Creek Ranch well SEMSWMS2,T46N,R69E	7(flowing Remarks: Dep	30ct56 pth – 246 f	27 1; PO ₄ = 0	6D.0	30	8.0	8.5	5,4	132	ŋ	11	3.9	8.4	a	150	166	261	7.9	Moore & Lakia, 1958
Gamble's Hole SE%\$10,T46N,R69E	103	8 Remarks: The		32 ral thermal	0,06 l wells at	31 nd spring	8,9 t to the n		15 f this-urea	147 in Idaho	0 and Utah	15	3.2	123	0,22	3	173		121	Piper, 1923, p. 60-63; Waring, 1965, No. 25
spring SE4\$W4\$E4\$10,T46N,R691	93 E	– Remarks: Sr	10Nov?6 = 0.36	23	125	29	8.1	9.6	4.6	144	0	13	3.3	0,4	-		162	240	7.2	unpublished data, USC
Trout Creek Ranch well NWMNE4S15,T46N,R69E	110	Remarks: Dep	35ep56 pth – 247 ($21 \\ PO_4 = 0$	0.18 flowin		3.7	24	5.6	118		22	2	0.6	0	2	157	242	8.3	Moore & Eakin, 1968
[53] Gray Rock Mine T46N,R58E	84	Remarks: At	Jarbidge. A	verage wat	ter temp	erature fr	om 1100	foot sluf	t. Temper	ature grad	ient t ^o F/	75 jeet.	6722	17. 1	12	-53			-	Camozzi, 1942
54] San Jacinto Ranch (Mineral) Sprin	CT										1000 T 1		17-010							
spring S23,T46N,R64E	141		28Jun41	-		69	15	124	523	528	0	42	19	-	-	-				Miller, Hardman & Mason, 1953
spring NWENWE523,T46N,R64E	79	Romarks: PO		18 il springs i	0 and stall			13	3.9	132	.0	(11)	1.9	0.5	0.1	0	149	245	5.1	Moore & Eakin, 1968
spring S23,T46N,R64E	-	-	May47	-	-	54	17	83		254	14	193	30	-	-	-				Miller, Hardman & Mason, 1953
spring NW%NW%S23,T46N,R64E	78-126	1290	-			-	2		-	-	-			-	-	1	3		-	Waring, 1965, No. 221
55] Rizzi Ranch Hot Spring							10	1.11		32.1	12	52	1.0						37	Miller, Hardman &
spring S20,T45N,R54E	องเหมื่	Remarks: Ret		s location	as T46N	54 I,R53E.	15	1:04		351	36	24	17							Mason, 1953
SW4S20,T45N,R54E	104-106	Remarks: 4 sp	prings, wate		bathing		-	= 2520	123	ت سند	1	(5) (2)	-	-		0.22		6.74	4.91	Waring, 1965, No. 21 Mariner & others, 197
spring S29,145N,R54E	104	Remarks: Li	1973 - 0.4; SSE c		estima	29 ted minir	7,7 nuru resei	110 iyoir temp	8,3 erature (s	380 Brea) = 78	7°F.	36	4.4	3,4	-	0.22		624	1.4	Mariner & others, 197
[56] Mineral Hot (Contact Mineral) Spi	S. 1985																			
spring 516,T45N,R64E	102		-	3 6 1		16	-			-		147	5-411		-	-	-	-		Waring, 1965, No. 22/
s16,T45N,R64F	140	Remarks: Li	1973 = <0.2; mix		; (berma	1.6 Leservoi	<0.01 temp. es		264°F	108		45	15	8.9		0.47		344	9.1	Mariner & others, 197
[57] springs \$19(2),T43N,R511	warm	Remarks: Sev	ezal springs	m several	sections	, the can	on is Wa	rm Spring	Creek.										-	Wilson Reservoir 15- minute quad
[58] Wild Horse Hot Spring SF//SF//S4,T43N,R55T.	1.25	Remarks: Li	1973 - 0.5 ; estim		nal reserv	48 voir temp	+ 195°1	130	22	482	-	40	14	\$233	3	0.67		918	7.2.	Mariner & others, 197
[59] Hot Creek Springs																				
S32.143N.R60F		450 Remarks, Ter	s springs in	CNW4834	1.143N,J	8.503 on	the Hot C	Yeek 751-1	ninuse qu	uđ:										Lanke & Moore, 1965
H. D. Ranch Spring T43N,R601;	142-154	600 Remarks: Ma		leposits of	f tufa; pi	robably in	NELNI	34534				25		2						Waring, 1965, No. 301
[60] Hot Sulphur Springs																				
spring NE%S8.T41N.R52E	194	Remarks Li	1973 = 0,7_	84		49	13	390	41	1180		18	4.0	7.2		0.77	-	1760	2.0	Mariner & others, 197
springs NE%58,T41N,B52E	194	 Remarks: Li	- 0.8, åD(⁰)	165 00) = -13	4.9.80	$(a_{(0,0)}^{12})$	0.3 - 16.78	160	16	34.5	-	61	22	10		1.2	() ()	751	7.1	Mariner & others, 197
springs NE%S8,T41N,R52E	hot	900-1350	2	-	-	-	-	-	4	-			4		100			(m)		Ea∈, 1962h
61] Wine Cup Ranch																				
Wine Cop Ranch Spring NE42525.741N.R641	÷	÷	≅ 							3		30		200			1		2	Wells 2 degree sheet
well NW4NW4SE%S25,T41N,R64	138 4E	Remarks: Dep	211an67 pth - 68 ft	(3. Hot w	ater is p	49 iped to ti	17 në rancin l		139 od a swin	426 woing pos	18 I. The we	69 Il lis reput	30 tedly near i	tault,	20	575		850	3,4	Rush, 19635
-well NW4NW4SF4525,T41N,R64	ho) 4E	– Remarks: Dep	pth = 59 ft	(1)			1			22	-	1	-	-			\simeq	-		Rush, 1968b

	(°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
								ELKO C	OUNTY	(continu	ed)									
[62] well SE%\$15,T41N,R67E	71		21Jun67	-	-	32	8.3	3	41	160	-	42	20	-	-	-	1	373	8.0	Rush, 1968b
63] Petaini Springs SW1456,T40N,R53E		1350-1800 emarks: Stab	le discharge	rate. Me	asured f	- low rate n	ay be lo	w due to l	oss betwa	een springs	- and measu	aring poin	- nt.	÷	-	-	÷	1		Eakin, 1962h
64] Thousand Springs																				
spring NE44NW44NE44S4,T40N,R69E	111 R	emarks: Trav	ertine depo	sit.		25	1251	251	ΞŤ	65)	-	5		17.	2			25	5	Hose & Taylor, 1974
Gamble Ranch Spring S5,T40N,R69E	- ::!!	900		-			-		10	1	7	10	5		5	1		2		Lamke & Moore, 1965
Gamble Ranch Spring SW4NW4S8,T40N,R69E	69 R	1350 emarks: (epp	25Sep65 g) Na + K =	0.48;Ca	+ Mg =	3.82; CI +	SO ₄ = 1	.06.	(\overline{a})		5	5		5	5	5	172	12	7	Mifflin, 1968
spring T41N,R69E	boiling R	emarks: Prob	whily locate	_ d in T40		14	3 - 1			-	-	9	2	E.	2	2	121	-	20	Waring, 1965, No. 27
spring CNW4S14,T40N,R69E	R	emarks; Warr	m springs.	-	1	-		-	5	-	-		-	-	-	-	-	-	-	Montello 75-minute qu
Gamble Ranch Well No. 4 NW3S16,T40N,R69E	76 R	emarks: Dep	21Jun67 th – 210 ft	÷ -	24	74	27	3	93	278	2	103	117	*	×	-	(H)	885	8.2	Rush, 1968b
65] spring \$36(?),T39N,R45E	hot	-	-	9	Э.	-	2	-	×	-	-	æ	12	-	÷	94	÷	÷	-	Wating, 1965, No. 20
66] spring S18,T39N,R59E	117 R	emarks: Trav	ertine depo	sit.	æ	3	(e)	-	-	-	-	8		2	÷	-		-	÷	Hose & Taylor, 1974
57] Warm Creek S2 & 3,T39N,R53E	R	emarks: A tei	ibutary of G	ance Cra	ek caller	- t Warm Cr	eek flow	s through	Sect. 2 ai	nd 3; it is fi	- ed by sprin	ngs in bo	- th sections;	map doe	- s not say	they are	warm.	-	-	Mahala Creek West 7½-minute quad (prelii
68] spring NMS22 & SMS15,T39N,R59E (unsurveyed)	hot	350	-	Ξ.	ж	÷			-	-	22	1	÷.	1	5	т ⁶		2	1	Lamke & Moore, 1965 Waring, 1965, No. 28
69] Hot Lake N%NW%S25,T38N,R46E	hot Re	emarks: Smal	II (approx.)	- S acre) la	- kc.	×	(+)		\approx	-	÷	\approx	1		+			÷	ε.	Squaw Valley Ranch 7½-minute quad
70] spring NE%NE%SE%S11,T38N,R48E	-	emarks: This	23522		-	 Creek. It i	s not kno	wn if the	- spring is	- hot.	Ξ.	$\overline{\mathcal{C}}$	20	2	25	\geq	(\mathbf{x})	\simeq	æ	Willow Creek Reservoir 795-minute quad
71] spring SW\aSE\aS14,T38N,R59E	hot Re	emarks: On t	he Cress Ra	nch,	17	-		200	이 있는			1	10 C		5	-		7	STR.	Waring, 1965, No. 29
72} spring NE45W4S11,T38N,R59E	1		100	ä	÷.	17	1	172	\overline{a}	877	$\overline{\omega}$	T :	\overline{a}	\overline{a}	7			<i>.</i>		Twin Buttes 7%-minute quad (prelim.)
spring SE%SW%S11,T38N,R59E 73] Humboldt Wells		1		5	17	5	101	123	Ξ		5	5	2		5	a		Æ		Twin Buttes 7%-minute quad (prelim.)
Twelvemile Spring NWWNEWNEWS27,T39N,R67E	102	800	1	2	2	11	523		2		2	4	-	-	-	\mathbb{Z}		2	-	Waring, 1965, No. 30B
spring NEWS17,T38N,R62E	142	emarks: Li =		105	-	75	37	300	31	1135	12	32	27	7.2	÷.	0.89	-	1650	7.3	Mariner & others, 1974
spring NE4517,T38N,R62E	131 R(N;		0.72, AI = (1, CO ₂ = 9	86 1.002, RI 3,	o = 0.32,	48 Mn = 0.0	13 9, Cu <0	370 .01, Hg =	46 <0.0001.	1230 .8D(%00) -	-136.6,	80 ¹⁸	37 -16.95, gas	7.4 (volume		0.73 + Ai = 29		1820	6.6	Mariner & others, 1975
spring 11 SE%NW%NE4S17,T38N,R62E	3-122 R	10 marks; Thre	e springs; ta	rge depo	_ sit of tra	vertine.	2	14	1	-22	4	-		-		-	145	2	243	Waring, 1965, No. 30A
spring 12 SEMNWMNEMS17,T38N,R62E	0-135	15		-		-	-	141	1	-	14	-	20	-	-	-	-	-	2	Bradberry & Associates 1964
Sulphur Spring SE%SE%SE%S20,T38N,R62E	98 Re	50 emarks: Cont	tains much l	H ₂ S.	-	-	-	-	÷	1993 1993	-	19	-	23	23	-		-	283	Wating, 1965, No. 30
Sulphur Spring SEWSEWSEWS20,T38N,R62E	98	40	1961	-	×	÷	+	5 4 35	æ	(4)	÷	-	0 0		×	Ξ.	-	÷	-	Oesterling, 1962
Three Mile Spring NE4NE%SE4S20,T38N,R62E	115 Re	1 emarks: Smel	1961 Ils of sutfur	2	-	×	-		$\frac{1}{2}$	100	÷		-	. =		8	-	÷		Oesterling, 1962

Identification number, name, location	(F)	Discharge (gpm)		Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Ci (ppm)	F (ppm)	NO3 (ppm	B (ppm)	TDS (ppm)	SC (µmhos/em)	рH	Reference
								1	elko co	UNTY	(continue	d)									
spring S20,T38N,R62E	122 F	Remarks: L	i = 0		165	12	12	0.3	160	16	345	35	61	22	10	-	1.2		753	7.3	Mariner & others, 197-
spring E%S20,T38N,R62E	97 	Remarks: L N ₂ = 34, C	i = 0. Ha =	65, Al=1	75 0.004, R 62.	0.04 6 = 0.30	51 , Mn = 0.	13 12, Cu <(340 1.01 , Hg =	36 0.0002, 8	1150 iD(%00) =	-136.6,	50 ¹⁸	34 16.95. Gas	7.0 (volume)	36): O ₇	$0.8 + A_f = 6$,		1740	6.3	Mariner & others, 197.
spring SE4S20,T38N,R62E	140 F	lemarks: L	= 0		110 1.001, RI	0.02 6 = 0.25	78 ,δD ≠ -1	36 134.7. Gas	300 (volume !	30 4): O ₂ +	1210 Ar = 1, N ₂	= 3, CH4	- 24 - 2, CO	26 = 96.	6,1		0.77	\mathbb{R}^{2}	1730	6.6	Mariner & others, 197:
spring SEMSEMSWWS29,T38N,R62E					-	-	-	17.	2	125	2	1.0						1		3	Oxley Peak 7%-minute quad
Railroad Spring S29,T37N,R62E	warm	1	-	-	-	22		<u>11</u>	2	-	2	3	1.52	:5:	17.1	3	272	(7)			Oesterling, 1960
[74] warm springs NE4SE4S26,T37N,R58E	-	-	-	-	-	-	-	1	2		-		20	20			-	-	100	2	Morgan Hill 7%-minute quad
[75] Pan American Petroleum Corp Co Minerals Corp. No. 1 well SW48E4S3,T37N,R67E [76] Ralph's Warm Springs area	170	Cemarks: O	- il wel	1968 Il (dry hol	– le); depti	n - 528	- 4 ft; both	- im hole te	 emperature	of 170°	F was repo	rted at 4è	00 feet d	uring drilli	ng.	170) 170	1	ō			Nevada Bureau of Min- and Geology files
springs S28.T36N.R64E	65 R	temarks: W	steri	ssues From		-	-	dens s sa	setu Lunita	-				-	19	-		2	523	5	Eakin & others, 1951
spring. \$33,736N,R64F.	70		3 24	Sep65	-	0.5	-			1992 (M	see an Bree		-		¢	-		2	-		Mifflin, 1968
spring S33,T36N,R64E	watin	37:	5	2	=	-	-	55	5		Ξ.	(1)	÷			-	200	÷		÷	Bradherry & Associate 1964
springs S34,T36N,R64E	warm	К	53			1	1.50	5	1		<u>*</u>	17.1			27	(π)	100			3	Bradberry & Associate 1954
spring (seep) NEWNEWNWWS4,T35N,R64E	80			1960	5	3	57.5	5	-		1		17	12			-	1	-	æ	Wilson, 1960c
spring SEMNEMNWMS4,T35N,R64E	86	5(F.	1960	-		157.2	77	7.0					1			12.5	÷.	-	Ξ.	Wilson, 1960c
spring T34N,R62E	warm R	250 emarka: Pr		iy Ralph's	s Warm 5	prings.	127	-	-	130	Ē.	2	55	1	5		-			2	Waring, 1965, No. 34
[77] Johnson Ranch Spring S28,T36N,R66E	73	30	F.		1.00	-	-23	2	1		22			<u>.</u>				8	-	Ξ	Waring, 1965, No. 300
78] Elko Hot Springs area City of Elko well (old well no. 13) SEV(\$10,T34N,R55E	hot R	- emarks: De	pth	- 425 ft?	; cold wa	for was			en 190 0 :		a but hot :	-		- 1 475		_ 	-	-	211	2	Eakin & others, 1951
City of Elko well no. 12 SW%S11,T34N,R55E	75		23	Dec46	81	-	36	12		0	139	3	27	35	-	-	-	269		2	Eakin & others, 1951
Western Pacific R. R. Co. well SWMS15,T34N,R55E	warm R	emarks: Th	us we	ell encoun		inn wate	- r between	n 345-36	0 ft which	flowed a	t the surfa	or at 7 er		14	5 <u>0</u>			2	<u> </u>	×	Fakin & others, 1951
Western Pacific R, R, well SW%S15,T34N,R55E	hot	emarks: De	-	-		-	1.00		-	-	2000 8 900 8 	10678/11/07	-	-	94	1	-	-	-	2	Eakin & others, 1951
Hot Hole (spring) NE4521,T34N,R55E	133	2(emarks: Li	6	1973	65	-	60	15.5	120	39	488	1	72	16	1.9	÷	0.70	-	908	7.2	Mariner & others, 1974
Hot Hole NE%S21,T34N,R55E	R	emarks: Al	= 0.0	102, N - 1	0.46, P =	0.06, R	b = 0.10.		- Mri = (1.02	Cu = 0.0	- 04, Hg = 0.	0003, 8D	(0/00) =	-144.7, 80	18(0/00)	15.	31.	-	(#):	÷	Mariner & others, 1975
Sulphur (White Sulphur, Humbo Hot Springs 1: SEMSEWS21,T34N,R55E	ldt (50-1.91)	45(ŝ		:=:	-	-	-	())	-	신문	20		2	22	\simeq	-	-	14	2	Eakin & others, 1951
Sulphur (White Sulphur, Humbol Hot Springs SIP4SIP4S21,T34N,R55E	ldt) 192	13	3	-	6	-	-	25	121	2		12	Ξ.	-	2	a.	94 T	E.	14	1	Waring, 1965, No, 32
Sulphur (White Sulphur, Humbo Hot Springs		450		before 1944	óó		56	10	15	i0	468	o	71	t.6	2	÷	2	600	2	2	Adams, 1944
SEWSEWS21,TJ4N,R55E	R	430 emarks: Fe			00	1.0	36	10	15	U	468	a	π	16	-		-	640	-	-	Adams, 194

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/em)	рĦ	Reference
							E	LKOCO	UNTY (continue	d)									
(79) spring SW4SE9831,T34N,R59E	warm	-	-	1	8#2	×	1		-	-		193	(T_{i})	8		5	\overline{a}	8		Soldier Peak 7%-minute quad
springs T33N,R58E(?)	warm I	Remarks: Se	veral spring	s;8 miles	southwes	a of Fort	Halleck	This may	be the spi	ing in \$31	T34N,R	59E (aboy	vc).		2		10	2	-	Waring, 1965, No. 33
[80] Hot springs near Carlin																				
spring S33,T33N,R52E	174	-	1973	70		60	15	45	16	335	-	52	12			μ.	2	6.25	7.6	Mariner & others, 1974
spring \$33,T33N,R52E	boiling	300	-		4	223	-	-	-	-	223	-	+	-	-	-	-	(14)		Bradberry & Associate 1964
spring SE4SW4S5,T32N,R52F	warm	400	-	2.47	-				-		-			-		-	-	-	-	Bradberry & Associate 1964
[81] Hot Sulfur Springs																				
springs \$8,T33N,R53E	98	15	-				200	1	-		-									Waring, 1965, No. 31
springs NW4S8,T33N,R53E	bot J	Remarks: Se	ven hot spr	ings in a r	torthwest	-trending	Line for a	me-third r	nile. –	=	1	183	120	123	123		15	(171) (171)		Bradberry & Associate 1964
[82] warm springs SW45SW45E34S12,T33N,R(wann H E H	2000 Remarks : 2 s		35		52	20		63	134		39	23	1.0	α.8	0.10	398	640		Fakin & others, 1951
[83] Sulphur Hot Springs																				
spring NW4S11,T31N,R59F	199 	20 Remarks: Li		210		1.0	0.03	135	8.9	244	15	40	23	17.7		0.20		601	8,5	Mariner & others, 1974
spring NEWNWSSILT31N,R59E	162	1	-	72	4	81	5.8		106	242	-	59	12	8.0	0.5	0.04	400	660	-	Fakin & others, 1951
spring NW4511,T31N,R59E	113	132 Remarks: Li		230 sperature	taken at t	1.6 the outle	0.02 t of Stani		9,8	247	12	40	4	19.0		0.23		652	8.6	Mariner & others, 197
spring NW%S11,T31N,R59E	-	Remarks: Al N ₂ = 93, CH.	- 0.17, N	0.20, P <1.	= 0.02, R	6 = () 12.	Sr = 0.05	, Hg = 0.0	015, δ DC		$30.1, \overline{\delta}O^{1}$	$(\frac{16}{2}a_{\sigma})$	-16.09.0	izs tvolun	ie 10. O	2 • Ar -	б.			Mariner & others, 197:
Miller's Hot Springs T30N,R59E	170	- Remarks: Po	ssibly Sulp	– hur Hot S	prings (S)	1,TIN,				-	4	4	4	4	4	-	8	14	-	Waring, 1965, No. 35
springs NW\2S11,T31N,R59E	205 max,	 Remarks: 76	water sam	ples from	within 15	0 yards (ar less of 1	the main p	saal, speci	itie constau	tance is a	m average	-					599		Olnisted & others, 197
84] Smith Ranch Spring																				
spring NW452,T27N,R58E	149 1	Remarks: Na	1973 -K-Ca estin		rvoir tem	45 perature	187 ¹² F.	58	14	377		24	6.5					600	8.0	Mariner & others, 197-
spring NW%S2,T27N,R58E	warm I	- Remarks: Nu	inierous spi	ings (Fra	nklin Lak	e SW 7½	minute qi	uad). –		-	100	33	5 5 8	5 7 5	28	555	1			Fakin & others, 1951
spring CW452,T27N,R58E	hot I	Remarks: Th	ree springs	(Franklin	Lake NW	/ 745-min	ute quad)	issue from	n valley fi	ll a short d	listance fi	iom bedra	ick nuteraj		5					Fakin & others, 1951
spring S2,T27N,R58E	hot	smali	5				8	8		÷.							3	0		Waring, 1965, No. J44
								ESMER	ALDA (COUNTY										
[85] Fish Lake Valley																				
Eish Spring NW45W4525,T2N,R35E	75	-	25May57	-	-	13	4		65	158	1	38	7	1.5		,42	Ξ.	363	8.3	Rush & Katzer, 1973
spring SW45W45W4528 T2N R30	81 5E	1.	5	100		3	15	5	5735	-	(τ_{i})		578		2	12	$\overline{\mathcal{C}}$	3900	st.	Van Denhurgh & Glanc 1970, p. 61
Gap Spring SW4832,T2N,R36E	73	10± Cemarks: Ha	24May57 rdness (Cat		0.80 4 : As = 0	38 20, PO4	38 = 0.4.	792	60	720	0	323	860	3.2	0	9.8	2500	4280	7.9	Van Denburgh & Gland 1970
Sand Spring SEMSE%S27,T1N,R34E	74		25May57			1.1	0.6		31	50	0	22	2	0.2	1	.02	5	144	7,2	Rush & Katzer, 1973
R. G. Pennehaker well SW4SW4S9.11N.R35F	74 F	Remarks: De	25May 57 pth - 300		\sim	17	2.7		34	128	0	12	3	0.2		.06	2	240	7,9	Rush & Katzer, 1973
welt NEWNWWS16,T1N,R36E	77		15Mar71		20	5	0		300	251	7	78	260				-	1500	8.4	Rush & Katzer, 1973

Identification number, name, location	Temp. ([°] F)	Discharge (gpm)	e Date	SiO; (ppn			Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO ₄ (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (#mhos/cm)	рH	Reference
							ESM	ERALD	A COUN	TY (cont	inued)									
well \$W%NW%\$20,T1N,R36E	22		- 25MayS	7 -		48	7.4		258	601	0	98	70	4.2	2	7		1330	7.1	Rush & Katzer, 1973
Nevada Oil and Minerals V.R.S. No. 1 well SWENEVANEUS16,T1S,R361	318 E 1	Remarks: D	– 16Nov7 epth - 917)		is an aba	ndoned oil	lest.	÷	-	=	3	2		30	1	÷	1		×	Nevada Oil & Gas Conse vation Commission, unpub. data
well NEMS19,T1S,R36E	77		- 29Nov4	9 =	0.1	7 49	9.6		268	614		120	74	4.3		2	940		7	CWRR, 1973
[86] Southern Big Smoky Valley																				
well NW¼S14,T1N,R37E	71	Remarks: D	epth – 346	fi.								-	-	3	5	5	$\overline{C}_{ij}^{(1)}$	17/1	5	Rush & Schroer, 1970
Emigrant well NW456,T1N,R38E	80	Remarks: D	- epth = 324	fr; first	water en	ountered	at 308 ft.	-		125		8	2	8	6	8			5	Rush & Schroer, 1970
Fishlake Livestock Co. well SE44SE44S5,T15,R39E	hat	Remarks: D	epth – 520	rt; 10 ga		- af hot wa	ter was rej	orted at	165 ft; the	well is rej	forted to	have been	i destroyed	-	3	2			2	Rush & Schroer, 1970
[87] Big Divide Mine NW%SW%S26,T2N,R42E	hot I	Remarks: H	ot water hi	t heliow th	ie 1800-	faot level.		-	1	-	14	9	-	<u> </u>	3	2	-	-	-	oral communication, Norman Coombs, 1973
[89] Pearl Hot Springs																				
springs SEMNWMSWMS25,T15,R40E	98 5	Remarks: U	- 19Jan6 nsurveyed (-		-		3		25	\sim	-	-	\cong	8		24		CWRR, 1973
[90] Alkali Springs																				
springs NW%S26,T15,R41E	140	5) 18Jan6			46	4.6		349	348	15	492	68	2	2	\odot		1840	8,1	Rush, 1968a
springs	120-140	51				4.6	-	282		142		501	64	-	-	-	0.75	17		Ball, 1907
NW%S26,T1S,R41E	F	Remarks:Fe	+ Λ1 - 4. T		re 120°	at tunnel	mouth; 1	40°F at t	unnel breas	st.										
springs NW4526,T15,R41E	120-140		8	8 H				30	-	-	Ξ	\tilde{H}_{c}	÷			÷	34°	<u>j</u>	-	Waring, 1965, No. 112
springs SEWNE%\$26,T1S,R41E	130 F	4(Remarks: Fx		42	25	46		3	282	70	8	500	65	\sim	\mathcal{H}	Æ	1010	Э.	÷	Meinzer, 1917
springs	140 F	43 Remarks: Fe		42	1	46	100	282		142	÷	501	64	\mathbb{R}^{2}	5	Ξ.		\geq		Ransome, 1909, p. 143
[91] Silver Peak Hot (Waterworks) Spri	ings																			
springs CSEV(\$15,T25,R39E	69-118	500)	2 2	3	2	123	-	5		5	<u>E</u>)	5	5	5	5	1.7.1	2		Waring, 1965, No. 111
[92] spring NW34S6,T11S,R43E	77		201an65	9 2	-	9.6	2,4		238		2		47	125		25		2	27	CWRR, 1973
								EUR	EKA CO	UNTY										
[93] Horseshoe Ranch Springs																				
springs 532,T32N,R49E	136 R	30 Remarks: Li		58 6.4.	5	22	5.H	136	17	378	0	62	2.7	5.0	Ť.	0.81		ő.	7.0	Roberts, Montgomery & Lehner, 1967
springs \$32,T32N,R49E	125-132		8	55	3	3	15	5	$\overline{\mathcal{O}}$	572		\mathcal{T}_{i}^{i}	\overline{z}		5			<i>.</i>	-	Waring, 1965, No. 88
spring 1 ml from Beowawe	0	1	22Feh3)	9 E		28	12	151	77	393	5	60	9	5	5	0.9	1	2	7	Miller, Hardman & Mason, 1953
94] Beowawe Geysers																				
spring SE%S8,T31N,R48E	208 R	26 Remarks: Li		3,20	×	1.0	<0.1	230	16	321	32	130	69	17		2.1		1020	9.0	Mariner & others, 1974
well SW45SW45SW459,T31N,R48E	27 R	- temarks: Li		125	×	16	11.4	220	17	440	2	100	49	11		1.7	757	1090	7.6	Olmsteil & Rush, 1977
spring S17,T31N,R48E	:190 R M	temarks: U In <3μg/l.	<0.2µq/l, E	330 la = 50µg	/I, W - I	1.0 50µg/l, Вг	= 135,ue/1	210 . Sb = 13	8 µg/I, Mo =	19µµ/1, R	.6 = 145µ	g/l. Cs - 3	56 200µg/1, As	- 40µg/1,		μg/l, . Sc	<0.02µ	- g/1,	220	Wollenberg & others, 1977

Identification number, " name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm	Fe) (ppm)	Ca (ppm)	Mg. (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	рH	Reference
							E	UREKA	COUNT	Y (contir	ued)									
acidic spring S17,T31N,R48E		lemarks: U In = 115¢e	= 0.5µµ/1,	300 Ba = 190y		3 2µg/I, Нт	= 120µg/	250 Ι, Sb - 5με	31 /L, Mo =	3µg/1, R6 -	215µg/l	, Cs = 115	42 μg/l, As <	l Spg/l, Fe	= fi 2014	g/1, Sc = (0.7µµ/I.	9	÷	Wollenberg & others, 1977
hot spring \$17,T31N,R48E	183 R		10Mar7 04 <0.1, N	$H_4 = 0.5$.09 Ag <.02, Rb = 0.26	$As = 2.2\mu$	g/l, Ba </td <td>229 0.04, Be < .0µe/l, Sn</td> <td>14.2 0.005, B = 0.05, S</td> <td>i <0.1, Cd</td> <td>152 = 0.01, C Zn - 2.33</td> <td>128 r <0.02, ¢ 2.</td> <td>67 3s = 1.04,</td> <td>18.7 Cu <0.01</td> <td><0.1 Fig <0.:</td> <td>_ 5µg/l, Li</td> <td>964 = 2.59,</td> <td>1006</td> <td>9.7</td> <td>Sanders & Miles, 1974</td>	229 0.04, Be < .0µe/l, Sn	14.2 0.005, B = 0.05, S	i <0.1, Cd	152 = 0.01, C Zn - 2.33	128 r <0.02, ¢ 2.	67 3s = 1.04,	18.7 Cu <0.01	<0.1 Fig <0.:	_ 5µg/l, Li	964 = 2.59,	1006	9.7	Sanders & Miles, 1974
spring S17,T31N,R48E	205	1	5 B	- 444	3	<1	<1	241	29	148	161	78	44		2	2,2	1100	2	9_5	White, 1964
spring S17,T31N,R48E	190 P	Remarks: U	= <0.26 p	26; W = 1	47 ppb; M	a = 19 pp	b; Sb = 1	207 3 ppb; Ba	61 ppb.	8	8	-	56		-	-		-		Wollenberg & others, 1975
spring S17,T31N,R48E	boiling R	temarks; St	eam sampl	. U <0.1	6 ppb;W=	132 ppb	: Mo = 12	268 Ppb; Sb •	10 ppb;	Ba - 50 p	ob. Dupli	cate analy:	64 sis agrees (lasely.		_	-	-		Wollenberg & others, 1975
hot spring S17,T31N,R48E	- R	ternarks: Al	+ Fe = tr.	413	6	t t	0	2	16	244	84	84	30	-		-	-	-	+	Nolan & Anderson, IS
small geyser S17,T31N,R48E	170 B	temarks: Al		449 0, NH4 =	4, 5 ₂ 0 ₃ =		0 0. Severa	239 A species o	33 f diatom	129 s live in the	173 warm p	97 aols.	47	11	-	7	20	Ξ.		Nolan & Anderson, I
pool below terrace S17,T31N,R48E	205	temarks: Al		373	0.04	0.8	0	230	16	116	149	89	30	15	0.4	2.0	1	-	9.5	Roberts, Montgomery Lehner, 1967
geyser S17,T31N,R48E	R	temarks: Al		418		tr	-	2	82	512	tr	91	70	-		÷		-	-	Nolan & Anderson, J Waring, 1965, No. 77
Beowawe Hot Springs	P	lemarkš: Fo		413	12	¢r	0	2	16	244	84	-	30	-	Ξ.	÷	1081	-		Adams, 1944
hot springs	F	- Remarks: Fo	+ A1 = 17.	418		٦r	0	2	82	512	τi.	93	70		-	8	÷	2		Adams, 1944
Flame Geyser	-		22Aug4	52 -	-	32	8	164	-	351	34	53	48	8	-	2.2		95 1970 S P		Miller, Hardman & Mason, 1953
steam well NW%517,T31N,R48E	F	Remarks; Li		3 500	200	1.3	0.2	250	38	505	81	64	20	<0.05	1	2.5	270	1490	9.4	Mariner & others, 19
well \$17,T31N,R48E	steam F	- Remarks: Fr As = 33μg/l,	om most n	- 490 ortherly (1, Sc <0.)	– hlowing wi D2pg/L, Mn	1.5 41; U <07 <3μg/1.	07 <i>µ</i> г/1, В	280 a = 50µg/l	40 W = 135	5μg/l, Br =	145,µg/1,	Sb = 11,0g)	67 (I, Mo = 1)	− µg/l, Rb	- 320µµ)	1, Cs = 2	20µ91,	0		Wollenberg & others, 1977
Sierra Pacific Power Co. well \$17,T31N,R48E	385 F	Remarks: D	- 196 :pth - 150		le i	-	-	14	÷	-	- 2 	-	8		1000 E	ά	S TE L Matrices	en en el	12 10285	Roberts, Montgomer Lehner, 1967
steam well S17,T31N,R48E	boiling F M	Remarks: PO In <0.01, N	19Sep7) ₄ <0.1, N Ib <10, Ni	H4 = 0.9.	0.05 Ag <0.00 5 <0.02, F	4. As = 2	0 1дд/1, Ва , Sh <0.2	263 <0.10, Ве , Se <1Ду.	31 <0.005, 1, Sn <0.	0 Bi <0.10, 2, Sr = 0.0	288 Cd <0.00 4, Ta <5	127)2, Cr <0.0 , Zn = 0.01	62 04, Cs = 1 L	16 02,Cu <	<0.1 0.004, H	lg <0.2µ	1256 g/l, Li + 3	.2,	9.9	Sanders & Miles, 197
Nevada Thermal (Magma Power Co.) No. 2 well NW4517,T31N,R48E	builing F	Remarks: A	12Sepfi = 0.66, F) 534 - 0.00, .		0.8 Sr = 0.21	0.2 , Li = 1.6	332 , NH4 = 0	30 4, 1 - 0.0	39 0,PO ₆ = 0.(224 16, Bt = 0	90 .0. Sample	49 : miy be l	15 D percent		2.4 ied by bo		1130	9.7	White, 1964
Vulcan Thermal Power Co. Vulcan No. 1 well NW48E45W5NW4 S17,T31N,R48E	414 F	Remarks: D	- 196 epth - 638			2	922	22	2	020	1	Ω.	÷	-	2	2		÷	÷	unpublished data, Sie Pacific Power Co.
Raine Ranch(?) springs S6,7,T31N,R52E	wann	100	e e	5 8				100	5		\sim	0	53	-	2	0	<u>9929</u>		-	Bradberry & Associa 1964
Hot Springs Point (Crescent Valley	63																			1000
Crescent Valley Hot Springs SW%S1,T29N,R48E	138	10	0 103un4	8 73	0.03	53	43		319	980		117	44	5.9	0.0	0.4	1140	1750	20	Zanes, 1961b
spring SW4S1,T29N,R48E	124	(S	196	- 0	848	2	-	-	-	2e	1	-	\sim	3	-	-	-	-	6	Wilson, 1960b
spring NEMS1,T29N,R48E	124	1	\$ 196	0 -	-		-	223	9	929	200	3	÷		3	Э			1	Wilson, 1960b
spring SWMS2,T29N,R48E	136		8 196	0 -	199	343	-	-	9	-	G	÷	-	8 000	8	in en		22	्र स्टब्स्ट	Wilson, 1960b
springs SEMSEMS2 & NEMNEM S11 T70N R48F	138 	4) Remarks: M		- 72 .i = 1.0, P	0.04 O4 = 0; wa		38 sis is repo	277 orted to be	51 from spi	928 tings in S1	.0	116	49	6.9	3.3	1.6	5	383	6.8	Roberts, Montgomer Lehner, 1967

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO ₃ (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/em)	pH	Reference
							EUI	REKA (COUNTY	(contin	ued)									
spring NW4S11,T29N,R48E	129 F	33 Remarks: Li -	1973 1.1.	67	10	53	35	230	58	913	<1	7	1	6.6		2.1		1730		Mariner & others, 197-
apring NEMS11,T29N,R48E	3	Remarks: Al - as (volume %	0.008, N =	3.2, P =	0.01. Br 31. CH4	= 0.2, 1 <1, CO	= 0.02, Rb	- 0.29, C	'e = 0.1, S	r = 1.3, C	u = 0.04,	- Hg = <0,(001,δDC		25.8,δC) ¹⁸ = -1	3,21;	-	-	Mariner & others, 197
springs SEMSEMS2 & NEMNEM S11,T29N,R48E	122	15	-		5	Ei.		1				1	121	1	2					Waring, 1965, No. 88-
Magma Power Co. Hot Springs Point No. 1 well S1,2 or 11, T29N,R48E	166 1	Kemarks: Dep	1965 th – 410 ft	-	÷	-	(#))	Э.	(<i>14</i>)	1.04				2753	÷	\sim	15	5	5 7 5	Koenig, 1970
97] spring NW&NW&NE4S10,T28N,R4	9E 186	2.5	1960	-	÷	8			e		-		1	10	870	1	57.5		-	Wilson, 1960a
[98] Hot Creek Springs spring NW4512,T28N,R52E	79	1585 Remarks: Li =	1973 0.02.	20		46	23.5	10	2.1	226	1	27	4.6	<0.1	22	0.03		408	7,3	Mariner & others, 197
springs SW4NW4S12,T28N,R52E	84		275ep65	0.53;Ca	+ Mg = 3	.77,CI	+ SO4 = 0.7	4	07:	1	1	23	223	22	121	<i>w</i>	-	-	1	Mifflin, 1968; Waring, 1965, No. 89
springs SE4NW4S12,T28N,R52F [99] Carlotti Ranch (Sulfur) Springs	2	1800-2250	1960	2	<u>=</u> :	-	12	æ	18	÷	98) (19				-		30		-	Eakin, 1961b
springs SE%S24,T28N,R52E	95-102	100	1					1	2.72		333	÷.		23	22	2		-	40	Waring, 1965, No. 90
100] Bruffey's (Mineral Hill) Hot Sprin spring \$14,T27N,R52E	150	50 Remarks: Mn	- 0: 81 + 0	.58 1 i = 0.2	=	52	16	39	8,7	287	a	27	14	0.7	0.1	0.25	90	-	7.0	Roberts, Montgomery Lehner, 1967
	108-152	-	2000 - 200 - 200 - 200	-	2		-		24	94	i.	100	-				-	-	+	Waring, 1965, No. 90
101] Flynn Ranch Springs																				
springs \$5,T25N,R53E	69-78	10	37	-		1			(1 7)	10	15					55	474 (570	Waring, 1965, No. 91
[02] Walti Hot Springs					1011223	322.215	12	1000	201		0.221	124	200	10.00	201	0.17			X.01	Roberts, Montgomery
spring W4S33,T24N,R48E	163	Remarks: Mn	- 0; Li - 0;	75 PO ₄ + 0.	0.02	60	13	48	15	282	1)	62	13	2.4	0.1	0.17	-			Lehner, 1967
spring \$33,T24N,R48E	160	-	17Jun65	1	2	57	12	1	'n	315	0	65	14	-	-	263	-	8		Everett & Rush, 1966
spring SW4S33,T24N,R48E	162 	79 Remarks: Li -		68		56	12	44	14	264	<1	64	12	2.5	-	0.12	-	592	6.3	Mariner & others, 195 Mifflin, 1968
spring W5533,T24N,R4BE	160 I	897 Remarks: (epr	17Jun65 n) Na + K =	3.04;0	a * Mg = 2	1.82;Cl	+ SO4 = 1.1	5.	-									7		
springs S33,T24N,R48E	hot	small	121	\simeq		5	24	17.9	2.5	÷.,		-			-		-	-		Waring, 1965, No. 93
103] Shipley (Big Shipley, Sadler) Hot	Springs																		1922	42-33 - 382333
springs NE%SE%S23,T24N,R52E	103-106	5000 Remarks: Mri	1960 = 0; Li = 0;	40 PO ₄ = 0	0.01 .t.	57	21	29	5.9	279	0	-35	21	0.2	0	0.26	346	540		Eakin, 1962a; Waring, 1965, No. 91
springs NE4SE44S23,T24N,R52E	94	3000	16Apr63	30	0	55	23	3()	-6	288	0	33	17	0,5	0.6	0.1	330	529	7.6	Harrill, 1968
NEWSEWS23,T24N,R52E	106	6750 Remarks: (epi	18Sep52 m) Na + K =	1.52;C	a + Mg = 4	4.57;CI	+ SO ₄ = 1.	29.	-		2	(; _)	-		-	-	1	5		Mifflin, 1968
104 Siri Ranch Spring																				Millio 1969
spring NW4SW486,T24N,R53E	81	5800 Remarks: (<u>ep</u> i	11Jul66 m1 Na +K =	0.76;Ca	+ Mg - 4	.00;C1+	- SO ₄ = 0.8	9.			7	-		12		7		2	3	Mifflin, 1968
spring NW%SW%S6,T24N,R53E	87	300		12		-	1	-	1	-		-3	-		-	-	+	-	-	Waring, 1965, No. 91

Identification number, name, location	Temp. (F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmbos/cm)	pН	Reference
							EL	REKA	OUNT	Y (contin	ued)									
water well SWMNEMS6.T24N,R53E	95	1	5May66	25	0	51	20	1.5	3.4	255	0	25	10	0.4	0.5	0	276	449	B /0	Harrill, 1968
105] Sulfur Springs																				
springs NWWS36,T23N,R52E	74	20	ja-		25	527		225	6	12		5	5	5	5	5	17	20	5	Waring, 1965, No. 910
106] Thompson Ranch Spring																				
spring NW/65E%\$3,T23N,R54E	69	950	IApr66	19	0.01	73	22	23	5.1	318	0.	51	6.5	0.4	1.1	0	358	583	7.8	Harrill, 1968
Jacobson Ranch Springs NW/SE1853,T23N,R54L	71-75 R	900 temuzks: (epr	11Jol66 n) Na +K =	1.14;Ca +	+ Mg = 5	.03; Cl +	- SO ₄ = 1.4	- 7.	æ	-	9	÷	-	~	\geq		-		2	Miftlin, 1968; Waring, 1965, No. 911
107] Bartine Hot Springs																				
springs l NEGNE/455,T19N,R50E	05,108	10	1	-		ii.	121	8 7 0	5	5	5	5	5	5	5	5		5		Waring, 1965, No. 93A
Bartine Ranch water well no. 4 NE33177,719N,R50E		33 (emarks: Dep	th – 485 fi	: artesian.	2		12		2			8	8	5	Ξ.	5	্য:	5	2	Information from Fred Bartine
105) Klobe (Bartholomae) Hot Springs																				
spring NW%SE4S28,T18N,R50E		temarks: Mn		$PO_4 = 0$.	0.02	2.2	1.7	6.5	0.7	126	10	18	6.5	4.0	0	0.08	-	14		Roberts, Montgomery Lehner, 1967
spring NW4NW4SE42S28,T18N,R50	н	49(1966) lemarks: Li = i <0.10, Cs = ertical 12 [°] ste	0.11, As = .24, Hg <0	0.024, Ba 1.2µg/l, Nb	(<10.0,	H ₄ <0.1 Rb <0.0	(2, Sb < 0.2)	, Be < 0.6 , Se < .00	1. Sn <0.	2, Ta <5	0, Zn <0.	01. In An	telope Vall	ey, 8 mi !	S of U.S	Hwy. 5	0. Spring	flows from	9.4	Sanders & Miles, 1974
spring SE%S28,T18N,R50E	129	2	1973	85	1	1	<0.1	64	9,7	144	10000	18	6.3	10000	12	1	-	295	9.3	Mariner & others, 1976
spring NWIANWIASEIAS28,T18N,R50	156 E	49	21Dec66	24	1	-			-	-	-	-	2	2	2	Ξ.		2		Fiera, 1968
spring NW4SE4528,T18N,R50E	142	100		2	-	1	1.0	-	-	-	-	1	-	2	-	+	-	14	-	Waring, 1965, No. 93B
Hot Spring Ranch water well NW3NW3S28,T18N,R50E	158 R	emarks: Well	21 May 64 drilled in k	dobe (Clo	bel Hot	0 Spring.	00	21	-	94	26	22	7.1	2	2	-		315	9.0	Rush & Everett, 1964
Hot Spring Ranch water well NW4NW45E44528,T18N,R50	158 E Ri	3 emarks: Flow	21Dec66 ring well; d	_ epth - 39	5 tt.	1		121		3	1	73	73	7	53	\overline{c}	.72	5	-	Fiero, 1968
Hot Spring Ranch water well NWIGNWIGSEI4S28,T18N,R50	72 E R	emarks: Dept	21 May 64 th = 35 ft.	*	1	0	Ð	72	2	92	29	22	7,3	125			20	319	9.1	Rush & Everett, 1964
"cold" spring NW4NW4SE4528,T18N,R50	70 E	0	-	2	2	×	i.e.	(40)	÷.	(23)		-		121	2			2		Fiero, 1968
Bartholomae Corp. water well SW%S18,T18N,R51E	74 Re	14 emarks: Dept	1949 b - 670 ft	- Nowing	2	-	-	-				14	-	-	-	-	2	-	-	Rush & Everett, 1964
Bartholomae Corp. water well NW4S30,T18N,R51E	72	200	16Apr64	-	÷	24	7.8	36	-	135	12	28	7.0	-	-	1.0	545	319	8.7	Rush & Everett, 1964
								HUMBO	LDT CO	UNTY										
09] Cordero Mercury Mine																				
Cordero Mining Co. well SEMS28,T47N,R37E	140 Re	emarks: Dept	h - 442 ft	57	tr	36	10	62		195	100	56	34	255	876	876	365	500	-i	Visher, 1957
Cordero Mining Co. well SE%S28,T47N,R37E	125 Re	emarks: Hot	water is pur	nped from	a 600 f	t deep w	eli at 10 gp	m for dor	nestic us	es ; it is a m	emented 1	by 8 gpm o	of cold wat	er.	121	1.00	-	1 5		Holmes, 1966
Cordero Mining Cn. well \$28,T47N,R37E	138	emarks: Dept	0 800 V			1		100 00 00 00 00 00 00 00 00 00 00 00 00		1			1	-	-			÷.		White, 1955a; Waring, 1965, No. 6A
Cordero Mining Co. well S28,T47N,R37E	118	emarks: Dept	ini soi n is	े इ.स.	5	5	\sim		=	17									7.6	White, 1955; Waring, 1965, No. 6A
Noque's Nevada well NEMNEWSEMS17,747N,R38E	92 Re	emarks: Dept	16Jan77 h – 701 ft.	110	0.00	5.8	0.2	58	12	119	172	26	14	2.6	2.4	0.37	322	323		unpublished data, USG5

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	504 (ppm)	CT (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SÚ (µmhos/cm)	рH	Reference
[110] Bog Hot Springs							HU	MBOLD	r coun	FY (con	(inued)									
spring SWMNWMS7,T46N,R28E		5	0			8 7 0	\overline{a}	-	\sim	\cong	1±1	201	(+)		+		-	-	-	Railroad Point 15 ⁴ quad
Bog Hot Springs NEWNW4518,T46N,R28E	132 R	1000 emarks: Two	6May61 springs, p	51 robably a	sociated	0.4 with an	0 active fau	78 lt zone.	0.6	113	6	41	15	2.0	0.5	0.66	262	345	8.4	Sinclair, 1963c
spring 12 mi west of Pine Forest Rar	108 nge	small	5	372	120	1	ā	5				$\{ ({ { { f } }) } \}$	575			1 3 0	2		-	Waring, 1965, No. 1
spring 6 mi southwest of Denio	30;190 R	20 emarks: Loci	ation given	is closer	to Baltazo	or Hot S	prings.		+					1		21	-		æ	Waring, 1965, No. 2
spring NW4518,T46N,R28E	129 R	1057 emarks: Li =	1973 0.03.	\$7		0.2	<0.1	81	1.0	116	11	45	15	1.7	2	0.91	\sim	356	9.1	Mariner & others, 1974
spring NW4S18,T46N,R28E	Re G	emarks: Al = as (volume ≲	0.016, N): O ₁ + A:	0.10, P = 9, N ₂	= 0.07, A = 91, CH ₄	- s ≈ 0.02, <1, C0	Br = 0.2, 0 ₂ < 1	Sr = 0.05	.Fe = 0.0	 Gu = 0,	01, Hg =	0.0001,ð		-124.3,δ	0 ¹³ (%)oc		30.	15	27	Mariner & others, 1975
2 springs 518,T46N,R28E	131 Ri M	20 emarks: PO ₄ n = .010, Ni	19Feb74 - 0.2, NH <0.02, Pb	4 <0.2./	.09 Ag <0.02, a = .021, S	.14 As = 1.2 & <0.1,	1.12/1, Ba -	89 :0.04, Be - 0.0/1, Sn <	<0.005, B	79.9 i <0.1, Ci 0.005, Z	$21.9 \\ 4 < 0.01, \\ n = 0.602$	47 Cr <0.02,	30 Cs = .26, C	2.06 tu <0.01,	1.6 Hg <0.5	iμε/1, Li -	293 .051,	386	9.0	Sanders & Miles, 1974
Bag Hot Springs	R	emarks: Alga = 7, S1 = 20 1 = <100, Li	e from spr , V = 130,	ing conta	ined Fe =	3.3%, M	z = 0.3%.	Ti = 0.5%	. Na = 0.5	%, Mn = (50, H = 3	25. Ba =	46, He = 1 3, As = 22,	3, Cr = 65 Sb = 0.5,	50, La = 1, Hg = 1,	20, Mo = Se = 0.5,	5. Ag.<0.1	- , W <50,	17	Cathrall & others, 1977
Bog Hot Spring 41 55 25 'N, 118 48 16 'W	129 Re	- emarks: Li =	1970 0.02, Sb -		s = 0.033	0 Hg = 0	0 0000.	77	0.9	125	୍ବର	46	LS	1.7		0.71	259			Cathuall & others, 1977
111] Baltazor (Continental) Hot Springs						12														
spring NW4S13,T46N,R28E	176	26	1973	160		8.4	<0.1	180	8.7	139	2	220	48	7.t	87	2.9	5	947	8.0	Mariner & others, 1974
spring S13,T46N,R28E	200		-	-		3H	(1 4 1	(3 4)	$\hat{\sigma}$		94	Ξ	Ξ					12		personal communication Steve Kleeberger, 1973
Continental Hot Springs SE4NW4513,T46N,R28E	hot	200	1963	24	2	28	-	200	94 	-	3	-	÷	ж	×	-	() (-)	94 1	е	Sinclair, 1963c
water well NW4S13,T46N,R28E	194 Re	7 marks: Li = (150. ing.	1	10	0.1	180	8.2	156	≤ 1	230	47	6.8	2	2.1		934	7.5	Mariner & others, 1974
spring SEMNW4S13,T46N,R28E	178	100	1.5	-		12		-	-	-	-	8	8	8		-	0	1	5	Waring, 1965, No. 3
Baltazor, Hot Spring 41 55 18 "N, 118 42 33 "W	181 Re	marks: Li = 1	1970 0,20, Sb =		s = 0.0007	14	0,2	180	8.6	163	0	220	48	6.6	÷	2	690		÷	Cathrall & others, 1977
[112] Virgin Valley Campground No. 1 well CW/s2,T45N,R26E	90 Re	marks: Li = (1970 0.03, S5 =	32 0.002, A	s = 0.007,	3,7 Hg = 0.)	0 0000; sho	29 wers in car	0.4 npground	64 are suppl	G ied by a f	12 not artesia	4.7 m well,	1.8	-	0.08	115	1	÷	Catheall & others, 1977
113] McGee Mountain E35T45N,R27E	131 Re	marks: Stear 1°F at 200 fi	n and warr	n water e	missions a	te repor	ted from	ilong a fai	ilt at the e	ast edge a	- 2	~	-	- sle into ()	- lis fault 1	ad a tem	- iperaturi	- e of		Wendell, 1970, p. 95, 98, 109
114] Fivemile Spring S22,T45N,R33E	83 Re nea	224 marks: Sprin irby wells.	gs issue fro	- om a sing	– le pool in	_ eravel di	_ own gradi	ent from t	– he sontac	- of bedro	ck and al	luvium; w	- ater is abo	u1 20 ⁰ F u	- armer th	nan that p	- oumped	from	÷	Zones, 1963
2 springs S22,T45N,R33E	76-80	-	100	1	-	-	~	-	-	-	\sim	-	-	-),÷	2	÷	-	-	Waring, 1965, No. 6
115] springs about T45N,R41E	hoj Re	marks: Sever	al springs;	– at head o	– of North F	ork of L	ittle Hum	boldt Rive	er. Locatio	n uncerta	- 31n.	-		2		2	-	;=	2	Waring, 1965, No. 7
116] springs CW95S12,T44N,R27E	warth	(H)		×.	-	2	1997) 1997)	14	-	-	0.00 H i	÷	÷	\approx	+	$\Xi_{\rm c}$	-	8		Railroad Point 15-minute quad
117] Howard Hot Spring																				HERE IN
spring SEWNEWNEWS4,T44N,R31E	136	50	70c160	84	Ξ.	2,4	0.5	91	2.0	52	39	64	14	7.9	0.1	.26	324	401	9.3	Sinclair, 1962a
spring NEMS4,T44N,R31E	133	-	1973	85	34	3	<0.1	88	1.7	127	2	62	1.0	2	8		-	400	9.2	Manner & others, 1974

	Identification number, name, location	Temp. (°F)	Discharge (gpm)	e Date	SiO ₂ (ppm) (pp	re Ca pm) (ppm	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO ₃ (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
								н	MBOLD	T COUN	TY (con	linued)									
	spring T45N,R32E	118	smai Remarks: 13		of Mason	s Crow	sine of Ouin	n River P	tobably He	ward Ho	Spring	- 7	.7	1.75	151	100	\sim	17	121	7	Waring, 1965, No. 4
	spring NE4S5,T44N,R31E	163		5 70ct6l		1001010	- 3.2	0	90	2.3	58	0.4	46	12	8.0	0.2	0.21	344	398	9.3	Sinclair, 1962a
	spring T45N,R32E	130	15 Remarks: 1		of Quinn	River ((town). Loc	tion unkr	own, possi	bly How	ard Hot Sr	ring.	196	+		(-)	\pm	\geq	-	-	Wating, 1965, No. 5
118]	Ninemile Springs SWMNE45SW% S10.T44N,R33E	79		0 22Jun59) 54	0	.14 25	5.8	nan and	33	117	5	20 ^e F about	22 that from	0.1 wells in th	,2	0,07	219	303	8.0	Zones, 1963
[119]	Dyke Hot Springs	12	remarks: aj	prings at 191	incarine ex	and at	e in adusty.	in figure tons	nock, me i	water tem	perasore r	ration 1.	5 T 20070	that them	ecula (iii to	an ensie?	5				
141907	spring SEMS25,T43N,R30E	151	2i Remazka: Li	6 1973 1 = 0.09.	85	1	- 1.8	<0.1	150	4.3	243	17	82	21	8.0	-	1.0	6	666	8.9	Mariner & others, 1974
	springs SE4SE4S25,T43N,R30E	158		- 8Oci61	83	2	- 3.2	Ø	146	3,7	218	16	76	6.0	8,9	0.3	0.41	470	636	8.7	Sinclair, 1962a
	springs T43N,R31E	155	Rentarks: 7	mi west of	Mason's f	tosin	e of Dainn	- River	-	-	-	-	\rightarrow			\rightarrow	(m)	-	1.00	-11	Waring, 1965, No. 10
[120]		104		2 8Oci61	125	3.	See.	1.5	210	6.2	358	7	67	54	14	1.2	2.9	660	883	8,3	Sinclair, 1962a
(121)	A REAL PROPERTY OF A REAL PROPER	75		0 8Oct60	65		- 18	2.4	34	4,8	104	Ð	25	15	0.6	0.8	0.11	244	259	7,7	Sinclatr, 1962a
[122]		70		5 70c160		8	- 30	6.3	455	9.9	948	0	204	69	9.B	0.4	1.3	1290	1900	8.1	Sinclair, 1962a; Waring, 1965, No. 10A
[123]	U.S.G.S. test well no. 21 SEMNEWS32,T42N,R33E	76	Remarks: D	5Oct54		0	04 32	5.2	416	11	885	0	184	59	0.9	0.2	1.7	1180	1820		Malmberg & Worts, 1966
[124]	2010 CONTRACTOR C	80		- 26Oc154	4.8	from a	- 2.2	0.8	197 Cellan aver	[8]	211 50° F cm	36	70 aged abou	106	1.4	0.2		541	941	9.0	Sinclair, 1962b
[125]	E. W. Gondra well NE%SE%S22,T41N,R40E	71	Remarks: D	18Jul68	83	2003033	- 23	h Deseri A	- sney avera		173	7	31	29	0.7	2.0	0.20	337		8.4	Harrill & Moore, 1970
[126]	The Hot Springs																				
	spring NE%S20,T41N,R41E	136	Remarks: Tr	1973 ravertine pr	1 55 esent. Sili	ica estir	- 10 mated reser	g voir tempe	296 rature = 23	36 23°F.	881	4	36	26	-	-		-	1340	8.0	Mariner & others, 1974
	spring NEWNEWS19,T41N,R41E	135		0 14Aog43		1000	- 26	8.5	334	-	920	+	34	26	-	-	2.54	930	202	2	Loeltz, Phoenix & Robinson, 1949, p. 33
	spring SW4NE4519,T41N,R41E	135	1	- 14Aug45	5	- 63	- 26	8.5	3	34	920	(72)	34	26	50	1750. 1	17 C	5	3574	1	Harrill, & Moore, 1970
	spring T41N,R41E	130		8 3	24	1	- 14	-	10	-	1	-	144	260	-		-	-	-	9	Waring, 1965, No. 11
[127]	spring T41N,R43E Soldier Meadows Hot Springs	hot _i	smal Remarks: 25		Paradise	Valley	near North	and South	- Farks of I	Humbold	River. Le	cation ur	icertain.	-		(H))	3	8			Waring, 1965, No. 11A
	spring S5.14.15.22,T40N.R24E	hot		2 9	28	3	김 영국		\sim	1.00	\simeq			55	50	145	5		2.45	_	Waring, 1965, No. 8
	spring \$23,T40N.R.24E	129	1 Remarks: Li	3 197. i ~ 0.17.	63	2	- 3.1	<0.1	74	1.1	92	3	41	18	12	(τ)	0.64	-	363	8.6	Mariner & others, 1974
	spring S23,T40N,R24E		Remarks: A CH4 <1, CO		= 0.10,	P = 0.0	14. As = 0.0	5, Br = 0.0	6,1=0.01	, δD(900) = -129.	9. 80 ⁷⁸ 10	/00)=-1	6.56, Gas (volume 17), 02 +	41 = 7, N	(₁ = 93,	22		Mariner & others, 1975
	springs S23,T40N,R24E	warm		- 6May61	65	24	- 2.4	1.5	76	0	96	0	39	21	12	0.5	0.82	272	357	7.6	Sinclair, 1963a
	spring S23,T40N,R24F	118	Remarks: N	umerous he	65 t springs	in all p	2.6 parts of \$23	1,4	76	1.3	96	0	39	21	10		1,0	272	360	7.6	Grose & Keller, 1975b; Mud Meadow 7/6-minute sheet
	spring S23,T40N,R24E	129		2 2	63	33	3,5	1.1	74	1	90	3	35	18	12	10	0.6	275	360	8.6	Grose & Keller, 1975b
	springs CSE%SE%S25_T40N_R24E	hot		2 2	- 822	- 64	21 927	\cong	\overline{G}		\odot		227	20	120	-	227	9	122		Mud Meadows 7%-minute sheet
	springs SW4NW4518,T40N,R25E	hot	-	8 S	8 (a)		e 28	-	-		\sim	1	\sim	143	\sim	14			(2,2,2)		Soldier Meadow 795-minute sheet
	spring NE%NW%518,T40N,R25E	hot	-		-	53	51 551			200		0.00			100	1	878	1		-	Soldier Meadow 7%-minute sheet
	spring NW%SW%S19,T40N,R25E	hot		3 5		3		17.	8			150	575	-	÷.	8	2	2	525		Mud Meadows 7th-minute sheet

Identification number, name, location	Temp. ([°] F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
[129] Pinto Hot Springs							HUN	BOLD	COUNT	Y (conti	inued)									
East Pinto Hot Spring E%SE%S17,T40N,R28E	199 p.	132 market 14	1973 = 0.45; un	150	(h.c. 21 ¹¹ 4	14	0,4	330	23	495	1	120	160	12		7.5		1560	7.1	Mariner & others, 1974
West Pinto Hot Spring (well) CNE3519,T40N,R28E	198	26		160	-	4.6	0.1	320	25	436	2	130	160	14	23	6.9		1520	7.7	Marinez & others, 1974
West Pinto Hot Spring \$19,T40N,R28E	200	emarks: Li		162	2000-52-25 	5	0.1	325	26	440	2	130	160	15	=	7		1500	7.7	Grose & Keller, 1975b
East Pinto Hot Spring S21,T40N,R28E	201	emarks: Li	5-07-00 PH	155	5	19	0.3	325	26	500	1	120	160	14	=	7		1560	7.2	Grose & Keller, 1975b
spring S21 or 28.T40N.R28E	hot		t spring sh	wn on m	-	2	1	1		120	1		-	2	22	21		1	12	Sinclair, 1963a
Pinto Mountain Hot Springs S29,T40N,R28E	boiling	50		-	-	\sim		(=)	343	420	03	126	159				1043		193	Sinclair, 1963a
[130] Cain Spring SE3530,T39N,R27E	74	5	6May61	34	÷	6.4	0.2	55	0.6	120	0	15	11	0.3	0.3	0.32	186	264	8.2	Sinclair, 1963a
Cain Spring \$30,T39N,R27E	74	-	Jun75	32	\approx	7.	0.2	55	0.6	120	0	15	12	0.3	$\sim -$	0.3	186	264	8.1	Grose & Keller, 1975b
[131] Double Hot Springs-Black Rock	Hot Spring	s area																		
well SE4510,T37N,R25E	97		Aug75	80	5	10	3.0	77	11	165	0	45	32	1.5		0.2	321	446	7.8	Grose & Keller, 1975b
well SE44\$10,T37N,R25E	97		[4]un6]	79		9.6	2.8	78	11	165	-	38	28	1.8	0	S	20	446	7.8	Sinclair, 1963a
well NW%S11,T37N,R25E	103 Re	marks: De	Feb51 pth - 303	n.	2	1		12	2		23	1	2	21	624		24		-	Sinclair, 1963a
well SW4S26,T37N,R25E	78 Re	- marks: De	pth - 200	- n.	4	-	(\mathbf{a})	-	-	-	1.44	1943	4	1	i in	-			=	Sinclair, 1963a
well NE%S26,T37N,R25E	72	-	249 3 A G	2	÷.	-	-	1	-	14	-	1	4	1.00	14	141			4	Sinclair, 1963a
spring T37N,R25E	hot Re		eral spring	. Southea			- Rock Ra	nge, Loca	- Ition unce	tain.	-	<u>_</u>	949	-	2et	ie:	$(-1)^{\ast}$	-	-	Waring, 1965, No. 13, 14
spring \$10,T37N,R26E	130-150	3	- prings, 1-2			0.8970-010 			371023928	-	-	1	6e)		1	1	12	-		Waring, 1965, No. 12A
Double Hot Springs 54,736N,R26E	172	marks: Li	- //5-25-/	105	-	15	0.1	225	4,5	260	2	120	80	01	-	2.0	н.	910	8.0	Grose & Keller, 1975b
spring \$4,T36N,R26E	176 Re	46 inarks: Li		105	-	4.8	0.1	180	4.5	261	2	120	59	10	290) 2	1.80	2	902	7.9	Mariner & others, 1974
spring S4,T36N,R26E			+ 0.024, N ≅): O ₂ + A					= 0.02, S	a = 0.09,1	e <0.02,	- Cu + 0.02,	Hg = 0.0	004, δD -	-128.8,	δ0 ¹⁸ -	-15.93.		-	-	Mariner & others, 1975
Double Hot Springs NW4S4,T36N,R26E	165-191	5	 -	2.5		-		-	(#)	(\mathbf{x})	(#)	÷.	-	+				-		Waring, 1965, No. 12
Double Hot Springs NW484,T36N,R26E	\overline{a}	250	1				-	\sim		\sim					-	-	ЭH	(H=)	-	Sinelair, 1963a
spring S4(?),T36N,R26E	150 Rei	marks: Sp	ing is locat	ed % mile	- southeast	of Daubl	e Hot Spi	-	1253	1	252		(π_i)	1.75	100	178		100		
spring DH-2 S16,T36N,R26E	155	Ē	Ē	130	195	17	1.0	230	4,5	280	0	120	110	10		2.1	2	1.00	7.6	Grose & Keller, 1975b
Van Riper? Springs T36N,R24E	145 Rei	50 marks: Lo	cation unce	rtain.	15	0.75		5		1					11				zġ	Waring, 1965, No. 15
spring DH-3 S16,T36N,R26E	164			112	1	15	0.15	260	5.6	275	0	140	120	9.4	:T:	2.0	5	1873	7.0	Grose & Keller, 1975b
spring DH-4 S21,T36N,R26E	155	÷	6	86	1025	18	0.19	265	10	280	0	135	120	10	527	1.8	G	225	7.1	Grose & Keller, 1975b
springs S22,T36N,R26F	165-194	2	<u> </u>	-	- 6	ιe.	22	\odot	12	-					223	6	3	2		Hose & Taylor, 1974
springs \$16,21,24,34,T36N,R26E	hot Rei	marks: Sev	eral spring	121	2	2	9			-		27		21	27	31	2	22	- }	Waring, 1965, No. 17

	Identification number, name, location	Temp. (°F)	Discharge (gpm)	e Dat		SiO ₁ (ppni)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppin)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
									HUN	ABOLDT	COUN	FY (cont	inued)									
	spring \$27,T36N,R26E	5	Remarks: B	- ot springs	s show:	a on m	2P.			-		2		4	-	-	-	4	2			Sinclair, 1963a
	spring \$34,T36N,R26E	194	Remarks: U		073 1 d area,		lack Rock	35 (lat 40	957'N, los	1500 ng. 118°51	20 s'wi.	932	-	290	787	-	241		-	6590	8.1	Mariner & others, 1974
	Black Rock Hot Springs NW34S34,T36N,R26E	136	5	0 ЭМау	61	62		18	1,9	486	13	902	0	130	155	8.9	0.2	2.8	1330	2050	7.9	Sinclair, 1963a
	Black Rock Spring \$34,T36N,R26E	131	3		× 2	70	100	24	0.19	570	12	902	0	1300	180	9	-	2.8	1330	2050	7.5	Grose & Keller, 1973b
	hot spring approx: \$2,T35N,R26E	194	sma Remarks: In		Count	cy.		1		20						-		-	3		÷	Johnson, 1977, p. 106
	spring DH-7 \$10,T35N,R26E	202	Rémarks: In	Pershing	- 1 Count		0.25.	36	4	1500	20	912	0	290	790	14	250	4	\geq	66:50	8.1	Grose & Keller, 1975b
[132]	Maefarlane's Buth House Spring NW42527,T37N,R29E	170		5	"e "		-	2993	-	1		-		-			29	20		5.000	1	Sinclair, 1963a
[133]	spring SW%SW%S3,T37N,R39E	158		2 10Aug	61			30	7.1	450	26	1240	0	52	14		170	1	1190	1900	7.4	Cohen, 1962c
	well SW%SE%S3,T37N,R39E	156	Remarks: D	2 28Apr epth - 61		201	(2)	26	11	77		1230		71	16		2.	L4	2	1900	7.7	Harrill & Moore, 1970
	well SE483,T37N,R39E	158	Remarks: D	2 25Oct epth - 61		ell repo	rtedly dri	29 Iled at th	10 te site of i	467 a small spi	ing which	1240 s ceased to	flow after	73 er the we	22 Il was drille	d.			1250	-	5	Loeltz, Phoenix & Robinson, 1949
[134]	spring S24,TJ7N,R43E	warm 1	>20 Remarks: H		s Rancl	h is in S	\$26.		2	5		\sim			(34)	50	37).	21	(Ξ)			Anctil, 1960; Waring, 1965, No. 19E?
	hot spring \$35,T37N,R43E	hot	200	0	3	1	25	(E)	-	53		5	(<u>75</u>)	:50	-	2	27		-			Lamke & Moore, 1965
[135]	Cane Spring SW%SE%S8,T36N,R24E	71	1	0		-			5	-		1			-		24	37				Alvin McLane, personal communication, 1971
	Caine Spring S11,T36N,R24E	73		Jun	75	74		23	8.5	75	10	107	a	24	32	0.1	2	0.1	250	325	7.9	Grose & Keller, 1975b
	Caine (Cane) Spring NE4516,T36N,R24E	70	1	0 12Dec	:61	74	1020	23	8.4	74	10	107	0	22	32	0.1	1.8	0	256	323	7.3	Sinclair, 1962c
	spring T36N,R25E	hot I	Remarka: Si	- vetal spri	 ings; 14	0 mi so	utheast of	_ f Division	n Peak. Pe	_ issibly Cai	ne Spring	-			-	-	14	-	\sim			Waring, 1965, No. 16
[136]	spring SEMNEMSWM S13,T36N,R37E	93		20Jul	161	25	D	179	58	74	2.0	211	0	390	191	0.3	20	0.4	1040	1540	7.7	Cohen, 1962c
	spring	hot		E Sover=1	Sac	0	- En	16	2		82	937	0	76	2.3	-	1	121	953	22	+	Adams, 1944;
	2 mi north of Winnentucca (T36N,R37E?)		Remarks: Fe																			Waring, 1965, No. 18
[137]	HLM well SWMNEMSEM S26,T36N,R38E	73	Remarks: D	- 27Jul epth - 53		10	0.04	102	30	42	3.5	156	0	85	178	0.3	2.9	0.1	536	1020	8.0	Cohen, 1962c
[136]	Calif. Pacific Utilities Co. well NE45W34SE54 S30,T36N,R38E	73	Remarks: D	- 24Jul epth - 4		51	0	56	19	60	6.5	260	0	72	58	0.3	0.3	0.4	452	728	7.9	Cohen, 1964c
[139]	Golconda area																					
	spring SEMS29,T36N,R4DE	165	19 Remarks: L		973	66	-	33	6.8	130	22	429	<1	56	18	1.8		1.1	30	810	6.5	Mariner & others, 1974
	spring SE%S29,T36N,R40E		Remarks: Α δD(⁹ /0a) =	1 = 0.002 125.5, 8	N = 0 50 ¹⁵ c	.30, P = Yoa) =	= 0.04, A -15.65, 0	- 	Br = 0.02 me %): O	, I = 0.00 2 = AI = 4	$S_{1} R B = 0$ $N_{2} = 51$.09, Ce = 0 f, CH ₄ = 1	.2, Sr = (, CO ₂ =)	1.7 3, Fe 18	- 0.22, Mn -	• 0.10, C)	a = 0,05,	Hg = 0.0	1001,	5	E)	Mariner & others, 1975
	well NE%SE%SW% \$29,T36N,R40E	73		- 7Aug	;61	HO	1	40	6.8	126	22	434	0	50	20	2			478	811	7,7	Cohen, 1962c
	Golconda Hot Springs NEWSW5SE% S29,T36N,R40E	148	50-20	D 24Aug	45	(1)	(π)	33	8	180		444	0	108	21	æ.			25	80	÷	Miller, Hardman & Mason, 1953

Identification number, name, location	Temp. (F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	504 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
							HUM	BOLDI	r coun	TY (cont	tinued)							1.000		
spring NE45W44SE4 S29,T36N,R40E	148	25	2Dec61	59	0	35	8,4	146	23	448	ō	56	20	2.0	0,4	1.3	571	845	8.2	Cohen, 1962c; Waring, 1965, No. 198
Golconda Hot Springs SE%NE%S32,T36N,R40E	R	emarks: Thi	is spring is m		_ y tadioa c	tive.		-	-			. . .		-	-		(ϕ)	20	-	Davis, 1954, p. 2
well CNE%NE%S32,T36N,R40E	177 R	emarks Dri	1966 lled in 1940	10 175 f	=	Ξ.	120	1							-	0.000	1	~		D. I. Segerstrom, written communication, 1972
Golconda Hot Springs T36N,R40E	109 R M	emarks: PO, n = .096, Ni	20Feb74 4 <0.1, NH4 i = .06, Рb =	= 0.8, A	0.79 g <0.02, 198, S	47 .As = 0.9д 5 <0.1, Se	7.8 ;/1, Ba = <1.0µe/	159 .46, Be < 1, Sn <0.0	24 0.005, B: 05, Sr = 0	528 <0.1, Cd 227, Zn	0 <0.01, C	57 r <0.02, Ci	27 s = 1.12, C	2.9 Cu <0.01	0.2 . Hg <0.5	μg/l, Li	626 .527,	942	7.0	Sanders & Miles, 1974
springs T36N,R40E	120-150 R	250 emarks: Abe	out 12 sprin	gs	- 51	-	-	9 88		-		(π)	-		240	243	3 2 5	\sim		Waring, 1965, No. 19
Golconda Hot Springs	149	50	27		÷.	<u>.</u>		3		÷		÷	$(1, \overline{m})$) (1085	(0,0)	-	2	÷	White, 1955, p. 136
Golconda tungsten mine drill hole 302 CSW4S36,T36N,R40E	143 R	emarks: Dep	1972 oth – 258 ft	- 12 - 12		2	51		~	-		12	120	-52	15	4	59	<u>7</u>	2	D. I. Segerstrom, written communication, 1972
spiing \$36,T36N,R40E	69	1.5	-			2	51		1					-	8		1	2	3	D. I. Segerstrom, writter communication, 1972; Waring, 1965, No. 19C
140] spring SWMNEMNEM \$2,T36N,R41E	70 R	25 cmarks: 2 th	8Aug61 Ionnal sprin	34 gs.	0	2	0	620	3.5	1080	143	98	46	16	a	4.6	1500	2340	9.2	Cohen, 1962c; Waring, 1965, No. 19D
[142] Northern East Range area																				
well no. 5 CNW%S21,T35N,R36E	84	-	12	20				1	~		27.5		1.72	1	150	670	876	1.33	.7	Cohen, 1962c
well NW4NW53NW54 S27,T35N,R36E	82 R	emarks: Dep	19Jul61 11h - 99 ft,	52	0,05	117	48	512	60	1610	a	59	225	4.8	1.0	7.8	1880	3030	7.8	Cohen, 1962c
*pring SW4SW4SEV S28,T35N,R36E	.83		18Jul61	73	0.08	61	12	550	51	1270	10	100	237	6	3.5	9.2	1740	2640	8,3	Cohen, 1964
spring NEWNWMNEM \$28,T35N,R36E	82	5	18Jul61	50	0.01	17	40	926	94	1940	41	121	381	12	0,8	15	2650	4080	8,3	Cohen, 1964
143] Sulfur Spring S34,T35N,R41E	hot R	3 emarks: Exte	ensive tufa (lepusits.			\overline{a}	-	25	-	100	282	(-)	20	282	(20)	1	e.		Kerr, 1940, p. 1369
144] Hot Pot (Blossom Hot Springs)																				
spring SWMS11,T35N,R43E	136 R	emarks: Li =	1973 0.72; trave	80 rtine pres	ent; estin	29 nated reser	5. voir tem	288 perature -	33 = 257°F.	823	-	60	28		~	-		1400	8.0	Mariner & others, 1974
spring S11,T35N,R43E	95	400	-	-	1		-	-	-	1			20		122	20		623	121	Bradberry & Associates, 1964
Blassom Hot Springs NW4SW4S11,T35N,R43E	107 R	70 smarks: Spri	ing rises in h	road deep	p pool.			-	823	2	122	2	-		144	12	<u>1</u>	941	-	Waring, 1965, No. 19A
145] Brooks Hot Spring																				
spring NWWNEWS13,T34N,R41E	94	450	-	-		(±)	\approx	\equiv	-	-			1	245			\geq	()=-)		Bradberry & Associates, 1964
spring NW4NE44S13,T34N,R41E	94	2+	1959	2.5		100	æ	~		-	\sim	$(\overline{\mathcal{A}})_{i}$	-		(\mathbf{r})		÷		-	Olcott, 1959
spring NW%NE%S13,T34N,R41E	98 R	∿20 emarks: Flov	1973 wing from a	lluvium ir	n a man-n	nade trenel	-	2	16	Ξ	200		-	(=)	(-)	+	-	16	-	Waring, 1965, No. 19F
146) Hot Springs (Tipton) Ranch						Constant on a glass														
spring NW34NW34NW34 S4,T33N,R40E	R	30-40 emarks: Alo	1959 ng fault zon	e. –	15	87	5	5	87. 1	177	171		100	10	1	-		1.77	7	Oesterling, 1959

	Identification number, name, location	Temp. (°F)	Discharge (gpm)	e l	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
									HUM	BOLDI	COUN	rY (cont	inued)									
	Magma Power Co. Tipton No. 1 well ŚW4NW45W44 \$4,T33N,R40E	-	Remarks: Do	epth -	1974 - 3071 ti	(;geothe	rmal we	I (API No	27-013-9	000).	1		-	-	×	35	1		*		ар. С	
	spring WMSEMSEM S5,T33N,R40E	115 F	1: Remarks: Al		1959 sult zone	r; 120 pp	un total	from sever	al springs.	-		-	-	2	2	~	æ	8	2		-	Oesterling, 1959
	springs SEVANEMSEM S5,T33N,R40E		50 & 1: Remarks: Tv		1959 rings alor	_ ng fault z	ane.	-	-		2	-	-	-	-		÷	9	÷	1	2	Oesterling, 1959; Waring, 1965, No. 19G
	spring SEMSS,T33N,R40E	185 F	26 Remarks: Li		1973	125	20	1.6	0,9	200	18	385		140	41	9	-	2.6	-	1060	8.4	Mariner & others, 1974
										LANI	DER CO	UNIY										
[147]	Izzenhood Ranch Springs SWUNEMNW% S10,T35N,R45E	warm F	Remarks: W	ater le	rvel lawe	red 4 ft	by trend	hing, thus	doubling	original d	lischarge;	water lise	t for irrig	ation.	5	-		2	5		Ċ.	Lamke & Moore, 1965
	springs SWMNE%NW% S10,T35N,R45E	83	100	0.)	1917			(47)	÷	(H)	20			2	-	-	3	8	5	5 7 16	5	Waring, 1965, No. 76
[148]	White Rock Springs 58,T33N,R47E	warm F	Remarks: 2	mi we	st of Re	- ck Creek	145	5	\approx	-	-	-		æ	2	3	-	-		-		Waring, 1965, No. 77
[149]	ipring NE%SW%S6,T32N,R46E	warm	Remarks: Ty	-	-	-	140			(\cdot, \cdot)		-	-	\sim	\geq		1	\sim	-	27 S		Bradherry & Associates 1964
[150]		75			Oc160	65	30	1.8	2.4	34	4.8	104	0	25	15	0.6	0.8	0.11	244	259	7.7	Sinclair, 1963a
[94]	Boowawe Geysers \$17,T31N,R48E	s	See Eureka (Count	v.																	
[151]	Buffalo Valley Hot Springs																					
	spring S6,T29N,R41E	162 1	Remarks: U Mn = 30µg/I	<0.03 I ; Pers	8µg/l, Ba	75 = 160pg inty.	:/1, W =	24 28да/1, Вт	= 62μμ/l.	268 Sb = 37µ	29 g/l, Mo =	4 ₄₆ /1, Rb	= 124µµ/	i, Cs - 151	28 144/1, As <	10,42/I, P	e < 100µ		_ 0.02µф/1	6		Wollenberg & others, 1977
	spring S6,T29N.R41F	162 1	Remarks: U Mn = 30µc/l	<0.)(l : Pers	64g/l, Ba	64 - 160да	a/1, ₩ -	25 26µg/l, Вт	= 62µµ/I,	269 Sb = 37µ	27 g/l, Mo <	1 <i>µą/</i> 1, Rb	- 133µg/l	 L, Ca = 155	28 iµz/1. As <	10µg/l, F	с <100µ	g/l, Sc <	0.02 д ę/1			Wollenberg & others, 1977
	spring S6,T29N,R411	154		<0.1	∔µp/i, Ba	84 = 135 <i>µ</i> g	:/I, W =	20 24др/1, Ва	= 70pp91,	280 Sb = 22µ	36 g/), Mo <	Iµę/I, Rb	- 135jų/	. Cs = 160	25 цр/1, Аз =	25,4e/1, t	e < 100µ	₽/1, Sc <	0.02µq/	i,		Wollenberg & others, 1977
	spring S6,T29N,R41E	149		<0.10	6 <i>µ</i> g/t, Ва	81 - 140µg		28 33پېر1, B:		277 Sb = 35µ	27 µ/I. Mo <	Гµ≱/і, Rb	= 130pg/	- 1. Cs = 160	26)jąz/1, As <	10µe/l, F	e <250µ	g/1, Sc ≤1).0 2 да/1			Wollenberg & others, 1977
	spring \$6171,T29N,R41L	warm	191 - MUTAN	-	-	-	- Der	- hing Cours	-	-	-	-	28	\geq	\geq	8		25	\mathbb{C}^{2}	17.1		Ransome, 1909b
	springs SE%S23JI29N,R41E	130		5		117	u u	30	tr	3	270	761	D	109	34	35	0	15	1032	10	\mathbb{R}	Waring, 1965, No. 78
	spring SEI4S23,T29N,R41E	120	Remarks: Li			80	0	45	4.9	250	34	813	<1	110	29	4.8		2.3	20	1530	6.5	Mariner & others, 1974
	spring SE4S23,T29N,R41E	1	Rematks: A 50 ¹¹ 19/00)	- 1 = 0.0 + -15		.7, P = 0 (volume	.02, As : 13)1 Og	- 0.01, Br + Ar = 4,	- 0.1,1 = N ₂ = 35,0	0.02, R6 CH4 = 2,	= 0.18, 0 CO ₂ = 64	e = 0.2, S	r = 2,4, F	e = 0.05,1	Vin - 0.06,	$C_{\rm H} = 0.0$	8, Hg = (.0001,δ	D(⁰ /00)	131.6,	0	Mariner & others, 1975
	spring SE%S23.T29N.R41E	174			Aug74	-	-		-				. . .	20	æ.,			10		1460	Ξ	Olmsted & others, 1973
	spring T29N,R41E	162	Remarks: U	<0.0	8 ppb; W	= 27 pp	th; Mo =	4 ppb; Sb	= 41 ppb;	263 Ba = 15	7 ppb.	÷.	-		27	\sim	15	2			2	Wollenberg & others, 1975
	spring T29N;R41E	154	Remarks: U	<0.1	4 ppb, W	- 34 pp	b; Mo <	(1 ppb; Sb	= 24 ppb;	275 Ba = 12	7 ppb.	1	17	5	24	2	5	5	2	20	5	Wellenberg & others, 1975

Identification number, name, location	Tegnp, (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
							LA	NDER	COUNTY	(continu	ued)									
spring T29N,R411.	149 B	temarks: U <	0.18 ppb;	w = 32 p	рb; Мо <	l pph; St		272 >; Ba = 13	4 ppb	-	-	-	25	-	-	-	-	-		Wollenberg & others, 1975
spring T29N,R41E	162 8	lemarks: U «		= 29 ppt	; Mo <1	ppb; Sb =	64 ppb;	264 Ba = 148	ppb	-	1	2	27		-	-		-	40	Wollenberg & others, 1975
south spring west of main hot spring	77 B	emarks: U -	1.1 ppb;\	v = 6.8 pr		_ 14 ppb: 5	b < 0.6 pj	76 pb;Ba = 1	1 ppb,		~	×	19	2	\approx	8	(-	-	Wollenberg & others, 1975
[152] Mound Springs CS7,T28N,R44E	110	1 ternarks: Cal			-	-	-	-	10000	-	-	Ξ	100	-	-	-	-	10		Waring, 1965, No. 79
[153] Hot Springs Ranch area																				
spring NE4S23,T27N,R43E	127 R	temarks; In ¹	1973 Valley of 1	40 ie Moon.		2.0	9	118	21	333		64	21 -	1.5	5	323	125	700	8.0	Mariner & others, 1974
spring CS½S23,T27N,R43E	124	450		41	îr	65	10	1	21	447	Ð	63	24		0		559	\geq	÷	Waring, 1965, No. 80
spring SW4NE44523,T27N,R43E	124	450 Remarks: Six	1950 springs she		0.02	52	7,3	116	26	428		62	21	3.9	0.8	0.6	519	825	7.9	Crosthwaite, 1963
spring S26,T27N,R43E	129	17	s 55	- 17		2			6		~	5	5	5		5	E.			Hose & Taylor, 1974
spring NE%S26,T27N,R43E	122	50	6	55	tr	64	tr		154	468	a	74	23	73	0	52	627	35 - E	-	Waring, 1965, No. 81
spring.	-	14		٣	2	66	3.9	121	-	447	\sim	63	24		1	-	2	1043	23	Miller & others, 1953, p. 44-45
[154] Chillis Hot Springs S27,T27N,R46E	102	10		2		9	223	-	5	-	-	-	3	-		53	275	17.	55	Zones, 1961b, p. 22; Waring, 1965, No. 82
spring NW4S28,T27N,R46E	72 P		12Jul65 bably at C	– trico Laka	Ranch	841	61	3	292	540	0	315	332	2	10	10	22	2330	7.8	
[155] spring NE4515,T26N,R45E	72	-	12Jul65	1.1	14979-149 14	54	18		111	396	0	95	18	2	Ξ	12	4	806	7.9	Everett & Rush, 1966
[156] James Lister well S27,T24N,R43E	102	lemarks; Thi	1918? s is a non-f	41 lowing ar	tr tesian we	64 il. Depth	tr - 15 ft. V		280 L for Jathie	793	0	74	34	\sim	0	\sim	905	\simeq		Wating, 1919
[157] spring SW\SW\6S15,T24N,R47E	hot	śmall temarks: Sev	-		5000 <u>9</u> 99	- 100 E 100 -		- 20-20		-	-	=	-	23	20	9	i en	-	23	Waring, 1965, No. 92
1581 Little Hot Springs NE4S2,T23N,R47E	1	temarks: 3.5			-		5.1-30-10-5	-	-	- 00	\sim				\mathcal{H}	÷-:	12		-	Walti Hot Springs 15-minute sheet
[159] Northern Smith Creek Valley	-				- strugs		and the second s													12 millione ander
Peterson's Mill Hot Spring NW\sNW\sS36,T20N,R40E	het	-				2	-	-	-	100	Ħ	5	5	π :	-	.	-	-	-	Mount Airy 75-minute quad
well NW34S36,T20N,R40E	85	1	30Mar64	6	5	42	20		\sim	180	В	74	19		<u>\$</u> 2	79		477	8.4	Everett & Rush, 1964
160] Southern Smith Creek Valley																				
spring S27(?),T18N,R39E	warm R	small temarks: Six	mì north c	f Smith C	reek Val	ey Hot S	prings.	121	을	228					1		121		22	Waring, 1965, No. 84
spring S11,T17N,R39E	187 R	20 cmarks: Li =		110	3	4.8	0.06	170	8.4	246	5	102	22	8.9	-	0.66	22	737	7.7	Mariner & others, 1974
springs E½526 & NW½ S25,T17N,R39E	∿boiling R y	∼123 temarks: Abo ounger alluvi	out 20 hoi am.	- springs; d	ischarge i	- rom each	is small,	– bot water	is near 50	iling; the s	– prings ap	pear to be	- associated	with rec	ent fault	s which c	ut the	×	-	Everett & Rush, 1964
spring S25,T17N,R40E	hot R	_ lemarks: No	spring show	en on Iso:	n Mourita	in 7%-mi	nute quad	; possibly	in \$25,T1	7N,R39E	2 -			25	-				122	Waring, 1965, No. 85
[161] well SW1458,T18N,R47E	71	5	0 33		5	=	1772	12		121		7	73		5	\overline{a}_{ij}	:7:5	5	7	Rush & Everett, 1964
Monitor well NE%S20,718N,847E	71	2	14Apr64	æ	$\overline{\mathbb{C}}$	62	12	36	\overline{c}	160	0.	88	43	2	52	5		579	7.8	Rush & Everett, 1964
[162] Spencer Hot Springs																				
Spencer (Spencer's) Hot Spring SE4\$13,T17N,R45E	144	6	16Sep13	34	0,2	57	18	ġ	197	646	12	52	28		0		802	2		Meinzer, 1917; Waring, 1965, No. 86

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	50 ₄ (ppm)	CI (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	5C (µmhos/em)	рH	Reference
							LA	NDER C	OUNTY	(contin	ued)									
well SE44SE445E44 S13,T17N,R45E	144	flowing	1966				-	-									2	22		Fiero, 1968
well NE%SE%S11.T17N,R45E	164	7.1							121	3		0.1	(\mathbb{Z}^{d})	57.	12.1	22	2	5 .		Rush & Schroer, 1970
Marie Streshly well SE%S13,T17N,R45E	110 R	3 emarks: Dep	th - 60 ft;	water at	had sur	ace.	5	0	-50	\overline{c}	53	179) 1	-	37.0	: 20	:30	1	-		Rush & Schroer, 1970
spring SEMS13,T17N,R45E	162	13 emarks: Li =	1973	77	-	43	9,4	200	36	672	<1	51	22	4.7	21	2,6	\sim	1180	6.5	Mariner & others, 1974
spring SE4S13,T17N,R45E	- R N	emarks: P =) 2 = 41, CH4	0.01, Br = 0 - 1, CO ₂ =		.02, Rb =	0.15, Ce	= 0.1, Sr	= 1.8, I'e	= 0.06, C	u = 0.12,	δD(⁰ /00) =	-135.8,	δ0 ¹⁸ (%00) = -1.6	01. Gas (volume ((): 0 ₂ 4	Ar = 5,	-	Mariner & others, 1975
Spencer Hof Spring SEMSEMSEM S13,T17N,R45E	hoiling R	A	17Sep73 3.2, NH4 =	79 2-8, As	= 24µg/l	51 Ba = 0.1 Cs = .90	10.2 , Sr = 0.67 Hz = .302	198 , PO ₄ <0 a/l, Nb <	34 1, Be <0 10.0, Rh	684 005, Cu 26, Sb <	0 <0.004, Pb 0.2, Se <1	47 <0.02, N 040/1, Sn	26 dn <0.01, <0.2, Ta	Zn <0.0	<0.1 , Ni < 0	.02, Cd -	800 :0.002,	1161	7,4	Sanders & Miles, 1974
well SE%S14,T17N,R45%E	117	flowing entarks: Near	1966	1.000	1 8353	-	-	10000		5	1		12		(\mathcal{T}_{i})	17.1	2	100	5	Fiero, 1968
[163] well NW4824,T16N,R44E	.84	6 emarks: Dep	1948	:	Z	3		51		\overline{a}	:75	570	520	175	19). 19)	17.	5	100	17	Fiero, 1968
[164] springs SEVS14,T16N,R45E	hot R	5 emarks: Sove	n springs; v	vater use	d for bat	hing.	5	55	2	8	1551	22	-		~					Waring, 1965, No. 87
								LINCO	DLN CO	UNTY										
the second second second second second second second second								Dantes	ALI CO											
[165] Geyser Ranch Springs area springs S1,12,13,23,T9N,R65E	65-70	4500	4Aug63	-	1	100	-		1	\sim	(75)	17		-	77.	17.5	-	80	-	Rush & Fakin, 1963
Geyser Spring T9N.R65E	68		1963	13		30	3.4	3.0	1.0	103	0	5.0	3.0	0	0.6	0	115	181	8.0	Rush & Eakin, 1963
springs	65-70	50	-				-	-	-	~	-	-	-		100	-				Waring, 1965, No. 142
[165] Hammond Ranch																				
spring \$17,T5N,R69E	84	2	1			5	2	5	22	5	270			5			2		17	Carpenter, 1951; Waring, 1965, No. 143
[167] Flatnose Ranch																				
spring SE36S34,T1N,R69E	77	400	Dec1946	20	-	30	10	4	2	162	0	44	20		+		247	1.1	-	Phoenix, 1948
spring \$34,T1N,R69E	70	100	÷	-	-		2	1		-	1	-	-	-	-	-	×			Waring, 1965, No. 144B
[168] Delmue's Springs																				
two springs NE%NW%SE% \$13.T1\$.R68E	70	200	<i>≣</i> :				-			1		10	-				÷	-		Hardman & Miller, 1948 Waring, 1965, No. 144A
[169] Bennett's (Bennett) Spring																				
spring SW557,T28,R66E	70	10									:#J)		10	(π)	-	-	×	1.77	32	Hardman & Miller, 1948; Waring, 1965, No. 144
[170] Panaca (Owl) Warm Springs																				COMPANY CONTRACTOR
Kenneth D. Lee south well SEMS32,T1S,R68E	warm R	emarks: Dep	1954 th - 75 ft.	4			9	2	22	2	120		2			-	-	155		Eakin, 1964
C. Kenneth Lee south well SESS33.T1S,R68F	76 R	emarks: Dep	1952 th - 106 ft	2	123			2	27		20						÷			Rush, 1964
spring CN%54,T2S,R68E	85		15Apr63	51	0	31	9.8	38	6.8	189	14	29	15	1.6	2.6	0.1	271	403	8,1	Rush, 1964
springs S4_T2S,R68E	85-88	2500				140					-	-	-	-	2	4	2	123	<u>i</u>	Waring, 1965, No. 145
spring CNMS4,T2S;R68E	87	3600		40	1.00	54	15	2	1	149	34	31	25				273	-	1	Phoenix, 1948

Identification number, name, location	Temp. (F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	CI (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							LIN	COLN C	OUNT	f (contin	ued)									
spring CNMS4,T2S,R68E		1		30		48	15	3	8	183	0	41	20	-	-	-	278	-	4	Phoenix, 1948
spring CN/454,T25,R68E	85-89	1800	50ct12	46	0.3	40	23	2	1	178	0	27	1.8		.01		283	(6)		Curpenter, 1915
spring CN55S4,T2S,R68E	8	emarks: (epr	m) Na + K -	- 1.83;C	a + Mg =	2.03; Cl +	SO4 - 1.	91; tritiur	s = <8 1	.u,	1 m		-	-	-	-	28		30	Mifflin, 1968
Lester Mathews well SW4S5,T2S,R68E	78 R		1949 th - 158 fr	. Tops	surface, s	andy clay.	. 18 ft. cla		nterbedd	ed sand ar	d clay:12	5 ft, sand	t and grave		-	-	9		9 4 3	Rush, 1964
Panaca LDS Church well NE457,T2S,R68E	74 B	- temarks: Dep	Dec63 ath - 135 f	-	-	-	-	1099500 1		4	4	-		-	-		24			Rush, 1964
Delmue Btos. north well SW458,T2S,R68E	75 R	lemarks: Dep	4Dec63 (th - 120 ft	feasing	perforate	61 1 74-90 i	31 ft), Clay,	sandy clay	, and gra	308 vel to bot	loni.	30	63	3800	*	$i \rightarrow i$	3		7.8	Rush, 1964
Pinche LDS Clurch well NW458,T25,R68F	warm	1	8	-)=: •:	(16)	20 _340 F	20	16	÷		-	200				25	0.65		Rush, 1964
[1] Sand Springs Valley																			220177	
Sand Spring NE4SE4SE4 S26,T2S,R55E	86	0.2	5Oct 75			36	22	6	7	357	0	25	5	1990) 1990)				609	8.0	Van Denburgh & Rusi 1974
N. J. Gunderson well SE%SE%S19,T35,R55E	83 B	- Reimarks: Dep	1963 oth – 238 f	=3 80	20	-	-		353		1							175		Van Denburgh & Rus 1974
G, C. Englemann well NW93SW935.T45,R55E	warin F	kemarks: Dep	1966 pth – 250 f	t:water s	ands at	- 185-ft;all	in allovio	m.		27				375			_	-		Van Denburgh & Rus 1974
G. C. Englemann well NW%NW%S8,T4S,R55E	wat m P	emarks: Dep	1966 pth - 250 f		25	20	121	-	100	17	12	873		121			-			Van Denburgh & Ras 1974
[2] Hiko Spring																				
10000 NEMNW445E44 S14,745,R6DE	90	5380	15Nov12	35	0	52	24	8	22	272	I)	36	11	-	0.8		315			Carpenter, 1915
spring NE%NW%SE% S14,T45,R60E	80	2400	1966	2	5				-	12	-		1				н); Н			Mittlin, 1968
spring S22,T4S,R60F	90	4000	:7/	5	53	\overline{D}	-						+	-						Waring, 1965, No. 14
spring T4S,R60E	80	2950	10Mar62	13	-	44	23	29	7.2	260	0	36	-11	0.5	1.2	-0.1		494	8.0	Fakin, 19636
springs T4S,R60E	-	1	251-ch44		2	45	26	17	-	268		24	8.9		-	(che)	(÷ (Fakin, 1963b
spring T4S,R60E	6	5	4Jun44	1	-	48	23.2	29.9		281	0	35.5	10.5	-		0.21		1		Eakin, 1963b
spting T4S,R60E	12	-	-	12	<u>ii</u> :	52.1	23.9	22.0		285		36,1	11.0		-	-		1	1	Lukin, 1966
73] Caliente Hot Springs																				
springs SW34S5,T4S,R67E	112	0 Remarks: Al		126	-	33	7	3	84	278	0	4,5	12	=	4		430			Phoemy, 1948a; Waring, 1965, No. 14
Wallis Health well NW4S8,T4S,R67E	145	− Remarks: Li Cr <0.02, Ag	4Feb74 - 0.169, NB <0.02, As	i4 <0.2.	PO4 = 0.	41 1, As = 0 , Cs = 0.4	4,4 001_Ba = 0,Hg <0.	40 0.1, Be < Spell, Ni =	11 0.005, C 0.02, R	205 a <0.02,1 b = 0.061	0 95 <0.02, 5 55 <0.1.	3,3 Mn = 0.0 Se <1.0p	7 1. Sr = 0.2: 4/1. Sn = .0	$z_0 \neq 0$.	5.6 152, Ni	- 0.02. C	313 d = 0,00		7.8	Sanders & Miles, 197
Caliente Public Utility No. 4 well SW4S5.T4S.R67E	104	Remarks: Dep	pth - 130 ((#3	×	-			-		7					Rush, 1964
City of Caliente North well NEWS? T4S,R67E	107	Remarks: De		84 ft.	Э	-29	10	<i>11</i>	790	232	7	26	20				352	2		Phoenis, 1948
Caliente Mineral Spring NE/158,T45,R67F	118		45eb74 - 0.18 NH	91 < < 0.2.1	<0.01 204 = 0.2 <0.5µg/l,	. Be <0.0	6.2 05, Cu ≪ , Rb = .05	46).02, Fb < \$4, Sb <0	15 0.02, Mn 1, Sg <1.	239 = 0.02, S 0µg/1, So	0 r = 0.09, Z <0.05.	-42,1 n = 1,42	12 Ni - 0.02	1.63 Cd = 0.0	4.8 09,Ct 4	0.02, Ag	380 <.02, A	518 s = 0.1 <i>pp1</i> 1,	8,2	Sanders & Miles, 1974

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
							LIN	COLN	COUNTY	l' (contin	ued)									
well NEMS8,T4S,R67E 174] Crystal Springs	135 F	temarks: Nea	ur springs.	5	5	õ	17.1	7.0	7 2	⁰⁰).77(1973	NZ:	157	121	85)	151	53		Smith, 1958, p. 32
spring CNE4S10,T55,R60E	81	1	15Apr63	31	-	45.0	23.6	23.0	5.L	262	0	26.9	8.2	0.6	1.2	0,7	277	÷.	8.0	Eakin, 1963b
spring \$10,T55,R6DE	90	9000	16 (Sec.	2	-	-	-			120	5		-	24		-		÷	4	Waring, 1965, No. 148
spring CNE4S10,T5S,R60E	82	4480	10Mar62	31	-	46.2	22.2	23.9	5.5	242	0	34.0	9.9	2.9	0.6	0.04	+	1	7.2	Eakin, 1963b
spring \$10,T\$\$,R60E	10		4Jun44	÷	Ξ	46	23.9	25.3	1	268	0	34	8.9	93 4 3	29	0.05	+	488	-	Eakin, 1963b
spring S10,TSS,R60E	1	1	25Apr44	Ξ	-	44	24,3	16,4	-	256	0	22.1	8,9	-		-	(-)	491		Eakin, 1963b
spring \$10,T3\$,R60E	3	25	16Nov12	-	Ξ	53.0	23.0	19.1		261	$\frac{1}{2}$	37	11		6 5 2	17	575	577	-	Eakin, 1963b
spring \$10,T5S,R60E	~	10	11 Mar 35		1	55	23.0	37	5	26.4	÷	13	$\tau.0$		5.00			671		Eakin, 1963b
spring CNE%S10,T5S,R60E	82	5300			5	2	171		75			-		10			20	79		Mifflin, 1968
spring \$10,T5S,R60E	81	10	15 Apr 63	28	0	45	23	23	5.2	272	1	27	8	0.5	1.1	0.2	295	484	8.4	Cohen, 1966
spring \$10,15\$,R60E	90	2680	16Nov12	26	5	53	23	19	5	261	0	37	11		625	0,9	306	15	-	Hardman & Miller, 193
[5] Ash (Alamo) Springs area																				
Little Ash Spring SE4536,T5S,R60E		9800 temarks: Li = tg <.02, As =											21 0, Ni = 0.	8.7 02. Cd = (0.7 0.005. Ci	<0.02.	332 PO ₄ <0	497 I.	7.6	Sanders & Miles, 1974
spring \$36,T\$\$,R60E	2	020000000000000000000000000000000000000	25 Apr 44	-	=	45.0	18.1	20.9	-	256	0	43.8	10.5		1	0.37	20	-480	-	Eakin, 1963b
spring 536,T5S,R60E	-	-	11 Mar 35	-		53.6	10.0	47.2	-	264	-	40.7	13.6	-	14	1	-	<i>20</i>	6.4	Fakin, 1963b
spring TSS.R60F	90	S	16Nav12	34	7.5	49	13	59	151	254	0	46	14				303		= }	Hardman & Miller, 193
springs NW/SNW/SNW/S S6.T6S.R61L	8.8	8690	9Mar62	31		39	18	32	5.8	231	0	34	9,7	0.5	1.3	0.1	286	443	8.1	Takin, 1963b
spring NW4NW4NW4 S6.T6S.R61E	90-97	9000	8	5	7.1			1										121	3.	Waring, 1965, No. 149
springs NWWNW%\$6,T65;R61E	90 R	7630 emarks: (epr	23May66 n) N2 * K -	1.51, Ca	+ Mp = 3	.08, CI +	SO4 = 1 (5											31	Mifflin, 1968
spring S18,T6S,R61F	warm R	emarks: Thr	26Oct12 ce miles sou	24 th southe	0.2 ast of ma	66 in Ash S	24 prings.)	3	278	0	0.48	1.0	828	0.4	22	263	- 14 C	-	Carpenter, 1915
76] Ash Creek Spring NWGNEGS1,T12S,R581.	72	1.9			=	=	-		<i>i</i> .	8			1			140	2	510	50	Hughes, 1966
								LYC	N COU	NTY										
77] Hazen area (Patua Hot Springs)																				
springs (4) \$18.T20N,R26E	warm		211 ⁻ eb30			55	0	550	063	67		41	865			-		10	-	Miller, Hardman & Mason, 1953
Magma Power Co. Hazen No. 1 well SW3S18(3),720N,R26E	270 R	emarks: Geo	- othermal we	ll; depth	- 750 ft.	÷	-	÷	(c)	9	1	-	-		-					Koenig, 1970
spring SWMS18,T20N,R26E		emarks: Li =	1.6, Al= 0		0.02 = 0.23, C		1.5 Mn = 0.06		38 1, Hg = 0	001 0001, 80	(%oo) =	400 -121.5,δ0	820) ^{1 8} (%00)	4.2 = -13.30	Gas Ive	5.6 Jume (%)	: O ₂ * A1	3530 - 14,	2.1	Mariner & others, 1975

	Identification number, name, location	Ternp. (F)	Discharge (gpm)	Date	SiO ₁ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO ₃ (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/em)	pН	Reference
								1	YON C	OUNTY	(continu	ied)									
	Magma Power Co. Hazen No. 1(?) well S18(?),T20N,R26E	275+ Ri	emarks: Ge	1962 othernial we	di.	1	÷	10	2					-				13	E.		B. C. McCabe, writte communication
178)	Sutro Tunnel NEMNE45E4 S2,T16N,R21E	83 Ri		16Apr59 = 1.2; PO ₄	34 = 0,00,	3.3	267	53	67	4.6	312	0	732	8.2	0.6	a	6.63	1320	1650	7.6	Glancy & Katzer, 15
	Sutro Tunnel NEMNE45E4 S2,T16N,R21E	83 R		1Jun70 ter drains fr	om the Co	- mstock	mining d	istrict, Sto	ntey Cou	ity, –	27	87) 1		577					11 B4	37) 190	Glancy & Katzer, 19
179	well SE4SW4NE4 S12,T16N,R21E	95 Re		113ul72 pth – 265 ft		-	120	0		170	49	0	\$70	30	-				1280	7.8	Glancy & Katzer, 19
	well NW45E4NW4 S7,T16N,R22E	80 Ro	emarks: Dej	6Oct67 pth - 100 ft	-	0.13	102	1		42	149	0	192	-21		0	-	583	-	7.7	Glancy & Katzer, 19
181]	Wabuska-Hot Springs																				
	sptings S11,14,15,16,23, T15N,R25E	138-162	8				-	-		(F)			575	1	570	-	20	57		31	Waring, 1965, No. 6
	Magma Power Co. Wabuska No. 1-C well	R	emarks: Geo	othermal we	u; As = 0.	0.02 (05, Cu =	38 0.06	0		384	61	10	760	507?	9.1		(4)	1279	19	-	unpub. analysis, Ne Div. of Health
	Magma Power Co. Wabuxka No. 2 well	- R	- emarks: Geo	othermal we		0.02 045,Cu	38 = 0.02.	75		379	66	12	740	50	9.2			1231	12	8.8	unpub. analysis, Ne Div. of Health
	Magma Power Co. Wabuska No. 3 well NWWSE4S15,T15N,R25E	222 R4		15Oct59 othermal we		0.01 - 2223 i	37 11 flowing	8.7	276	12	80	92) (566	45	7.ú	0	1.0	1090	1490	8.0	Huxel, 1969
	Magma Power Co. Wabuska No. 3 well	R	emarks: Geo	othermal we	u -		=	=			2	15	-	10		3	-	1330	-	2	Dennis Trexler, write communication, 19
	Magma Power Co. Wabuska No. 3 well NW4SE45E5 S16,T15N,R25E	227 RG	emarks: Geo	ethermal we	0; depth -	0.02 2223 i		05, Cu =)	0.03.	183	73	6	760	52	9,3			1279			unpub. analysis, Ne Div. of Health
	Magma Power Co. well NW4SW4S15,T15N,R25E	207	400	15Oct59	109	0.06	40	1.0	313	13	52	12	642	49	8,2	0	1.0	1210	1630		Huxel, 1969
	Wabuska well NW\SW\S15,T15N,R25E	boiling Re Mi	emarks: PO.	10Mar74 4 = 0.2, NH Ni = .08, Pb	= 0.5. A	41. 0.02 g 1 = 0.15	46 , As = 1.1 2, Sb <0.	.10 - дg/1, Ва = 1, Se <1.6	.14. Be -	13.8 007, Bi = 0.05, Sr	49 <0.1,Cd = 0.250,	12 <0.01.Cr Zn = 1.03	658 <0.02,C	54 s = 1.16, C		<0.1 Hg <0.5j	æ/l, 1.i -	1250 0.302,	1656	8.6	Sanders & Miles, 19
	Magina Power Co. well SEMSEMS16,T15N,R25E	207	400	15Oct59	99	0.02	39	0	291	12	68	2	596	46	7,7	0	1.0	1130	1580	8.3	Huxel, 1969
	Magina Power Co, well SEMS16,T15N,R25E	207	~	1973	115	-	38	0.2	277	15	70	-	580	46	370			7	1550		Mariner & others, I
	spring SE%S16,T15N,R25E	201 Re	emarks: Al	= 0.017, Rb	110 = 0.09.		39	49.1	300	14	74	17.	620	55	8.2		10		1610		Marinez & others, I
	well NWMNEMS14,T15N,R25E	86 R:		17Feb66 pth - 145 D	, flowing.	2	39	1.6	2	73	72	2523 1725	552	45	-				1480		Huxel, 1969
	well NE%SW%S21,T15N,R25E	84 Re		16Feb66 pth - 400 ft	25		4.6	0.6	1	24	187	8	80	24		27	5	27	560		Huxel, 1969
	well SEMNEMS28,T15N,R25E	86 Re	15 ematks: Dej	1966 pth - 1000	ft, flowing	; well d	7.2 rilled in 1	1.7 890's.	1	29	159		128	29		1	-	and the second	652		Huxel, 1969
182]	well NE%NE%NW% S1.T14N.R25E	70 Re	emarks: Dej	2Aug66 pth - 364 ft	;4 mi sou	0.05 theast o	5 f Wabusk	1 a.	114	91	84		110	23	2	-		333	1	7.9	CWRR, 1973
183]	Artesia Lake area Ambassador well NW4SW4525,T13N,R23E	82		6Apr55 pth - 540 ft			2.0	0.2 H-S = c	69 B		146	4 11071 well	23	6,2	1.0	0.2 at denth			305	8.5	Scott & Barker, 196

Identification number, name, location		scharge gpm)	Date	SiO2 (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (Janhos/cm)	pН	Reference
							I	YON CO	UNTY	continue	ed)									
Ambassador well NW%SW%S25,T13N,R23E	82 Rema		133un50 th - 540 ft	-86 ; flowing,	1	(#):	1	0	71	162	Ø	22	7	1.0	0.2	0.16	2	307		Loeltz & Eakin, 1953
well SW4SE4527,T13N,R23E	70 Rema		24May50 th – 230 ft	, flowing	-	÷.	Ξ.		-	5	1	-	12			-			5	Loeltz & Eakin, 1953
well SE%SE%S27,T13N,R23E	73 Rema		24May50 th - 170 R	; flowing	.00	200			(π)	5				17		15	52	076	5	Loeltz & Fakin, 1953
well SE4SE4S27,T13N,R23E	76 Rema		24May50. th - 155 ft	, flowing		100	\overline{a}		100			-		17	2	3	73	-	12	Loeltz & Eakin, 1953
spring NE%S34,T13N,R23E	warm	-	5	100	120	100	5	25		\sim		17	5	67			12		-	Moore, 1969
spring SW%S34,T13N,R23E	100		5		172	153	22	7.0	520	53	. 72		1	52	2		2	145	-	Moore, 1969
well SWMNW4S10,T12N,R23E	70 Rema		210ct48 th - 59 ft.	172	(=);	(5) (5)	5	50	50		20				-	-	2		1	Loeltz & Eakin, 1953
[184] Hind's (Nevada) Hot Springs springs SW4S16 & NW4 S21,T12N,R23E	144	550	-	61	-	(2)	2) 3	103	D	28	145	18	2.7	D	0.04	÷	495	2	Loeltz & Eakin, 1953
spring SE%S16,T12N,R23E	142 Rem:	53 urks: Li =	1973 0.08	52		4.5	0.01	102	2.5	54	7	169	17	3.1	-	0.19	÷	509	8.7	Mariner & others, 1974
springs	60-143	550	The second se				2	2	223	1	-	-	-	1	-	346	9		-	Waring, 1965, No. 61
springs SW4S16,T12N,R23E	12	-	16Apr32	-	-	-	=	125	-	56	-	192	18	9 0 0	(4))	-	-	-	1	Miller, Hardman & Mason, 1953
springs SW4S16,T12N,R23E	24		16Apr32	-	-	41	-	96		105	40	90	21	-	-		\sim		10	Miller, Hardman & Mason, 1953
springs SW4S16,T12N,R23E	12	20	15Jun50			5	Ξ	101		2	27	145	18			0.2		5757	1	Miller, Hardman & Mason, 1953
spring	() 4 .)	-3	24Aug73	-	-	-	-	÷	(-)	÷	1	- 1	-	1			1286			Dennis Trexler, written communication, 1974
spring CN%521,T12N,R23E	- Rem	arks: Just	south of H	ind's Hol	Springs	100	-	E			171	(π)	-	2			1	1		Moore, 1969
spring NE%SE%S28,T12N,R23E			26Mar46	1990) 1990)	-	55	8	62	170	L67	6	0	12	171		7	Π.		2	Miller, Hardman & Mason, 1953
spring NEMSWMS28,T12N,R23E		75	26Mar46			79	21	76		227	15	0	32	12	20	E.	5	-	~	Miller, Hardman & Mason, 1953
[185] spring CW%S34,T12N,R25E	hot		$\overline{\alpha}$	875	1			\overline{a}	-	Ξ			170	3 3	8	÷.	1	22		Yerington 15-minute qua
[186] Wilson Hot Springs																				where the state of the second state in
springs SE%SW%\$34,T11N,R25E	warm	0	1969	-	-	-		-		-	-	-		1.00	-		-	-		Alvin McLane, personal communication
[187] Wellington area	115, 514												- 20		0.4	1.0		581		Loeltz & Eakin, 1953
well NW4SE452,T10N,R23E	117 Rem	arks: Dep	2Feb42 nh - 200 f		mperati			reportedly						3.5 wimming		1.0			-	
well NW4SE44S2,T10N,R23E	warm Rem		19Mar37 rth - 65 R ;	55 Fe + Al =	= u.	108	28		38	293	0	175	32		-	373	579	3 4 3	-	Loeltz & Fakin, 1953
well SE%SE%S2,T10N,R23E	hot Rem	arks: Dep	nlı — 217 f	u	-	-	3		200	1	-		1	-	-	-			-	Loeltz & Eakin, 1953
well SE%SE%S2,T10N,R23E	warin Rem	arks: Dep	Dec47 nh - 40 ft.			2389 00	8 1928	-	999) 1993		29) 201	3 7 33 6493	(***) 504			15	12 1259			Loeltz & Eakin, 1953
well NEWNEWS11,T10N,R23E	warm Rem		2Feb42 ath = 163 f	63 t. Al * Fe	= tr.	61	17		65	281	0	109	13			7.5	450	3.33 Area	177	Loeltz & Fakin, 1953
well NE44NW4S12,T10N,R23E	warm Rem	uks: Dej	Jul35 hth - 82 ft	49 Fe + Al -	- tr.	33	10		36	8	0	41	29	154		173) 	350	(m) (200		Loeltz & Fakin, 1953
well NW%NW%S12,T10N,R23E	warm Rem		27Dec49 oth - 65 ft	573	353			6		6		57.5	:72		-	-	-		-	Loeltz & Eakin, 1953

Identification number, name, location	Temp. (°F)	Discharg (gpm)	e Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	CI (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
								LYON C	OUNTY	(continu	ed)									
[183] springs SWGSE3S4,T7N,R27E	110		- 2000 (rad	liometric	analysis).	÷.	1	980) 1977-00			-		-	-	-			2	121	Daxis, 1954; Waring, 1965, No. 109
[189] Double Spring								MINE	RALCO	DUNTY										
spring \$25,T13N,R29E	warm	6	21 3	1.2	***	2		-	5 5 .	2				1		32	-	-		Waring, 1965, No. 108
[190] Dead Horse Wells well (dry)	hot		530151			48	13	70		0.0	1027	52.5	NG BL							
S21,T12N,R32E						40	1.2			88	10	190	43		-			=		Miller, Hardman & Mason, 1953
[191] Wedell Springs spring (no. 1) SW/4S7.T12N.R34E	129-144) 181'eb34	-		16	0	262	383	210	14	315	78		227	1.6	-	1290		Fakin, 1962c
spring (no. 2)	1.44		nere are 2 m.) 20Sep35	an spring	s; water u	50	13	215		220		254	94			245.5		1370		
SW%S7.T12N.R34E 1921 Hawthorne area																	2	LIM		Eakin, 1962c; Waring, 1965, No. 113
Naval Ammunition Depot well No. 1 NEWNEWS18,T8N,R30E	124	5		1	1075		æ	×	-	-	143	-	-		(2)	46	8	-		unpublished data.
Naval Ammunifion Depot well No. 5 SW4SE4518,T8N,R3DE	[14	ŧ				-	÷.		-	μ.	1.44	123		21		12/1	2	-	-	U. S. Navy unpublished data,
Naval Ammunition Depai well No. 2 SEMS26,T8N,R30E	75 R	emarks: 69	15Feb66 Faccording	r to L S	- Navy dat	78	14	2	05	129	0	436	98	3	-	5		1380	8.0	U. S. Navy Everett & Rush, 1967
Naval Ammunition Depot well No. 2 SE4S26,T8N,R30E	-		11Dec52 pth - 423 fi	59	0.07	88	п	214	8.H	134	0	455	98	1.5	0.3	2.1	1000	1430	7.7	Everett & Rush, 1967
City of Hawthorne well SW%S27,T8N,R30E	80	- 2	1May57 pth - 602 fi	25	0.01 Main 0	82 PO - P	14	148	6.4	82	0	403	79	0.7	0.2	:27	810	1180	7.4	Scott & Barker, 1962
City of Hawthorne well SW/4527,T8N,R30E	100	-	1976?	-		-	- Ka <0,1	дцаў1, 0 з —	- 1.8µg/I. -	÷.	1	12	-	2	2	12	8		5	unpublished data,
well S33,T8N,R30E	91	-	18Feb72	30	0,1	91	17	13	15	137	9	307	19	0.55	1.5	1	620	61 - S		U. S. Navy CWRR, 1973
Naval Ammunition Depot well No. 3 NW4532,T8N,R31E	100 Re	emarks: De	15Feb66 pth – 452 R	; 93 [°] F ao	cording to	33 5 U. S. Ni	I0 ivy data	2	24	100	0	372	101	2	알	i.		1340	7.9	Everett & Rush, 1967
Naval Ammunition Depat well No. 3 NW4S32,T8N,R31E	-	-	11Dec52 pth - 452 ft	25	0.01	82	14	149	6.4	82	0	403	79	0.7	0.2	~	810	1180	7,4	Everett & Rush, 1967
Naval Ammunition Depot well No. 4 NE%SW4S2,T7N,R30E	74			2	1		125	823	2		-		5	=	-	#	-		-	unpublished data,
193] Sodaville (Soda) Springs area																				U.S. Navy
spring SE4S29,T6N,R35E	95 Re	26 marks-1 i -	1973	46		40	3.3	305	16	112	<1	597	87	7.4	$\widehat{\mathbb{T}}$	2.3	20	1640	7.6	Mariner & others, 1974
springs (south group) SW4/SW4/SE4 S29,T6N,R35E	86		0.65, Rb = 25May68	-	- 0.1, Fe	44	а = 0,08 3	- aDr?oo. 	303 303	119	o) = -16. 0	13. 561	70	25	2	-24.5 		1900	8.0	Van Denburgh & Glancy 1970
springs S%S29,T6N,R35E	80-101	100	-	-	-	2		140	4	-45	2		2			2		-		Waring, 1965, No. 110
94] U. S. Bureau of Land Management well NE4519,T5N,R31E	110 Re	maiks: Den	8Dec52	37	-	6.0	0.9	11	6	47	9	109	64	4.8	0.1		370	575		Everett & Rush, 1967
95] U. S. Bureau of Land Management No. 2 well NE%SW%S7,T3N,R31E	7.8	-	20May68 2th = 64 ft; (-	– iter stock	26 ; water le	8 vel 20.8 i	i below c	17 asing top.	[44	0	23	н		125			360	7.7	Van Denburgh & Glancy, 1970

Η

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							MIN	ERAL C	OUNTY	(contin	ued)									
196] well 532,T2N,R33E	113		7 Jun 60	1	0.02	46	16	6	7	150	3	81	59	8	42		316	17	8.0	CWRR, 1973
								NY	E COUN	TY										
197] McLeod's Ranch Spring NE%SW%S34,T14N,R43E	hot	small	-	-			370	15	1		17	5	5	÷	2	2	-	-	-	Fiero, 1968; Waring, 1965, No, 114
198] Charnock (Big Blue) Springs S16,T13N,R44E	80	450	250	100	(\mathbf{z})	-			12	-	17	5	-	-		-	-	-	1	Waring, 1965, No. 116
Charnock (Big Blue) Springs \$16,T13N,R44E		450	1913	177.0	1		-			0.73	\sim			-	-	-	-		-	Meinzer, 1917
[199] Big Blue ("A") Spring NW4SE4529,T13N,R44E	79	250	E	-				12	5	87 C	-	-	-		-	1	-	-	-	Fjero, 1968
200] Diana's Punch Bowl-Pott's Ran	ich area																			W
spring 5W%NW%S1,T14N,R47E	warm	- Remarks: Sev	eral springs	; water us	ed locally		_	-		-		-	æ	-	2	-	-		-	Waring, 1965, No. 119
Pott's Ranch Spring SE%NE%S2,T14N,R47E	12	450	15Apr64	-	-	-	2	242	-	_	-	-	9 192	8 838	1	12.22	7	-		Lamké & Moore, 1965
Pott's Ranch Hot Spring NE%S2,T14N,R47E	113	33 Remarks: Li •	1973 0.3.	36	9	52	11	47	13	249	<1	57	10	2.0	0	0.17		561	0.0	Mariner & others, 1974 Mariner & others, 1975
spring NE%\$2,T14N,R47E		 Remarks: N = Gas (volume 9	0.25, P = 0	.01, As =	0.01, Br	= 0.05,1	- 0.006,	RЬ = 0.06	, Sr = 0.9	0, Mn = 0	.02, Cu =	0.01, Hg	<0.0001,8	D(%00)	= -127.5	5,60 ¹⁸ (*	(oo) = -	-16.28	5	Majiner & others, 1975
spring SEMSEMNEM S2.T14N.R47E	1		15 Apr64	-	-	-		-	90 (-	-	1	ž	2	1	15	7.5	121	2	Fiero, 1968
spring SEMS22.T14N,R47E	138	– Remárks: Li =	1973 0.4. Samp	46 le probab	ly from ;	50 pool in D	11 iana's Pur	55 sch BowL	15	277	<1	59	8	2.8	1	0.21	2	605	7_1	Mariner & others, 1974
spaing											0.000	million .	134.9 /	018 m		24	÷0		2	Mariner & others, 1975
SE%S22,T14N,R47E spring	124	– Remarks: P – 53 Remarks: Li	1973	46	-	47	11	57	15	270	.0.0001,1 ≪1	59	B	2.8	-	0.23	71	589	6.7	Mariner & others, 1974
SE%S22,T14N,R47E Diana's (Devil's) Punch Bowl	hot		15Apr64		-	apring Jus	-	-		-	149	24	-	-	-	-	~	1.75	æ	Lamke & Moore, 1965
SW45E4S22,T14N,R47E spring		1 1895 2 2	1000000 2	-21	2	12	2	12	-	-			(e.)	-	3	-	-	:23		Waring, 1965, No. 120 Diana's Punch Bowl
NW%NE%S22,T14N,R47E																				15-minute quad
Diana's (Devil's) Punch Bowl SW4SW%S22,T14N,R47E	134	202	18Dec66	5			10	13	-	2	1		-	200	100		1			Fiero, 1968
Diana's (Devil's) Punch Bowl SW%SW%SE% S22,T14N,R47E	-	900	7	35		2	2	5	2		22		12	1		4	9	5-3		Lamke & Moore, 1965
[201] Gabbs area																				10.0010-22220
well NW4528,T13N,R36E	129	Remarks: De	nth - 296	n. –			12	8		-		-	141	(m)	+	- 	2			Eakin, 1962b
well NW4522,T12N,R36E	70	Remarks: Do	oth - 285	n.	23	12	÷	<u> </u>		-	-		-		+		2	575		Eakin, 1962b
well NW%\$27,T12N,R36E	98		57-57-597T		242		9	-	-	-	-	-	÷.		2	1	ð			Eakin, 1962b
well NWMS27,T12N,R36E	118	– Remarks: De		n. –	-	1	-	-	+	9		+		1	-		2		3	Eakin, 1962b
well NW34S27,T12N,R36E	135	– Remarks: De	pth - 457	n.	243	-	24	æ	-	÷	1			-		-		121	273	Eakin, 1962b Eakin, 1962b
well SE%S28,T12N,R36E	140	- Remarks: De	pth - 625	ft.	-	. 16 5		3		्त	-	1	(73)	=	1		55	1		Eakin, 19020

Identification number, name, location	Temp, (F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (conhos/em)	pН	Reference
							1	NYE CO	UNTY (continue	d)									
well SE34S28,T12N,R36E	155 R	emarks: Dep	nth - 325 f		8	÷	-	-	-	-	-	-	-	1	-	-			-	Eakin, 1962b
well SE4528,T12N,R36E	145 R	emarks: Dep	nth — 250 fr			-	-	9 1	-	9		-	-	-	+	1.00		÷.	-	Eakin, 1962b
well SE%\$33,T12N,R36E	125 R	emarks: Dep		00	=		24	20		-	-	-	\sim	-	-	+	+	-		Eakin, 1962b
02] Duckwater		19																		
Big Warm Spring SWANEMNWA S32,T13N,R56E	91	5828	16Apr63		-	62	22	28	6.5	321	0	47	7	0.6	0.0		358	587	1	Van Denburgh & Ry 1974
Big Warm Spring SE4NW4832,T13N,R56E	90 R	6300 emarks: (<u>ep</u> r	1912 n) Na + K -	2.96; C	n + Mg =	3.54;CI +	SO4 = 2.	02; trition	n ≤7 T. U	- 121 -	(9))	-				983	2	. e		Mifflin, 1968
Big Warm Spring NWWSEWNW3 S32,T13N,R56E	90	7284	E.	00) (10)			\sim	2	1942) 1947)	ж.	-	-	-	9	-	-	-	243	-	Eakin & others, 1951
Big Warm (Duckwater) Spring NE44NW4532,T13N,R56E	warm		2		14	3 4 3	-	-	4	-	-	(1)	-	-	121		2		1	Waring, 1965, No. 1
Big Warm (Duckwater) Spring: NE/ANW/4532,T13N,R56E	-	6290	1916		-		-	-	4	=	+	-	Ξ.	20 I	-	4	-	-	-	Fulton & Smith, 191
spring NW4SE45NW46 S32,T13N,R56E	93	-	21Jun67	25	0.06	62	22	28	6.5	321	D	47	8.6	0.6	<0.10	0.12	380	587	8.0	unpublished data, U
Little Warm Spring NW/4NE/4S5,T12N,RS6E	90 Re	300 cmarks: (epu	12Nov66 n) Na + K =	1.42:Ca	+ Mg = -	4.80;CI+	- 50 ₄ = 1.3			-	121	-			-	2			č.	Mifflin, 1968
Little Warm Spring CN%S5,T12N,R56E	warm	-	익		-	-	-	-		2	1	2	-	-	-	54	E.	-	-	Eakin & others, 195
Little Warm Spring NW%NE%S5,T12N,R56E	90	300	12Nov66	-	191		-	-	-		-	2	2	-	14	14	Э.		-	Fiero, 1968
spring NW4NE485,T12N,R56E	90	: (#) 33	7Aug67	34	0.02	\$7	25	40	7.3	240	0	27	81	0.4	<0.10	0.11	380	\$35	8.2	unpublished data, U
3] spring SEMSEMS24,T12N,R46E	hot Re	0 marks: Tufa	, mound; in	frased im	agery inc	ficates sha	illow ther	mal groun	d water,	-		-	98	-	-	34	×	16	4	Fiero, 1968
4] Darrough's Hot Springs area		122220	129303221	022		8572														
S7,TIIN,R43E		omarks: Al =); PO ₄ =			;U ~ <0.		2.4	112	24	40	12	15	0	0.27	367	472		Scott & Barker, 196
spring \$7,T11N,R43E	198	150+	30Sep13	88	tr	13	5	8	0	102	31	60	15	3	a	17-17 17-17	382	353	3	Meinzer, 1917
SEUS7,TIIN,R43E	180-198	600	-				1		-				2	2		1	2			Fiero, 1968
spring \$7,T11N,R43E	207	200	-		-		-		-			1	2	22		ä	2			Koenig, 1970; Waring, 1965, No. 1 1187
Darrough Ranch well SE%S7,T11N,R43E	holling Re	1400 marks: Dep		t; boiling	water; fl	- lew contro	olled by v	abe.	17.2	57	1 7 -0	25	27	27	5	5	$\overline{(2)}$	174	51	Rush & Schroer, 197
spring \$8,T11N,R43E	203 Re	92 tmarks: Li -	1973 0.3.	98		1.3	0,1	110	2.6	146	3	53	12	14		0.22	5	479	8.3	Mariner & others, 19
S8,T11N,R43E	Re	emarks: N =	0.13, P = 0	02. As +	0.06, Br	- 0.04, 1	- 0.009, 1	tb = 0.03,	Sr = 0.06	. Hg = 0.0			8.8. 5028	(%00) =	-15.30		-		11	Mariner & others, 19
Darrough Ranch well SW%S8,T11N,R43E	hot Re	4 marks: Dep	th - 55 ft;	- Iowing S	0°F wate	rt. The ho	t water w	as cement	ed off at	55 ft.		1	2	-	14		2	-	G.	Rush & Schroer, 197
steam well S8,T11N,R43E	201		17Sep73		125	1.4	0.1	110	2.9	165	3	55	12	15	2	0,24	<u></u>	499	8.3	Mariner & others, 19
well SW4SW45W4 S8.T11N,R43E	boiling? Re Cr	20-30 emarks: Li = <0.04, Ag <	17Sep73 0.7, NH ₄ < <.004, Bi <	0.1, PO4	0.06 = 0.9, A <0.002,	9 5 = 0.013 Cr <0.04	(#/1, Ba <	111 0.01, Be - Hg = .35g	2.8 <0.005,0 m/l,Nb <	76.3 u <0.004	44 . Pb <0.0 06, Sb	49 2, Mn <0 <.2, Se <	15 01, Sr = 0 1.0µp/1, Sr	16 04, Zn = 1 < 0.02, 1	<0.1 0.03, Ni Ta <5.0.	<0.02,0	390 3 <0.00	488 12.	9.3	Sanders & Miles, 197

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/em)	pН	Reference
							1	NYE CO	UNTY (continue	d)									
Magma Power Co. (and associates) well SEMSEMSEM S7,T11N,R43E	265 R	– temarks: Dep	1962 nh - 812 f	t; very lar	ge flow o	r hot wat	er, minot	steam.	-	2		-	-	-	-	-	-		-	Koenig, 1970
Magma Power Co. (and associates) well SEMSEMSEM S7.(T11N.R43E	214	1145	2	106	673	12	5	~		2		48	14	20		0.2	370	100	i t	U. S. Bureau of Rc- clamation, 1972, table
205] spring on south Mosquito Creek Ranch SEMNE4S6.T11N.R47E	95	15	17Mar67	1			÷	25	3	2					-		5	152	а,	Fiero, 1968
206] Little Fish Lake Valley																				
Fish Springs NEWNWWNE% S7,T11N,R50E	warm R	emarks: Sev	eral springs,	water us	ed locally	i ta			-	-	-	5	2	9	9	9		140	×	Waring, 1965, No. 121
Warm Spring SW%SE%SE% S14,T10N,R49E	108		14Oct67	-	-	-			-		-	9	12	1		a		-	2	Fiero, 1968
Upper Warm Spring SEWNEMSEM \$14,T10N,R49E	104	27	5	4	1.		2		-			či.	1	2			-	201	÷	Fiero, 1968
spring SEMSEMS14,TION,R49E	105 R Si	- emarks: CO ₁ e <0.01; Mn.	3A ug67 = 2,1 ; PO, Ni, Ag, Zr	21 (<0.01) each <0.	0.007 As = 0.04 000; Cu <	Ba = 0.1	12 6 ; Mp = 1 nples tak	12 0.006 ; Sr en 10 Ma	4.2 = 0.22; V y & 22 Ju	- 166 = 0.012; . n 67 gave	0 0.008 – 0.008 similar re	38 (; Li = 0. sults)	3.7 01;Co, Be, 1	0.4 ¹ 6. Ti cao	0.10 h <0.00	0.065 2; Cd <0	267 1.02;	342	8.1	unpublished data, USG
test hole UCE-10 NE%NE%SW% S22,T10N,R49E	118 R <	- lemarks: Dep :0.002; Cd <	3A0g67 th - 2963 0.02; V <0	ft.CO2 =	0.15 4.0; PO ₄ ples take	= 0.01;1	11 3a = 0.13 67 gave :	17 ; Mn = 0.) similar ret	025: Ma =	158 0.003; Sr	0 = 0.38; A	64 J = 0.12	5,8 Be, Bi, Ni,	0.4 Ag each -	<0.1 :0.009;0	0.045 No. Pb. C		391 h	7,8	unpublished data, USG
207] Railroad Valley							201 7 /1990													
well SEMSEMNEM S34,T9N,R57E	hot R	emarks: Pro	1Apr74 bably Texo	ta Oil Co.		680 rings Unit	0 : No. 1-3-		1000 8694 fee	51 t deep.	0	1800	17000	10	Ċ.):=	-	50100	7.2	Van Denburgh & Rush, 1974
Lock's (Lockes) Stockyard (Hay Corral) Spring NWMNW4S14,T8N,R55E	93-99	2000	÷	-	-		Ξ	± 2	-	÷	(e);	-	2		9	<u>(</u> =	2	(47)	÷	Waring, 1965, No. 126
Lackes Stockyard (Hay Corral) Spring NW4NW4514,78N,R55E	93 R	425 emarks: tepi	12Nav66 n) N8 + K =	= 2.55; Ca	+ Mg = 4	.74:CI+		57; tritiu	- m <7 T.1	-	120	9	-	52	5	1	э.		÷	Mittlin, 1968
Lockes Stockyard (Hay Corral) Spring NW\4NW\4S14,T8N,R55E	93	600	7Feb34	727	220	127	3	E		2			2	<u>6</u>		2		227	2	Fakin & others, 1951
Lockes North Spring NW\6514,T8N,R55E	95	-	2Nov65	723	+	63	25		60	380	0	60	12				10	694	7.6	Rush & Everett, 1966
Lockes North Spring NE%NE%NE% S15,T8N,R55E	95	12	2Nav65			-	-	-	1		-	ġ.	12		-	52		694	2	Van Denburgh & Rush 1974
Lockes Reynolds Spring SEMNE4815,T8N,R55E	97-99 R	323 emarks: Two	12Nov66 pools appr	roximatel	y 40 R at	art at has	e of 1ufa	bluff; (et	mi Na +	K = 2.45	a + Me =	4.65:01	+ SO4 = 1	s8: tritler	- u < 8 T.	- U.	-		-	Mifflin, 1968
Lockes Reynolds Spring SE%SE%NE% S15.T8N,R55E	97	331	60ci71	- 1. 01 4891 250	-	xx:X:=X:771	non doold Tr	12		175	en antigere E	E		J.	and the T	500 17	B	179	5	Van Denburgh & Rush, 1974
Lockes Big Spring SE%\$15,T8N,R55E	95	5	2Nov65			59	23	34	6.8	376	0	63	12	10	ŝ	1		684	8.1	Rush & Everett, 1966
Lockes Big Spring NW42SW4NE44 S15,T8N,R55E	100	476	21 Jun67	570	Z).	6-5	21	52	10	376	0	59	10	1.2	0.0		5	694	7.5	Van Denburgh & Rush, 1974
Lockes Big Spring SW4NE54S15,TSN,R55E	99	471-582										1	-	5	6	6				Fierø, 1968
Lockes Big Spring SW4NE4S15,78N,R55E	99-101 R	520 emarks: (eps	12Nov66 1) Na +K =	2.43;Ca	+ Mg = 4.	70; Cl + 5	90 ₄ - 1.5	6; tritiun	≤8 T. U	9 UE2		8	5	7	S	s	=		77	Mifflin, 1968

dentification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	504 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							1	VYE CO	UNTY (continued)									
Lockes Big Spring SWMNEWS15,T8N,R55E	100 R	emarks: CO	13Sep68 7 = 7.4, PO			63 1, Mn <0	21 .01, Sr = 0	53 1.46, Zn =	12 0.04, Li	367 = 0.25,	0	5.6	6.3	1.1	0.2	5	470	676	7.9	unpublished data, USG
Lockes Big Spring SW&NE4S15,T8N,R55E		- emarks: CO in = 0.01; Sn		A <0.01;	As <0.0								10),002; Ni <	1.2 0.002; Sr	<0.1 = 0.46;	0.4 V <0.004	457 I:	694	7.9	unpublished data, USG
Lockes Big Spring SW4NE3S15,T8N,R55E	99	900	7Feb34	-	~	\overline{a}	273				-	-	-	$\mathcal{T}_{\mathcal{T}}$	$\frac{1}{2}$			-		Eakin & others, 1951
Locks (Locke's) Hot Spring SW4S15,T8N,R55E	95	200	7Feb34	((\overline{a})	\tilde{a}	100		$\overline{c}\overline{c}$	$\overline{\tau}$	5	-		1	7	2	(2)	1	-	Eakin & others, 1951
Blue Eagle Spring NW4SE4SE4 S11,T8N,R57E	82	1860	60ct71		2	30	28	4	8	297	0	36	9	7.1	×.	÷.	-	584	8.1	Van Denhurgh & Rush 1974
Blue Engle (Jacks) Springs SE4SE4S11,T8N,R57E	82 R	1800 emarks: 2 m		17 water us	0.6 ed for in	80 ization.	24		30	385	D :	34	10	-	9		465	÷	()=)	Eakin & others, 1951
Blue Eagle (Jacks) Springs SEMSEMS11,T8N,R57E	82	emarks) Issu	-	÷	-	-	K = 1.71	Ca + Mg	= 5.07:0	1+ SO4 =	.05 ; triti	- am < 8 T.	т. Т.	-	\overline{a}	-		-		Mifflin, 1968
Kate? (Blue Eagle) Spring SEMSEMS11,T8N,R57E	83 R		7Aug67 3 = 4, PO4	30 <0.01, A	0.003 s = 0.000	25 , Cd <0.0	21 135, Co <	39 0.004, Al	5.9 = 0.5, Li	200	4	3	221	0.003 0, Pb =0.0	2.7 003, Ma	0.26 <0.002,	254	439	8,4	unpublished data, USG
Blue Eagle Springs SEMSEMS11,T8N,R57E	82	1385 emarks: 2 m	10 X 20 1 2 2	5-0.000 5-0.000	102002-01/	99909, 1999 -			2	147	÷	141	841	241	-	823	4	10	23	Waring, 1965, No. 128
Tom Spring NWMNWMS12,T8N,R57E	72		13Nov66						+ 50.	- 0 49 mini		н ⁻	14	240	-	1.00		=	4	Mifflin, 1968
Kate Spring SWWNE4514,T8N,R57E	73		24Jan 35	63 HS			4	-	<u></u>	-	-	-	19		्रिल्ड	-	(4)	8	-	Waring, 1965, No. 129
Carl Hanks well SW4NE42S14,T8N,R57E	72	600 emarks: Dep	1966	boom	32. 25	71	17.9	-		-	-	- -	10	3 .	1	0	202	÷		Fiero, 1968
Carl Hanks well SW%NE%S14,T8N,R57E	71 R	600 emarks: Dep		- t;used fo	r irrigatio	n; water	level = flo	ws.	-		-	-			341	1	1		÷	Van Denburgh & Rush, 1974
Shell Oil Co. Eagle Springs Unit No. 2 well NWWNEWSEM S2,T?N,R56E	229 R	emarks: 10,	24Nov54 155 feet de	ep ail wel	I. Analys	7 is of form	6 ation wat		92 rill stem :	293 tests.	43	50	68			÷	(0)	-		Van Denburgh & Rush 1974
Chimney Hot Spring NWMSEM516,T7N,R55E	140	95	7Feb34	-	5	56	17	6.8	17	350	0	47	26	-	0.0	-	$(-, \cdot)$	640	7.5	Van Denburgh & Rush 1974
Chimney Springs NWWSEWS16,T7N,R55E	140	95	7Feb34	75			377	-	353					-			(\mathbf{r})	-		Fiero, 1968
Chimney Hot Springs SEWNE4S16,T7N,R55E	160	20	1	20	-	-	-	2	100		-	1.7	-	1	-	572			÷	Fiero, 1968
Chimney Springs \$16,T7N,R55E	130-160	100	7Feb34	1.73		120	17			10							2		æ	Waring, 1965, No. 127
Chimney Hot Spring CS16,T7N,R55E	151	100	2Nov65	22	122	72	22	Ż	U	433	0	51	T Í	172	1		-	763	7.4	Rush & Everett, 1966
Chimney Springs SW42SE4S16,77N,R55E	140 R N	emarks: CO ₂ i <0.002, V	7Aug67 = 8.9; Ba = <0.003; Sn	51 = 0.002; M < 0.008	0.04 tn = 0.01	56 6 . Mo - 0	17 0.003; Sr =	68 0.67; Zn	17 = 0.025;	350 (A) = 0.015	0 ; Li = 0.2	47 4;Bi<0.	26 008;Cd <0	2.0 0.04;Ca <	<0.1 (0.004;1	0.4 РЬ <0.00	405 4;	640	7.8	unpublished data, USG
Shell Oil Co, Coyote Unit No. 1 well CN/5SW/4528,T7N,R55E	140 R	15-480 emarks: Oil	1955 well; depth	- 1711 r			1		(7)	\approx	÷				100	1			æŝ	NBMG files
Shell Oil Co. Coyote Unit No. 1 well NE%SW%\$28,T7N,R55E	140	5	60ct55	85	-	12	5	ū	19	410	0	99	16	-	1		æ			Van Denburgh & Rush 1974
Storm Spring NE%NE%S11,T6N,R54E	98	5	10Jul71		1.51	(*)	Ξ	×.	(\mathbf{r})	-			12		(-)		Ξę.	1200	-	Van Denburgh & Rush, 1974
Storm Spring	95	-	2Nov65	-		63	25	6	0	~	-	60	12		-	200	-	5.45		CWRR, 1973

Identification number, name, location	Temp. (°F)	Discharge (gpm)	ŧ	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm	Mg (ppm	Na) (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
									NYE CO	UNTY	continue	1)									
Storm Spring NE4511,T6N,R54E	84	Remarks: M		2Nov65 d water fro	em a the	ce spring	106 comple	30 S samples		138 55.	736	0	57	1.9	5	2	50	575	1170	7.6	Rush & Everett, 1966
Stormy Spring NW4NE4S12,T6N,R54E	84		4	16Oc167			-	12	125	2	121	1		2	5		1	22	1100		Fiern, 1968
Coyote Hole SW4SE4S11,T6N,R54E	113		2	7Aug67	-	14		-	22	2	12	-	-	9.8	-		2	12	1070		Van Denhurgh & Rush, 1974
Coyotes Hales W%S13,T6N,R54E	111		2 1	160ct67		4	14	-	648	-	141	2	2	-	2	÷	-	-	-	-	Fiero, 1968
Coyote Hole Spring SW4S11,T6N,R54E				7Aug67 = 11 : PO4	37 <0.01;	0.1 As = 0.0	91 00; Ba =	31 0.002; В	123 i <0.012; C	25 M <0.06:	698 Cu = 0.000	0 ; P6 <0.1	59)06: Mm =	9.8 = 0.03; St =	2.4 0.85; Zn	<0,1 = 0.015	0.8 Al = 19.0	700 15;	1070	8.0	unpublished data, USGS
Abel Spring SEMNW4S23,T6N,R54E	115	2 Remarks: M		12Sep68 0.00, PO4			1.00	26	120	22	673	a	53	15	2.7	0.2		696	1100	7,5	Van Denburgh & Rush, 1974
Abel Spring NE%SW%S24,T6N,R54E	115			12Sep68 - 27;Cd <			2 100 ; Fe = 0.0	26 02; Ph 0.	120 01 : Mn = 0	22 012: Mo	673 = 0.006: Sr	= 1; V <	51 0.009;2#	15 1 = 0.08; Al	2.7 = 0.03; t	0,2 i = 0.3.	0.62	732	1100	7.6	unpublished data, USGS
Abel Spring NE%SW%S24,T6N,R54E	113	2	6 1	16Oct67	-		=	-	-	-	2	-	-	-	÷	E.	2	-	1080		Fiero, 1968
[208] Marman (Moorman) Spring CN/45E/4532,T9N,R61E	100	10	001	155ep45	24	-	63	22		23	290	0	46	9		-	0.2	12	22	5	Miller, Hardman & Mason, 1953; Waring, 196 No. 134
Morman (Moorman) Spring CN//SEI/4S32,T9N,R61E		190 Remarks: W		used for i		n		123	-	2		\simeq	_		÷	1	-	÷	2	20	Maxey & Mifflin, 1966
Morman (Moorman) Spring CN%SE%S32,T9N,R61E	98-100		5 1	5Nov66			- + K = L		 Mc = 4.30;		- 1.28; trit		. u.	2	12	2	\simeq	1	2		Mifflin, 1968
[209] Emigrant (Riordon Ranch) Spring S19, T9N, R62E	r 70	20 Remarks: S	0			-	1000 _ 01 		97. artist. =	-		en En	2000 G	Σ	Σ	$\overline{\omega}$	2	4	-	2	Waring, 1965, No. 135
[210] Test Hole UCE-18 SW4NW4251,T8N,R51E	92		02 :	7Jun67 = 4.3 ; PO4	54 = 0.13	0.3 Mn = 0.	4.2 001; Ma	1.0 = 0.035 ;	St = 0.05;		Li = 0.12;			63 015; Cu = 0	17 1.001 ; Al	0.7 0.05;T	i = 0.002	852 (B<0.0	1300 131	8.4	unpublished data, USGS
Test Hole UCE-18			-	234173	66 54	0.22		0.4		6.8 6.2		0 263	110	60 35	30 23	140	-	1910	2780 2590	8.7	unpublished data, USGS
SW\4NW\4S1,T8N,R51E		Remarks: (8 Mn = 0 - 0.0			re taker	over a 1	2-hour p	seriod; va	lues on firs	t line abo	ve are max			ons, values o		line are	minimun			0.2	
[211] Hot Creek Canyon																					
Pat Spring SEMNW4SE44 S21,T8N,R49E	72	5	0 1	9Mar67	2	-	2	-	Ŧ	-	*	-	-	1	2	2	2	623	4	-	Fiero, 1968
Upper Warm Spring SEMSWMSWM \$21,T8N,R49E					1	Ċ.	8	22	12	9				25	10	3	2		3		Fiero, 1968
Upper Warm Spring SW4SE45844 S21,TBN,R49E			01 =				006; Sr =			0.8 a = 0.02;		0 Ba = 0.00	19 7: 8e, 8i,	7.0 Co, Pb, Ma		1.3 Sn, Ti ca		148)1	192	7.6	USGS
spring SEMS24,T8N,R49E	94 B	Remarks: Po		OAug65 bly Old Du	gan Plac	e Hot S	18 pring	26		52	1.7	\overline{a}	64	22							CWRR, 1973
Old Dugan Place Hot Spring NWGNWGNE% S25,T8N,R49E	97 9	2	01	1 May 77 = 11; PO ₄	32 <0.01;1	0.00 Ba = 0.1	7 70	22 56; Li =	49 0.23; Be, M	6.8 In, Mo, Aj		0 0.001 ; N	.55 , Sn, Ti e	19 ach <0.004	1.0 4; A1<0.1	<0.1 ; Se <0.	0.33 01 (samp		699	7.7	unpublished data, USGS
Old Dugan Place Hot Spring NW/SNW/2NE/4 S25,T8N,R49E	102		- 1	1 Aug68	~	÷	68 68 gave	21 sintilar re	rsults).	5	318	0	51	5	7	Ċ:	5	398	637	7.8	unpublished data, USGS
Old Dugan Place Hot Spring NE%NW%\$25,T8N,R49E	÷	2	-0		÷	×	÷	-	(×		÷		<u>e:</u>	.		÷		8) (#3	Fiero, 1968
springs NW%NE%S25,T8N,R49E	92	36	0 2	9Aug65	8	-	18	26		52	204	0.5	64	22	-	1	÷	251	462	8.0	Rush & Everett, 1966
Hot Creek Ranch Spring NEMSEMSEM S29,T8N,R50E	P	763(1966 Remarks: L) Ir <0.04, A	i = 1	.8, NH4 <	0.1, PO		As = 0.0		a = 0,1, Be	<0.005,0				42 .09, St = 0. a <5.	H 26, Zn =	<0.1 3.02, Ni	<0.02, 0	823 d <0.00	2, 1101	8.0	Sanders & Miles, 1974

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₁ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	CI (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
								VYE COL	Sec. 10. 1995		3350									
Hot Creek Ranch Spring SEM529,T8N,R50E	94-180 R	675 emarks: Thu		- sample mi	ved from	13 1 all three	26 :; lower sp		24 °F) provid	340 des ahout	0 half the fl	81 ow.	33	-	-	-	-	718	8.2	Rush & Everett, 1966
Hot Creek Ranch Spring NE%SE4S29,T8N,R50E	160	763	1966	-	-		÷	-	-	-	-	-	2	-	-	1	141	-	-	Fiero, 1968
spring SWMNWMS29,T8N,R50E	70 R	75 emarks: On	19Mar67 Mine Fault	in canyon	÷	÷	-	-	÷	-	æ	÷	-	2		÷	-	÷	(4)	Fiero, 1968
Upper Hot Creek Ranch Spring NW4NE4SE4S29,T8N,R50F	94	1	30Aug65	-	4	13	26	а	24	142	2	81	33	23	2	2	-	-	-	CWRR, 1973
Upper Hot Creek Ranch Spring NE%5W%S29,T8N,R50E	169 R	280 emarks: Dis	- churge aloni	_ fault zor	e; contri	– butes to	_ irrigation	 and stock	uses.		1		2	2		5	12	÷	-	Fiera, 1968
Upper Hot Creek Ranch Hot Spring NEMSEMS29,T8N,R50E	Se	emarks: CO = = 0.01; Bi, 1°F on 11 M	Co, Pb, Mo	<0.01; B	0.04 a = 0.09 Teach <	5; Be = [9,5 0,002; Cd imples tak	<0.035;C	u <0.01;	501 Mn = 0.1 1 May 67	0 2; Sr = 0.7 gave simil:	64 1; V <0.0 11 results	37 0011; Sn <0 except tem	8.3).011 ; Al perature	0.2 = 0.05; was reco	0.52 Li = 0.8(rded as	721 hi	1010	8.1	USGS, 1973
Upper Hot Creek Ranch Hot Spring NE45E4529.T8N.R50E	153	-	18Sep68	÷	-	32	8.5	-12		505	0	-	-	-	-	-	620	980	8,1	unpublished data, US
212] Stanley A. Tanner well NW%SW%S28,T7N,R40E	warm Re	emarks: Dep	oth - 300 fe	; warin wa		water al	105 m	27.5		27.5				17			121	5		Rush & Schroer, 197
213] Indian Springs S34(?),T7N,R42E	warm	emarks: 3 sp	(i) (T)	55 V	10.25	5					-				(27)	25	575	2	3	Waring, 1965, No. 1
214] Hot Creek Valley Spring \$30,T7N,R51E	142 R	emarks: Tra	vertine pres		5	\mathbb{R}^{2}	(72)	4700	5	126	2	874	15	15-	1	1		-	-	Hose & Taylor, 1974 Waring, 1965, No. 1
215] Butterfield Springs NE34S28,T7N,R62E	65-75 R	2000 emarks: Fe	1944 + Al = 0.3;3	46 Tag (Sunn	yside) S	40 prings in	23 NW4532,	T7N,R62	2 E may als	178 a be ther	mal. Water	27 is used fi	18 or irrigation	. Analysi	is from A	dams, 19	283 944.	2	1	Maxey & Eakin, 194 Waring, 1965, No. 17 Adams, 1944
216] Warm Spring NE%NW%S36,T6N,R47E	79	5	30Nov66	(E)	5	3	17.2	1 50	<u>,</u>	17.0	5	2.7.2	3.73	25	-	-	-	-		Fiero, 1968
217] Moon River Spring NW4S25,T6N,R60E	92	900	1948	-	8					~		0123	523	522	525	721	127	2	-	Maxey & Eakin, 194 Waring, 1965, No. 1
Moon River Spring NWWS25,T6N,R60E	92 R	900 emarks: Issu	14Nov66 es from allu	- vium: (ep	m) Na +	к - 1.23	:Ca + Mg	= 4.26; C	+ 504 -	1.10; tri	_ tium <8 T.	u. –	102	÷.	-	-	4	2	-	Mittlin, 1968
218] Hot Creek Ranch Springs S18,T6N,R61E	88	emarks: Sev	23Jun62	28		60	22	29	5.3	288	-	45	8.9	1.0	0.4	0	342	540	8.0	Eakin, 1966
Hot Creek Ranch Springs S18,T6N,R61E	80	-	16Apr63	28	0.01	60	24	24	5.1	300	-	43	9.0	1.0	0.6	0.1	343	548	7.6	Eakin, 1966
Hot Creek Springs SEMNEMNEM SL8,T6N,R61E	92 R	6885 entarks i Issu	6Apr35 es from ally	32 wium,	÷	58	22	33	2	294	-	45	12	() , (0.3	0.04		-	2003	Maxey & Eakin, 194
Hot Creek Ranch Springs S18,T6N,R61E	85-90 Ro	5000 emarks: Sevi	eral springs;	- water use	d for Irri	gation.		-				-	1	2	2	-	-	-		Waring, 1965, No. 13
219] Salisbury Spring NW4SE4S8,T5N,R46E	76 R	12 emarks: Prol	28Dec66 hably in S21	-	4	=	-	-	23	-	-	240	200	100	() (24	140	÷		Fiero, 1968
Salisbury(?) Spring SW%SE%S28,T5N,R46E	86 Re	emarks: Ba =	30Jul67 = 0.5.	76	0.014	1.6	0.1	65	2.5	132	0	26	10	1.2	ेन्ट	0.16	229	296	8.1	unpublished data, US
warm spring SV:S28,T5N,R46E	warm	-		÷	÷.	÷.		-	-	3	÷				E.	÷	(+)	1	-	Soulsbury Basin 7%-minute quad
spring SMS28,T5N,R46E	-	20	25Aug44	20		9	tr	74	-	146	7	25	18					5	-	Miller, Hardman & Mason, 1953
220] Warm (Nanny Goat) Springs			318	22	1000	NI 5		100	4440	126		05.3	12	4.6	10.1		890	1311	6.9	Sanders & Miles, 197
Warm Spring NW4SW4S20,T4N,R50E		статка: PO4 <1.0µg/1, 5		<0.1, As		l, Ba <0.			15, Cd <.0				36 - 55µg/l, Li		<0.1 In <0.01	, Ni <0.0			0.9	aunitors at solies, 197
spring SW4S20,T4N,R50E	142		1973	60		43	24	175	24	714	-	120	32			100	570	1250	8.1	Mariner & others, 19

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC {µmhos/cm}	рН	Reference
								NYE CO	UNTY (continued	5									
Nanny Goat Springs SW35SW34SW34 S20,T4N,R50E	106	225	12	10		-	27		-		-	122	12	622	7 <u>9</u> 2	225	8	23		Fiero, 1968
Warm Spring SW%S20,T4N,R50E	141	675	17Oct65	12	8	96	28	168	÷.	693	-	90	41		-	2	-	2	-	Rush & Everett, 1966
Warm Spring NWMSWWS20,T4N,R50E	140			12		-	220		2	121	-	2	2	2	2	2	221		6	Rush & Everet1, 1966
springs T4N,R50E	boiling			2	2	2	1		2	20	-	-	-	-	2	_	-	12	-	Waring, 1965, No. 125
Warm Spring (Nanny Goat Spring) SW4S20,T4N,R50E	Ŗ	small lemarks: 2 sp	orings; water	used in s	wimming	55 2 pooL	36	3	206	712	0	98	32		ŝ	-		1270	7.9	Eakin & others, 1951
spring SW4SW45W4 S20,T4N,R50E	140 R	lemarks: CO	11May67 2 = 57; PO4		0.012 a = 0.12		17 Li = 0.6	194 4; Be <0.	23 001; Co, P	708 5, Se, Ti ea	0 ch <0.00	96 7.	32	3.0	0.10	0.44	876	1300	7.3	unpublished data, USGS
[221] Tonopah mining district																				
Mizpah Mine NE4NW4SW4 S35,T3N,R42E	106 B	emarks: In 1	1904 2316-foot dr		0.7 1 = 0.7;	68.8 Zn = trace	6.J c.	149	3.4	157	10.6	327	35	-	Lr.		1127	2	- 23	Bastin & Lancy, 1918
Belmont Mine CW%S36,T3N,R42E	99 R	emarks: On	1915 1500-ft leve	68 l; Mn = l	2. 3	22	4.4	50	5	51	36	106	35	-			367	8	12	Bastin & Laney, 1918
222] well SW%S16,T3N,R44E	72 R	emarks: Dep	18May47 pth – 540 ft		3	10		828	10	223	1	25	2		25	12		-	-	Eakin, 1962c
223] spring SW%NE%S14,T2N,R47E	85 R	emarks: Sr -	28Jul67 1.4, 1.i = 0	25 95.	-	58	18	276	27	702	0	222	36	6.2	0.7	0.61	945	1560	7.8	unpublished data, USGS
224] Pedro Spring SE4NW4S28,T2N,R50E	77	10	2Aug67	=		-		1		4	Ξ.			-	2	23	-	-	-	Alvin McLane, unpublished map
Pedro Spring NW45W18NE14 S28,T2N,R50E	77	10	8Feb67	-	-	-	-	-	1	-	-	2	÷	-	42		-	×	2 m.	Fiero, 1968
Reveille Mill Spring NW4SW42NE94 S28,T2N,R50E	84	23	17Jul69	2	<u>_</u>	-		-		143	2	2	-	-	20	-	-	2	1	Alvin MeLane, unpublished map
[225] deep well NE4SEMNW4 S28,T1S,R53E	70 R	emarks: Dep	29Mar72 11h - 465 ft	9 1	-	14	1		65	138	0	46	14	2	-	2	-	385	8.1	Van Denburgh & Rush, 1974
[226] Cedar Spring SE4521,T2S,R51E	77 R	2.5 emarks: Mn	1Aug67 = 0.00, PO4	38 = 0.00,	0,03	62	5.9	47	2.5	240	0	48	23	0.8	0.1	0.18	346	533	7.7	Van Denburgh & Rush, 1974
[227] Sarcobatus Flat-Beatty area																				
well NW/4SW/4S28,T75,R44E	72 R	emarks: Dep	13Mar62 Mh - 203 ft	8	0	48	4.9	1	23	266	-	106	54	2.7	3.0	-	560	800	7.9	Malmberg & Eakin, 1962
well T8S,R49E	.90		26 Aug 65	8	8	0,6		~	÷	107	20	30	15	2.7	1.3	370	231	\overline{a}	8,1	CWRR, 1973
well NEMS20,T95,R46E	108	-	5Jun64	-	0.13	0.40			1	130	5	43	57	4.6	1.0	1973	336	TC:	7.7	CWRR, 1973
well NE%520,T95,R461	72	-	21 Mar62	-	Ð	18	2.0	3	49	212	-	67	87	3.2	Ω.		568	810	8.2	Malmberg & Eakin, 1962
well NF/4S35.T9S.R46F.	72	-	21Mar62	\approx	0	п	5.8		87	155	÷.	24	- 55	4.5	12		427	610	8.2	Malmberg & Eakin, 1962
spring NW4S14,T10S,R47E	72	50	14Mar62	2	0	6.0	1.0	1	117	212	=	24	54	3.8	u.		384	550	8.5	Malmherg & Eakin, 1962
spring NE4533.T105,R47E	75	15	14Mar62	-	0	24	0.1	4	27	275	5	14	65	1.9	4.0		532	760	8.0	Malmberg & Eakin, 1962
spring NW%NE%S10,T115,R47E	72	50-75	14Mar62	\geq	0	19	1.0		90	188	-	24	48	2.9	\mathbf{H}_{i}		413	590	8.3	Malmherg & Eakin, 1962
Hick's Hot Spring SW45E4SE6.T11S.R47E	ίΞ.	45	before 1907	1		5	121					5 93		251	177	8 7)	1	÷.	-	Ball, 1907

Identification number, name, location	Temp. (°P)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
		2011-00					P	YE CO	UNTY (continue	d)									
Hick's Hot Spring SW%SE%S16,T115,R47E	109	72	72	-	853	-	17	÷.				12	1	10	Ξ		3	52	5	Waring, 1965, No. 138
Hick's Hot Spring SWMSEMS16,T115,R47E	100	5	22Feb5ń	ń5	0	18	0	167		256		121	45	5.0	0.3	1	ž.	821	7.9	Malmberg & Eakin, 196
Hick's Hot Spring SW4SE4516,T115,R47E	1	7	14Mar62		0	18	0.5		144	266	30	72	48	4.2	45		2	750	7.9	Malmherg & Eakin, 196
Amargosa Hot Springs SW4SE4516,T11S,R47E	rao R	20 emarks: Al	22Feb56 = 0; Mn = 0;	65 PO4 = 0;	0 Ra = D.6	18 ідис/1; U =	0 10µg/L	167	7.4	256	р	121	45	5.0	0.3	-	535	821	7.9	Scott & Barker, 1962
Amargosa Hot Springs SWMSEMS16,T115,R47E	90	7	RSep27	76		50	16	195	20	422	0	133	93	-	-		781	-	2	Hardman & Miller, 1934
Amargosa Hot Springs SW4SE4516,T11S,R47E	1	-			-		-			352	-	ξ¢	64			-	-	740	-	Miller, Hardman & Mason, 1953
Burrell Hot Spring S21,T11S,R47E	102 R C	emarks: Li - r <0.02. Ag	5Feb74 0.25, NH4 <0.02, BI <	62 = 0.2, PC :0.1, Cs =	0.06 0 ₄ = 0.1, 60, Hg -	As = 0.00	0,4 1µg/l, Ba Rb = .041	151 = 0.06, 1 7, 56 < 0	6,0 Be <0.005 1, Se <0.1	246 , Cu <0.f µµ/l, Sn	0 02, Pb <0. <0.05.	121 02, Mn =	44 0.02, Sr = 1	6.0).05, Zn	0.4 = 0.22, N	ii = 0.02,	539 Cd <0.0	814 105.	7.9	Sanders & Miles, 1974
spring SWMNE%S21.T11S,R47E	97	100	14Mar62	-	0	27	3.9	į,	181	393	121	48	75	4.5	0	-	784	1100	7.9	Malmberg & Eakin, 196
spring NEMNWMS33,T11S,R47E	6.8	25	14Mar62	-	-	4.8	2.0		96	176	4	34	31	4.1	0	-	330	470	8,2	Malmberg & Eakin, 196
Beatty Municipal spring NE%SW%\$5,T12S,R47E	75	200-300	22Feb56	68		14	1.9	106	1	194	0	69	27	4	0.8	-	368	552	8.2	Malmberg & Eakin, 196
Bearty Municipal spring NE%SW%S5,T125,R47E	R	emarks: Al	- 0.4; Mn =	68 0; PO ₄ ; R	0.12 ta <0.144]4 ur/I; U = 4	1.9 1.5μg/1.	106	5.8	194	0	69	27	4.0	0.8	1	368	552	8.2	Scott & Barker, 1962
spring NEWSEWSWW S5,TJ 2S,R47E	75	2	31Oct64	-	0.01	15	1.8	2	120	196	-	70	26	3.2	1.6	-	380	-	7.5	CWRR, 1973
spring \$7,T) 25,R47E	79	5	1Apr67	-		13	1				1	48	49	0.85	3.7	-	-		10	CWRR, 1973
228] Yucca Flat																				
well 79-69a (test _a well C) 36°59 40' N, 116°01'30"	99 R	emarks: Dep	18ep61 ath - 1701	30 Al, aquifer	L.Ö r is Paleo.	74 zote carbo	27 nate rock	142 ; Al = 0.	15 3; Mn = 0;	577 PO ₄ = 0.	07. ⁰	71	34	0.9	1.0	-	624	1080	7.0	Schoff & Meore, 1964
well 84-69 (test well E) 37°03'20"N, 116°00'50"	108 R	emarks: Dep	311ul60 ath - 1875		is Tertia	1.6 iry volcani	D ic rock : P	81 04 - 0.7	2.6	187	0	16	6.0	0.6	2.5	-	287	358	9.0	Schoff & Moore, 1964
29] Amargosa Desert																				
well T135,R50E	79	-	19Feb59	2942	0,06	14	1.5	5	5 40 3	118	-	24	8	1.8	0.7	-	(1) 1970-1	1992		CWRR, 1973
well SE%S30,T13S,R51E	91 R	105 emarks: Dep	18Sep57 oth - 1329		0.26 1; PO ₄ -		14.0 ; perforat	157 ed 1077	16 -1097 (t a	102 & 1244-1	0 1300 ft.	484	20	0.9	7.4		893	1210	7.8	Walker & Eakin, 1963
well NE%S35,T13S,R47E	84 R	100 emarks: Dep) 2Jul62 5th – 575 fi	i perforat	ed 453	493 ft.	2 		8 33 2 1022		122		3		-	100	(3) (1)		10	Walker & Eakin, 1963
well NE%S6,T14S,R50E	79 R	200 emarks: Dep	25Apt58 oth - 887 ft		0.52 ; PO ₄ = 1		1.9	46	5.2	121	0	24	7.0	1.8	0	1972	169	266	8.2	Walker & Eakin, 1963
well 1-12 \$6,T14\$,R50E	80 R	emarks: Li =		56		14	2.5	40	5.8	117	0	22	6.4	2.1	9.7	0.13	205	121	-	Dudley & Larson, 1976
well 73-61 (well J-11) 36°46′45″N, 116°16′50″	92 R	emarks: Dep	18Sep57 pth - 1327	67 ft; aquife:	0.26 r is Tertia	R5 ary volcan	14 ic rock; A	157 1=0.1, N	16 tn = 0, Sn	= 0, PO ₄	- a. ⁰	484	20	0.9	7,4	-	893	1210	7.8	Schoff & Maoze, 1964
test well F SE44SE44S3,T14S,R52E	149 R	emarks: Dep	21May75 pth - 3300	37 ft. Mn = ().05 : Sr =	46 0,52; Al	17 <0.01 ; L	60 = 0.16.	8.3	264	12	89	10	3.4		275	390	666	1	USGS
well NEWNE%S14,T15S,R49E	82 R	emarks: Dep	24Apr58 pth - 77.7 (0.09 1 ; PO ₄ =	25 0.	2.4	41	5.2	. 145	0	33	8.0	1.4	3.5	57.0	233	336		Walker & Eskin, 1963
well 69-57 NE%NE%S14,T15S,R49E	82 R	– temarks: Dej	24Apr58 pth - 570 f		0.09 ; Mn = 0		2.4	41	5.2	145	0	33	0.8	1,4	35	-	233	336		Schoff & Meore, 1964
well SW4518,T155,R50E	75 R	lemarks: Dep	26Jun59 pth - 360 fi		0.67 PO ₄ = 0.	21	2.9	103	6.0	162	D	122	18	1.4	6.9	1211	408	863	7.9	Walker & Eakin, 1963

dentification number, name, location		ischarge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	(ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
	1.265		(11) (12) (12) (12)				1	YE CO	UNTY (continue	d)									synanth cysecolo - And
well SESS2,T16S,R48E	73 Rema		21al62 h - 409 ft(?); perfo	rated 21	2-422 fil	(?),		1	172	ā	5		7.1	10	2		29	e di	Walker & Eakin, 196
well NE44S3,T16S,R48E		i50-900 aks: Depti	2Jul62 h – 234 R;	perforat	ed 120-	250 (1(1)	1	201		20	5	53		5	8	23	:=::	5	-	Walker & Eakin, 196
well SW4S11,T16S,R48E	72 Rema		4Jul62 h – 288 ft;		ed 130-	302 ft.	075	872	5	174	(\overline{a})	52		1			-	-	020	Walker & Eakin, 196
well NE4817,T165,R48E	75 120 Rema	0-1500 1 rks: Depti	8Aug62 h - 280 ft;	75 perforat		60 280 ft; Al	7.8 = 0, Li =	157 0.2. PO4	12 = 0, Sn =	302 0.6	0	179	69	1.2	1.2	0.57	800	1074	7.4	Walker & Eakin, 196
well NW%NW%NE% \$17,T165,R48E	75 Rema		8Aug62 n - 280 ft;			60.).	7.8	157	12	302	0	179	69	1.2	1.2		800	1074	7.4	Schoff & Moore, 196
well NW4518,T165,R48E	72 Rema		3Jul62 1 - 361 ft;	- perforate	ed 140 -	218 ft & 2	258-380	- 1.				신별의	35-	8	877	1		53	-	Walker & Eakin, 196
well SE4520,T165,R48E	72 Rema		4Jul62 1 – 366 ft;	perforat	ed 119-	225 ft.	80	100		(77)	1	877	100					5		Walker & Eakin, 196
well SE44S23,T165,R48E	73 Rema		7Jul62 n – 474 ft(); perfo	- rated 27	0-503 R(2).	57		27	71						070	0	-	Walker & Eakin, 196
well SW4S23,T16S,R48E	73 Rema		7Jul62 - 510 ft;	perforat	ed 170-	485 ft.		1		-			100	100	-71	854	(B)	R :	=	Walker & Eakin, 196
well NW4S23,T16S,R48E	75 Rema		9Aug62 n - 330 ft;		1.1 ed 100-	9.4 300 ft; Al	1.0 = 0.57, P	66 04 = 0. St	6.8 n = 1.8.	156	0	27	8.8	2.0	3.1	0.15	294	346	7.3	Walker & Eakin, 196
well SW%S24,T16S,R48E	73 Rema	rks: Perfo	9Jul62 (ated 110-	306 ft.	尽	<i>1</i> 23	270	3 7 0	72	372.9	5	-	12	1	125		20	2	22	Walker & Eakin, 196
well NEWS24,T165,R48E	81 Rema		4May56 5 - 480 M.	12	5	Ξ.		-	-	120		523	17 <u>2</u> 3	0 <u>9</u> 1	92E	020		345	223	Walker & Eakin, 196
well .SE%S24,T16S,R48E	81 Rema	1100 2 rks: Depti	4May36 h - 421 ft.	11 11	2	22	127			27		925	<i>w</i>	-	4	-	-	325		Walker & Eakin, 196
well SW6S27,T16S,R48E	73		4Jul62 a – 236 ft;		ed 106-	236 ft.	640	-	2	-	2	-	942	1.00	÷	220	1	2		Walker & Eakin, 196
well NEMS36,T16S,R48E	75	1000 2	11Feb36 h - 165 ft;	82	0.14	70	3.9 Ra <0.14	62 µ/c/1: U =	9.0 4.7µm/l	142	0	107	61	-	243	-	489	200	7.9	Walker & Eakin, 196
well SE%S36,T16S,R48E	70	940	25Jun59 h – 407 ft.	n E	12000 (1000) 121		-		-	140	-	-	1	5. 10 5	(H)	20 4 0		675		Walker & Eakin, 196
well \$W\259,T165,R49E	75	274	15Jul58	2	2				10	(e)	-	24	1	÷	1.00			÷.	-	Walker & Eakin, 196
well NEWNEWSWW S9,T16S,R49E	75 Rema		9Aug62 h — 300 (1;		0 . Li = 0.1	28 56, PO ₄ =	3,4 0, Sn = ().	46 9.	7.6	142	0	53	10	0.7	3.3	0.16	310	381	7.2	Walker & Eakin, 196
well NW4S14,T16S,R49E	73 Rema		293un62 h - 390 ft;	perforat	- ed 150-	390 ft.		1		-	÷	24	(1 4)	-	-	-	-	8		Walker & Eakin, 196
well NE%\$15,T165,R49E	75 Rema		29Jun62 h — 420 ft.	-	-	-	-	-		-	5	-	-	-	1	-	2	5	÷	Walker & Eakin, 196
well NE%518,T165,R49E	73 Rema		28Jun62 h - 420 ft;	- perforat	ed 140-	420 ft.		-	${\mathcal T}_{i,j}^{(n)}$	(-)	$\overline{\mathcal{T}}_{ij}^{(i)}$		0	ಿಕ್		19 7 0	100	=		Walker & Eakin, 196
Parent Springs NW4523,T175,R50E	93		23Jul62	2	÷	÷	-	1	-	<u>, </u>		241	:#(245	(.)	9900	650		Walker & Eakin, 196
well NW4NW4523,T175,R50E	94 Renta	rks: Deptl	Feb71 1 – 140 ft.	-	4	23	196	-	÷1	-	0	3 .4 3	-	2 .	÷			₹. 6900		Dudley & Larson, 19
well SM7 NW4SE4SE4 S23,T175,R50E	91 Rema		3Oct70).1 , Mn <0.	22 01, Sr =	0.04 0.79, Li		19	72	8.1	281	U	80	20	1.7	0.1	<0.01	528	630	7.8	Naff, 1973
spring SWMNEMNW4 S26,T175,R50E	HI	- 1	13Feb72	29	-	45	20	69	6,8	285	0	81	21	1.32	243		528	619		Naff, 1973
Scruggs Spring SEUSWUNEU \$35,T178,R50E	86	- 1	12Feb72	28	2	46	19	41	7.8	283	0	80	22	1.15	-) æ	529	613	7.6	Naft, 1973

dentification number, nume, location	Temp. (°F)	Discharg (gpm)	je.	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	СО _Э (ррт)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmbos/cm)	pН	Reference
									NYE CO	UNTY (continue	d)									
spring NE4535,T175,R50E	91	1	40	24Jul62		25	Ξ.	-			1	2	5	17	$\overline{\mathcal{O}}$	5	(\overline{a})	2	640		Walker & Eakin, 19
spring NWWNEWS35,T17S,R50E	82		17	375	-20	-74	57.0	7	121	57	·7.	25	57	2	57	17	2		620	2	Hughes, 1966
Button Springs NEWSEWS35,T17S,R50E	91		6	24Jul62	1	30	2	70	1574	27	-		-				-		620	-	Walker & Eakin, 19
Button Springs NE45E4835,717S,R50E	93	7	2	1	121	220	21	-			12-		12	-	-	14	2	-	123	2	Hughes, 1966
Devil's Hole SW45E44\$36,T175,R50E	92 F	Remarks: /		9Dec66).01. Mn <	22 0.01, Sr	0 = 0.89,	50 Li = 0.09	24 . PO ₄ = 0.	65	7.6	310	0	76	20	1.6	0.2	0.32	555	677		Naff, 1973
Devil's Hole SW4SE4836,T17S,R50E	81 F	Remarks: A			21 0, PO ₄	0 = 0.	52	19	67	8.1	306	0	78	22	1.4	0.3	-	554	686	7,8	Naff, 1973
Devil's Hole SEMS36,T17S,R50E	-	4:	50	-	-	1	62	18	35	14	315	0	52	30		<u>i</u>	-		731	-	Miller, Hardman & Mason, 1953
Devil's Hole SF4S36,T17S,R50E	90 F	4: Remarks: 4		22Jan53 ngs.	23	0.04	51	21	նն	7.2	311	0	79	22	1.6	Ξ	0.38	425	686	7,4	Eakin, 1963a
Devil's Hole SW4SE4836,T178,R50E	91 F			23Jan53 ing water	in soluti:	on sink ir	upper B	onanza K	ing Forma	- tion (Caπ	- thrian lim	estone); (epm) Na	+ K = 2.79;	Co + Mg	= 4.27;0	1 + SO4	= 2.28.	-	Э	Mifflin, 1968
Ash Meadow Springs SEMS36,T17S,R50E	76-94 P	45 temarks: 4			3	30		-	100	1	-	-	-	8	æ ²²	. E	3	20	-	=	Waring, 1965, No. 1
well SW43E34536,T178,R50E	92		- 2	81un72	24		47	20	69	2.1	304	0	82	26	2	0.20	<0.04	555	677	7.4	Naff, 1973
DH well SEMSEM\$36.T175,R50E	92 F	Remarks: 7		0Mar67), Mn = 0.1	24 02, Sr = 1	0.23 0.93, L1 -	46 = 0.08, PC	20 04 = 0	69	8.6	301	0	77	20	1.8	0	0.29	\$45	669	7.9	Naff, 1973
well NE451,T175,R51E	73 p	19 Remarks: B		10Jan61 1 – 135 ft	18 ; perfora	0 ted 48 - I	39 35 ft; Al	20 = 0.2.	69	10	350	0	53	6 .0	0.6	0	2	372	607	7.2	Walker & Eakin, 19
well SE45E4531,T175,R51E	78 F	temarks: L		Feb72	22		30	12	120	6.2	313	0	90	19	1.5	<0.1	\sim	435		8	Dudley & Larson, I
spring NEMNWMS35,T17S,R51E	82		17	23Jul62	-	20	10	\sim	-	17	80	ΞŦ	3	2	6		0		620	\tilde{a}	Walker & Eakin, 19
well SW34S8,T17S,R52E	82 B	temarks: I		7Apr58 - 400 ft	18 perforat	34 ted 39-1	34 39 ft; Al	= 0,2,	61	7.2	274	0	63	21	1.1	0	\overline{a}	342	595	8.0	Walker & Eakin, 19
well SW34S8,T17S,R52E	B2 B	temarks: A		7Apr58 .2, PO4 =	18	Ð	34	22	61	7.2	274	0	63	21	1.1	0	5	483	595	B.0	Naff, 1973
Embry well NE%SE%SW% S2,T185,R49E	70		2	NDec71	82		25	6,0	75	8.8	219	0	49	16	1.492	4,03	÷	404	456	7.9	Naff, 1973
spring NW4SE4S1,T10S,R50E	79	9	.3	25		2	17				1.54	5		8	2	ā.	Ξ	-			Hughes, 1966
spring NW4S1,T185,R50E	84	1	8.	~		-		÷	5	Ξ			-	2	\sim	2		-		2	Hughes, 1966
Crystal Spring NE%SE%NW% S3,T18S,R50E	86		- 3	0Dec71	26		48	20	80	8.8	311	0	92	32	1.35	-	-	593	653	7,4	Naff, 1973
Crystal Pool (Crystal Spring) NW4S3,T18S,R50E	91	283	14 :	29Jul62				35	253	57	-	2		2			2	12	650		Fakin, 1963a
Crystal Pool SEMNE453,T185,R50E	90-91 R	283 temarks: 1		4Feb29 wium; (ep	m) Na +	K = 3.53	; Ca + M	g = 4.09; 0		2.51.		Ξ.			2	-	-	-	54	÷	Mittlin, 1968
Crystal Pool NW%SEMNE% S3,T18S,R50E	91 H	temarks: 1		Nov66 .09	25		40	20	70	8.6	278	θ	81	22	1.7	<0.1	0.31	432			Dudley & Larson, I
well NEWNEWS3,T185,R50E	89 N	teniziks: I		Mar66 - 516 ft.	1				7.0	÷.	284	2	77	21	1.9	-	2	416			Dudley & Larson, I
well NEMNEMS5,T185,R50E	74 R	lemarks: I		Mar67 - 670 ft.		-	1	÷.	237		106	130	170	42	1.9	×	÷	792	2	-	Dudley & Latson, I
spring SEMNWMS7,T18S,R50E	90		- 2	60ct64	1	0.17	15	19	÷.		306	24	38	21	1.2	0.2	×	412	-	8,2	CWRR, 1973

dentification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	рĦ	Reference
			(2.184)-188				ľ	YE CO	UNTY (e	ontinued	t)									
Davis Ranch Spring NE4/NW4S11,T18S,R50E	70	2	29Dec71	30		50	22	101	13	340	0	114	34	1.7	-	-	672	732	1.1	Natl, 1973
Davis Ranch (3) Spring SEMS11,T18S,R50E	72	30	25 Jul62	120			3	24	220	1	120		63			62	÷	750	i i	Walker & Eakin, 19
Davis Ranch Spring NW4SW3512 & NE45E4 S11,T185,R50E	77 P	397 lemarks: Sev				-	2	2	121	27	-				51		\subseteq	750	8	Fakin, 1963a
Davis Ranch Spring NWMSWMS12 & NEMSEM S11,T18S,R50E	75-81 B	temarks: Sev	eral springs.	-	22	~	-		3	5	÷.,						2	760	<i>.</i> ,	Huplies, 1966
Davis Ranch well SE%S11,T18S,R50E	73	174	2Feb53			30	$\overline{\mathcal{D}}_{i}^{*}$	-	100	5	20	-	12		-		11		2	Walker & Fakin, 19
Davis Ranch well SE%S11,T18S,R50E	2	5	25Jul62			-	5	53	-20	20	30		5	5	27	5	5	(Z)	5	Walker & Lakin, 19
well SEMS11,T185,R50E	87		Feb67	10	35	-	\sim	55		304	0	64	21	1.9		-	412	120		Dudley & Larson, I
well NEMNEMS5,T185,R51E	75	7	13Feb72	18	5	36	19	68	7.8	272	Ø	69	20	0.98		17	492	572	7,7	Nafr, 1973
well NWMNWMNWM S7,T185,R51E	87 P	temarks: Dep	Mar71 ath – 500 fr	23 ; Li = 0.0	8.	44	19	69	8.2	214	0	79	20	1.5	0.3	27	335	-26	5	Dudley & Larson, I
Indian Seep NW4NW4SE4 S7,T18S,R51E	89 P	temarks: Al	26Oct64 0.09, Mn	23 0, PO ₄ -	0.17	52	19	66	7.9	309	0	78	21	1.2	0,2		555	671	7.3	Naff, 1973
Indian Rock Spring NE%NW%SE% S7,T18S,R51E	92 J	lemarks: Li -	Nov?0 0.09.	22		46	21	68	7.4	364	0	78	21	1,5	0.2	0.35	412		1	Dudley & Latson, I
Indian Rock Spring (1) SW4S7,T18S,R51E	91	22	25Jul62	62			\overline{a}			-		1.00		-	28			640	-	Walker & Eakin, 19
Indian Rock Spring (2) SE%S7,T18S,R51E	91	379	26Jul62	-		(22)					100	\sim	\overline{c}	\overline{a}	\overline{c}	Ξ	7 3	645	ē	Walker & Eakin, 19
Point-of-Rock Spring NW%SE%S7,T18S,R51E	90 R	1162 temarks: In a	28Feb49 Buvium; (c;	om) Na + 1	K = 3.20	Ca + Mg	= 4,17;0	1+ SO4 =	2.26.		-		10				20		\sim	Mifflin, 1968
Point-of-Rock Spring NW4SE44S7,T18S,R51E		12	1		22	124	1	-	-		-	5	15	1		3		675	5	Hughes, 1966
King Spring NW%SE%S7,T18S,R51E	91 R	emarks: Al	26Oct64 0.02, Mn -	21 0, PO ₄ =	0_	52	19	68	7.9	301	0	78	22	1.6	0.3	0.45	550	685	73	Naff, 1973
King Spring NW4NW4SE4 S7,T18S,RS1E	90 R	emarks: Al	4Oct70 0.10, Mn -	22 :0.01, St	0.09 = 0.78, L	45 i = 0.08,	19 PO ₄ <0.0	70 1.	8.0	278	0	79	20	1.5	0.3	-	521	625	7.9	Naff, 1973
King Pool NWWNW%SE% S7,T185,851E	90 R	emarks: Li =	Nov66 0.09,	22		48	21	67	7	304	0	76	21	2.1	0.2	0.30	408	12.1	3	Dudley & Larson, 1
spring SW%S7,T18S,R51E	93	19	26Ju162	530	2	3		5	-5	273	5	5	S	3	151	Ø	73	650	5	Walker & Eakin, 196
spring SE%S7,T18S,R51E	93	2	26Jul62		24	620		123	22	723	1	12			2	12	623	650	1	Walker & Eakin, 19
well SM1 NE4/NE4/SE4 S7,T18S,R51E	82 R	cmarks: AI =	40ct70 0.10, Mn <	23 (0.01, Sr	0.04 - 1.4, Li	60 = 0.12, P	36 04 <0.01	170	11	263	0	330	95	1.5	7,1	S.	975	1300	7.9	Naff, 1973
well SM2 SWMNEMSEM S7,T18S,R51E	80 R	cmarks; Al -	40ct70 0.50, Mn -	23 0.01, Sr	0.26 = 3.8, Li		82 O ₄ <0.01	400	19	242	0	920	300	1.4	27	2	2136	2750	7.4	Naff, 1973
well SM3 SEWNEWS7,T18S,R51E	85 R	emarks: Al <	20Oct70 0.1, Mn <(59 0.12, PO	30 4 <0.01.	130	9.1	183	0	230	76	1.7	5.6	7	726	1000	8.3	Naff, 1973
well SM4 NWMNEMSWM S7,T18S,R51E	87 R	emarks: Al «	20Oct70 (0.1 , Mn <0	23 0.01 , Sr =	0.03 0.93, Li		21 04 <0.01	78	8.4	293	0	83	25	1.7	2.6	5	565	700	7.8	Naff, 1973

dentification number, name, location	Temp. (°F)		charge pm)	Dat	e :	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
									1	NYE CO	UNTY (c	ontinue	i)									
well SM5 NWANWANWA S7,T18S,R51E	8			40c = 0.2, N		23 01, Sr	0.12 = 0.78,1		19 PO ₄ <0.0	70 1.	8.2	214	0	79	20	1.5	0.3		457	540	8.2	Naff, 1973
well SM17 NE\4NW\4SW\4 S8,T18S,R51E	71	0		27Ma	172	31	×	67	89	810	26	246	0	1635	288	-	7	-	3161	3067	7.9	Naff, 1973
Jack Rabbit Spring NW4SE4NW4 S18,T18S,R51E	7			200c = 0.20,		24 0.01, St		160 Li = 0.21,	95 PO ₄ <0.0	420 1,	21	168	0	980	310	1.7	29	-	2189	3000	8.0	Naff, 1973
Jack Rabbit Spring SEMNWASEM S18,T18S,R51E	8.		ks: Li		66	22	-	45	21	68	7.8	300		78	20	1.52	0.1	0.38	541	12	-	Naff, 1973
Jackrabbit (Rogers) Spring SEMNW%S18,T18S,R51E	8.	2	587	27Ju	162	1	12	33		20	-	20		121		12	12	2		675		Walker & Eakin, 1963
Jack Rabbit Spring SE4NW4SE4 S18,T18S,R51E	83		ks: Li	No1 = 0.08.	r66	22	2	45	21	68	7.8	300	0	78	20	1.5	0.1	0.38	412	2		Dudley & Larson, 197
Jack Rabbit Spring SEMNWMSEM S18,T18S,R51E	78		ks: Li -	Oct = 0.21.	:70	24		158	95	420	21	168	a	980	310	1.7	29	025	2140	2	23	Dudley & Larson, 19]
Big (Ash Meadows; Deep) Spring SW%NE4S19,T18S,R51E	B			14Feb ta is pro		from se	everal sp	58 rings.	12			290		82	28	1.75				79	7.7	CWRR, 1973
Big (Ash Meadows; Deep) Spring SW4NE4S19,T18S,R51E	83	2	1773		1	÷			. 	-	-	.	-	1075	-	. π .	io n i	() 	-53	700	1	Hughes, 1966
Big (Ash Meadows; Deep) Spring SW4NE4519,T18S,R51E	82			27 Jan Alluvium		m) Na *	K = 4.5	5, Ca + M	g = 4,72,0	CI + SO4 -	3.00.	æ			. 6 3	ie:	-	÷		×	÷	Mifflin, 1968
Big (Ash Meadows; Deep) Spring SW4NE4519,T18S,R51E	81	R.	÷	27Oei	164	÷	÷	48	14	54	+	314	~	105	26	1.4		-	482	÷	7.2	CWRR, 1973
Ash Meadows (Deep; Big) Spring NE4S19,T185,R51E	75-93			26Jul ger spri		24°C, sn	naller is	34°C.	-	-	- 21	24	-	24	1	1	i e	141	4	42	-	Lamke & Moore, 196
Ash Meadows (Deep; Big) Spring NE%S19,T18S,R51E	81			27Jan = 0; PO.		32 51; Sr =	0.11 1.8.	45	81	98	÷	314	0	110	25	1.4	0.3	0.51	468	780	7.7	Walker & Fakin, 1963
Big Spring NW4SW4NE4 S19,T18S,R51E	83		ks: Li	Nov 0.12	66	28		44	19	97	8.6	318	0	105	25	1.3	0.2	0.44	480	14	-	Dudley & Larson, 197
Big Spring SWHNEHS19,T18S,R51E	HI		ks: A1 -	27Oct = 0.08, 1		75 0, PO ₄ -	0.03 = 0.	48	14	95	9.0	311	a	105	26	1.4	0	1	610	773	7,4	Naff, 1973
Big Spring SEMNWWS19,T18S,R51E	82	2	-	29Apr	71	-	1	51	14	106	8.6	301	0	130	32	1.5		0.25	644	770	7.5	Naff, 1973
well SW%S19,T16S,R49E	73		1200 ks: Dep			_ perfora	ted 100	-300 ft.	-	2	-		025	12		-	<i>w</i> .		-	14-	-	Walker & Eakin, 1963
well NE44S28,T165,R49E	75			15Mar ath – 30		_ perfora	red 120	-300 ft.	141	1		-	51 44 5	100	123	123	(12) (12)	-	÷	440	4	Walker & Eakin, 1963
well SEMS32,T16S,R49E	70			26Jun 26Jun		 perfora	- ted 94-	248 fi(?).	-	24	-		823	-		1.00	-	2.00		-	-	Walker & Eakin, 1963
well NEMNEMNWM S35,T16S,R49E	75		ks: Dop	18Aug ath - 33	62 25 R;	34 A1 = 0.6	0.03 5, 1.i = 0	50 .18, PO4	17 = 0, St = 1	106 .0.	12	286	0	145	29	4,4	0.5	0.42	545	796	7.3	Walker & Eakin, 1963
USGS well NEWNWWS27,T165,R51E	87		ks: Li -	Feb 0.07	68	22	-	45	18	62	7.8	284	121	64	21	2,1	<0.1	1	504	÷.	-	Naff, 1973
tracer well 2 NEMNEMNWM S27,T16S,R51E	87		ks: 1.i =	Feb 0,08,	68	22	-	45	18	62	7.8	284	0	64	21	2.1	<0.1	0.27	400	(22)	-	Dudley & Larson, 197

dentification number, name, location	Temp. (F)	Discharge (gpm)	Date		SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (Jamhos/cm)	pH	Reference
									NYE CO	UNTY (c	ontinued)									
well NWGS4,T16S,R53E	91 1	43 Remarks: D	8 10Jul epth – 1		21 ; perfor	0.03 ated 800		21 ; Al = 0.0	37 03, Li = 0,	5.2 PO ₄ = 0.1	256 6, St = 0.4	0	53	16	0.9	0.9	120	336	544	7.1	Walker & Eakin, 1963
army well 1 NW485,T165,R53E	87	Remarks: L	Apr = 0.04.	69	20	14	44	22	36	5.9	258	0	51	13	1.1	1.1	0.20	308		-	Dudley & Latson, 19
well \$5,T165,R53E	90 1	Remarks: D	– 15Jul opth – 9		-	4	46	21	2		254	-	58	17	0.9	1.4	-	332	1 de- 1	7.5	CWRR, 1973
well SEMS1,T17S,R48E		Remarks: D		88 ft;	perfora	ted 30-1	97 ft.	-	-	-	-		-	\rightarrow	-	-	-	-	-		Walker & Eakin, 196
well NEMNEMNW4 S12,T17S,R48E	-17		- 13Dec	32	60	-	H1	24	160	15	370	0	231	86	3.2	28	-	997	1250	7.8	Naff, 1973
well NE454,T175,R44E	82	65 Remarks: D	0 300et epth - 6		-	1	-	-	-		-	-	-	-	(=)	-		2		1	Walker & Eakin, 196
well NE%S7,T17S,R49E	73 I	Remarks: D	- 25Jun epth - 20); perfo	orated SS	-210 ft(?).	2		9	+	-	-		-	-	÷	-	-	Walker & Eakin, 196
well SE44\$7,T175,R49E	73 I	Remarks: D	 25 Jun epth = 4(perfora	ted 54-3	60 n.	-	-	000	÷	-	-	(2))	1)(-		Ξ	-	-	Walker & Eakin, 196
well NW%S11,T17S,R49E	70 I	Remarks: D	– 20Jun epth – 21		-); perfe	orated 80	-300 fi(n. [–]	Ξ	1940	, ×	-	-	1980 1945	1900	-	20	8		98 2013	Walker & Eakin, 196
Mecca well NESNWSS11,T17S,R49E	71		- 23Feb	71	1		46	13	113	15	220		158	36	2,3		0.6	602	740	H.4	Naff, 1973
Ash Tree Spring SEMSEMSEM S35,T17S,R49E	72 F	Remarks: A	- 1Jul <0.1, M		76 1, Sr 0.3	<0.5 25, 1.1 0.0	15 17, PO4 <	4,2 0.01.	55	8.8	156	0	.35	6.6	2.6	6.7	0.28	291	360	8.0	Naff, 1973; Dudley / Larson, 1976
Ash Tree Spring SERASERS35,T175,R49E	75	14	0 8May	52	80	0.08	16	4.8	55	7.9	160	30	37	7.2	2.8	3.9	.29	293	370	7,9	Walker & Eakin, 196
Fairbanks Spring SE%NE%S9,T175,R50E	81 F	temarks: A.	270ct 1 = 0.06, 1		20), PO4 =	0 = 0,	51	(18)	71	8,0	300	0	80	22	2.2	0	0,51	552	686	7,3	Naff, 1973
Fairbanks Spring SEMNEMS9,T175,R50E	81	171	5 23Jul	62	-	-	-	÷	÷	(-)	-	(4))	24	1			-	S	650	2	Walker & Eakin, 196
Fairbanks Spring SEMNE4S9,T17S,R50E	81 F	1713 Cemarks: In		(epn	() Na +	K = 2.82	55 , Cu + Mj	18 (= 4.23)	93 CI + SO ₄ =	2.28.	367		74	262	-		-	8	911	۰. مرد	Mifflin, 1968
Soda Spring SE%SW4NW4 S10,T17S,R50E	21 F	Remarks: A	- 30ct = 0.10, ł		23 0.01, Sr	0,17 - 0.62, I		18 PO4 <0.	78 .01.	8.7	288	0	82	21	1.9	<0.10	æ	\$37	695	7.9	Naff, 1973
Bell (Soda) Spring SW4S10,T17S,R50E	73	7	9 31Jul	62	-	2 4 2	-	\approx	-		÷	-	12	-	24	1	28 	8	725	3	Walker & Eakin, 196
Soda Spring SE%SW%NW% S10,T17S,R50E	73 F	Cernarks: Li	Nos = 0.10.	66	35		36	17	106	10	330	30	93	27	2.1	<0,1	0.99	488	1971	2	Dudley & Larson, 19
well NE44SE44SW4 \$10,T175,R50E	72 F	Remarks: D	Jun epth – 15		-	-	-	Ξ.		-	÷		()	Ξ.	9			÷.	(* (8	
well SE42SE44SW44 S10,T17S,R50E	70		- Feb	71		-	-	2	-	-	20	9	12	-	-			÷.		ж	Dudley & Larson, 19
well SM13 SW4SW4SE5 S10,T17S,R50E	70 F	Remarks: A	- 30ct = 0.2, M		31 01, Sr -	0.04 - 1.1. Li	22 - 0.14, P	11 D4 <0.01	110	15	296	0	74	22	2	0.5	9	554	640	8.0	Naff, 1973
"Purgatory Spring" well SWMNEMSWM \$14,T175;R50E	93 F	Cemarks: D	19 epth – 93				22	2		22	2				2			10		2	Dudley & Larson, 19
Rogers Spring NW%NE%S15,T17S,R50E	82 F	Remarks: Li	Nov = 0.09,	66	23		47	21	69	7.8	302	370) 1	78	21	1.52	<0.1	0.31	547	23	1	Naff, 1973
Rogers Spring SW4NE4515,T175,R50E	84	1.5	- 70ei	71	5	1	55	15	78	9	290	17.1	96	27	1.8			571	693	8,0	Naff, 1973

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppni)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
							1	YE CO	UNTY (a	ontinued	6									
Rogers Springs NWWNE%S15,T17S,R50E	66	725	1966?	23	61.0	50	20		76	305	Ø	79	23	1.2	0.9	0.28	-		-	Maxey & Mifflin, 1966
Rogers Spring NW4NE4515,T175,R50E	84 H	717-736 temarks: In a	14Jan65 alluvium; (ej	pm) Na +	K = 4.00	Ca + Mg	= 4.14;0	1 + 504	3.52.	신부가			÷	-	×	-	99	-	÷	Mifflin, 1968
Rogers Springs NWMNEWS15,T17S,R50E	82	82	29Jul62	-	-	-	12	-	-	24	2	-	-	-	-	1	23	650	-	Walker & Eakin, 1963
well NW%NW%S21,T17S,R50E	76 F	temarks: Der	Jun68 oth – 202 D	£	-	-	1	-		-		-		-		~	-	-	÷	Dudley & Larson, 197
Longstreet Spring NEMNWANEM S22,T175,R50E	81 R	lemarks: Al	28Oct64 = 0.05, Mn		• 0,	51	17	68	7.9	303	0	78	22	1.6	0.3	0,45	549	681	7,4	Naff, 1973
Longstreet Spring NW4NE4S22,T17S,R50E	82	1042	29Jul62	2		1	241		1	-	1	-	-	-	-	\sim	(e)	640		Walker & Eakin, 1963
Longstreet Spring NWMNE4S22,T17S,R50E		1042-1239 temarks: In a		pm) Na +	K = 3.78.	Ca + Mg	= 4.10, 0	1+ SO4	- 2.91.	312	υ	-	28	-	2	0.35	-	685	10	Mifflin, 1968
Longstreet Spring NEMNWMNEM S22,F175,R50E	82 R	lemarks: Li =	Nov66 0.09.	22	-	48	19	69	7.8	300	0	75	17	1.7	0.4	0.26	419	98	£	Dudley & Larson, 197
Parent Springs NW4S23,T17S,R50E	93 R	177 emarks: Thr	ee springs,	-	4	12	-	-	-	14	-	-	×	-	~	-	120			Hughes, 1966
Main Spring NE4SW48NW44 S23,T17S,R50E	92 R	emarks: Al	30ct70 = 0.10, Mn	22 <0.01, Sr	0.02 = 0.78, t		19 PO ₄ <0.0	72	8,4	269	D	82	20	3107	0.3	×	518	620	8,1	Naff, 1973
spring NW%S29,T18S,R51E	72	1	28Jul62				i.	-	Q	ц́н.	2	-	2	-	-	-	+	790	-	Walker & Eakin, 196
Bole Spring NWWNE4S30,T18S,R51E	72 R	12 cmarks: Al =	27Jul62 = 0.11, Li =	33 0.17, PO.	0.03 = 0, Sr =	38 0.6.	0.6	106	9,2	306	0	113	27	1.0	1.0	1	500	776	7.1	Walker & Eakin, 196
spring NE34S30,T18S,R51E	72	12	27Jul62	-	-			-		-	9	-	2	-	Ξ.	×	-	54	2	Walker & Eakin, 1963
] Pahrump Valley																				
well NW459,T195,R53E	73 R	emarks: Al		21 0.00, As -	0.10 • 0.00, Sr		26 04 = 0.0	$\frac{28}{0, R_0 = 0}$	4.0 (1±0,1дд.	280 c/l, U = 2.	0.1.1 0.2.	36	12	0.3	2,4	0.14	302	524	7.8	Hunt & others, 1966
Wilcox well SW4NE4S34,T19S,R53E	78 R	emarks: Al =	26Oct64 = 0.04, Mn =		σ 0.	56	22	5.5	1.6	258	0	18	4.3	0.1	1.5	0.16	367	437	7.5	Naff, 1973
Ray Thomas well SW/SW/JSEN S14,T205,R53E	79 R	emarks: Dep	10Oct16 ath - 495 ft	ы. Э.		5				151	2	73	55	5	5	(2)	154	5	2	Maxey & Jameson, 19
J. M. Raycraft well \$14,T205,R53E	79 R	flowing cmarks: Dep	1916 ath - 322 ft	8		51	25	42	\sim	242	e.	32	63	5	2	\sim	383			Waring, 1919
Pahrump (Bennetts) Springs SE43E5514,T205,R53E	1	0	1963		12	2			0		5	\sim	\sim		ž.	5	2Z)	-5	$\overline{\mathcal{T}}_{i}^{i}$	Lamke & Moore, 196
Paheamp Springs SE36SE36S14,T20S,R53E	77 R	486 ternarks: 2 sp	SAug27 ntings; wate	t used for	irrigation		-					5	\sim	\sim	\mathcal{T}_{i}	Ξ.	7		5	Hardman & Miller, 19 Waring, 1965, No. 14
Bennetts Spring SW4SE9S14,T20S,R53E	75	0	1966	12	-57	12	275	15	17	100	22		5		8	5	17	57	2	Miftlin, 1968
Bennetts Springs SW4SE4S14,T20S,R53E	77 R	2520 lemarks: In a	5Aug27 dluvium; sp	rang has be	een destri	yed by d	tilling of	nearby fl	lowing wel	1.03	(\overline{a})	÷	5	5	-	5	-	-		Mifflin, 1968
Raycraft well SW/ANW/ASW/L S14,120S,R53E	81 R	lemarks: Dep	9Sep46 ath = 360 fi	-	Ξ	-	12	121	12	1/20	2	9	8	-		0	923	10		Maxey & Jameson, 19
Ray Thomas well SW4SW4SE4 S14,T20S,R53E	29 R	emarks: Der	6Mar45 ath - 254 fi	2 F											-	1	13	2	73	Maxey & Jameson, 19
George P. Brooks well SF/4SF/4NE/4 S15,F20S,R53E	82 B	emarks: Dep	10Oct46 ath = 316 ft	e =		2	372		×.	15	5			\sim	~	1				Maxey & Jameson, 19

Identification number, name, location	Temp. (F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	IICO ₃ (ppm)	CO3 (ppm)	504 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
								YE COL	INTY (c	ontinued	0									
A. F. Cayton well SW4SE%NW36 S15,T20S,R53E	7	3 Remarks: Dep	nh - 212 ft	19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (8	((*)	24		2	-	2	8	-	3	Maxey & Jameson, 1948
J. P. Cayton well SE%SE%NW% S15,T20S,R53E	81		10Sep46	-	1943	-	1	÷.,	-					-	-	÷	Ξ	(w)		Maxey & Jameson, 1948
J. M. Raycraft well NW%SE%S15,T20S,R53.	B1	l flowing	95ep46	20	-	-	-	-	-	-	14	14	-	-	-	-	-		12	Maxey & Jameson, 1948
J. M. Raycraft well NWMSEMS15,T20S,R53	55 E	Remarks: Dep	1916 th - 175 ft	; flow sta	uck at 1:	56 Et.	2	2.1	-	-	140	-	12	5	-	14	-		1	Waring, 1919
Ray Thomas well NE%NW%NE% S23,T205,R53E	79) — Remarks: Dep	9Sep46 ah - 516 A	-	-	-	÷	-	-	÷	-	2	-	24	2	S.	×	-	3	Maxey & Jameson, 1948
Manse Ranch Springs SEMNEMS3,T21S,R54E	73	1500	-	-	30	52.2	10.9	30.2	- 10	239	0	42.3	0.7	5 <u>-</u>	14	12	375	-	-	Hardman & Miller, 1934; Waring, 1965, No. 141
Manse Ranch Springs SEMNEMS3,T215,R54E	75	i 800-1160 Romarks: 2 sp		18 rused for	irrigatio	55 n ; Clark (29 County.	tt	-	239	0	42	4,9		1	14	268		-	Hardman & Miller, 1934
Manse Ranch Springs SEWNEMS3,T21S,R54E		605-1500 Remarks: In a	_ lluvium ; flo	w has dir	ninished	because o	of nearby :	flowing w	:II. (epm)	Na + K =	1.30;Ca	+ Mg = 3.	50; CI + SC	4 = 1.02	; Clark C		- 20 - 20-0		3	Mitfilin, 1968
well NE4S16,T21S,R54E	73		1955	16	0	53	22	2.1	0.8	224	0	47	3.0	0.5	0.6	100000	259		7.9	Scott & Barker, 1962
well NE4S16,T21S,R54E	74	Remarks: Al -	0.0, Mn =	0.16 0.00, PO,	4 = 0.0, F	53 Ra = 0.1,4	22 µc/1, U =	7.1 6 ; Clark	0.8 County.	224	0	47	3,0	0.5	0.6		259	428	7.8	Hunt & others, 1966

PERSHING COUNTY

[131] Double Hot Springs-Black Rock Hot Springs

for all a second s																				
springs S3,10,T35N,R26E	Rema	irks: See t	the section	"Double	Hot Spi	rings–Bla	ick Rock	Hot Sprin	gs'' in Hur	nboldt Co	unty.									
[151] Buffalo Valley Hot Springs																				
spring S6,T29N,R41E	hot Rema	irks: See I	Buffalo Va	lley Hot S	Springs,	Lander C	ounty.													Wollenberg & others, 1977
[231] Bailey well SW45W456,T35N,R24E	78 Rema		16Jul67 th - 310 ft	iii Li		1.8	0.9	1	24	166	2	77	44	2	5	2	1/23	480	8.1	Harrill, 1969
[232] spring SE%S28,T35N,R28E	72 Rema		22May57 = 0.8; loca	_ tion unce	- rtain.	62	27	-	8	1280	1	102	235	5.5	-	-	4	1	6.4	CWRR, 1973
[233] Trego area																				
Butte Spring S317,T34N,R26E	187 Rema	rks: Unsu	1973 inveyed are	85 a, near Ti	rego (lat	25 .40°46'1	0.2 N, long. 1	463 19°7'W) 1	9.3 .8 mi east	154 of Trego	south of	86 railroad.	520	×	×	×.	28	2300	8,4	Mariner & others, 1973
Butte Spring S317,T34N,R26E	182	20	1885?	e :=	10	\geq	1	-	8	-	3	-	-	E	Ξ	-	1	2	-	Waring, 1965, No. 63
spring NWWS31,T34N,R25E	hot Rema	rks: Prob	1963 ably Butte	Spring in	R26E,	east of T	rego.	1	\simeq	1	=	÷	-	E	Ξ	-	-	-	÷-1	Sinclair, 1963a
spring? T33N,R25E	187 Rema	rks: H ₂ S	= 5.0, proi	85 hably But	te Sprin	25 g.	0.2	545	10	188	0	86	280	5.0	×	9	572	2300	8.2	Grose & Keller, 1975b
Coyote Spring S37,T33N,R25E	72	100	Jun75	58	17	12	20	1175	17	1210	σ	5.8	1170	1.5	\overline{a}	4.5	3060	5150	7.6	Grose & Keller, 1975b
Garrett Ranch well NW4510,T33N,R25E	92 Rema		12Jun61 th - 125 th	.94 Approx	imately	13 2 miles si	0.6 outhwest	272 of Trego.	8,4	93	-	156	278	2.8	0,2	2		1410	7.4	Sinclair, 1963a
Garrett Ranch well NW%S10,T33N,R25E	125		100	5	10	15	121				\approx	5		5	5	177		17	\overline{a}	Sinclair, 1963a
Garrett Ranch well NW3510,T33N,R25E	104 Rema	rks: Dept	th - 90 ft.	17.	\geq				3	351		5	5	15	5	5		1		Sinclair, 1963a
Garrett Ranch well NEVS10,T33N,R25E	108	E.	272	$\overline{\mathcal{D}}$	2	\overline{a}	07.5				3		\overline{a}	77	5	Ø	5	17	75	Sinclair, 1963a
well? T33N,R25E	92	-		94	E	14	0.4	310	12	93	15	156	275	2.8	$\overline{\mathcal{D}}$	77	1410	1980	8.4	Grose & Keller, 1975b

126

lite	ntification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SOq (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos?cm)	рН	Reference
								PEF	SHING	COUNT	Y (conti	nued)									
X	vell? T33N,R25E	97	1	7.	86	-	21	0.2	315	21	102	14	141	290	2.7	12	2	1	2150	8.6	Grose & Keller, 1975b
(234) spri	ngs approx, SW42T33N,R35E	warm I	small Remarks: Sev	eral springs	, near Hu	mboldt Ri	ver 2 mil	es north c	of Mill Cit	y. –	12	20	21	-	-		-	Ξ.	- 64	1	Waring, 1965, No. 53A
[235] Lea	ch (Pleasant Valley, Nelson's	, Guthrie)	Hot Springs																		
3	pring SE44S36,T32N,R38E	198 F	53 Remarks: Li =		135	- 10	8.8	0.5	160	13	366	а́	53	29	7.6	1	1.2	5	811	7.4	Mariner & others, 1974
s	pring SEMS36,T32N,R38E	1	- Remarks: Al - 10 ¹⁸ (%00) =	- 0.009, N -15.76.	= 0.40, P	= 0.07, Br	- 0.06, 1	- 0.003,	Rb = 0.13	2, Ce = 0.	2, Sr = 0.2	9, Mn = (),02, Cu =	0.01, Hg	- 0.0006,	δD(%)00	n) = -128	8.6,	178	3	Mariner & others, 1975
1	each's Hot Springs NW4S36,T32N,R38E	204	200 Remarks: PO ₂ Ni <0.02, Pb	20Feb74 <0.1, NH = 0.05, Rb	4 = 1.3, A	0.12 ug <0.02, 1 6 <0.1. Se	As <.054	20 g/l, Ba = l. Sn <0.0	518 0.46, Be < 15, Sr = .1	<,005, Bi	544 <0.1, Cd .050.	0 <0.01, Ci	47.8 <0.02, C	775 s = 2.82, C		<0.1 lg <0.5µ	۳. Li =	1968 5.34, Mi	3312 n034,	7.0	Sanders & Miles, 1974
2	Selson (Guthrie) Hot Spring \$35,T32N,R38E	139-204		19Mar43	-		60	18	93	-	366	rigation ;	50 deposits c	35 of siliceous	_ sinter an	_ d "tufa"	-	ж	-	÷	Miller, Hardman & Mason, 1953; Waring, 1965, No. 65
3	prings S36,T32N,R38E	140-207	90-135	-				-	24		12		4	÷	-	4	1	2		2	Cohen, 1964
	pring SEM4S36,T32N,R38E	139-204	-	before 1940	140	(<u>+</u>)	1.5	tr	15	93	233	74	52	33	-	-	tt	790	÷-1		Dreyer, 1940
	pring S36,T32N,R38E	-	-	-	-	-		2	12	93	233			33		-	-	790	-	-	U. S. Bureau of Re- clamation, 1972, table 7
	prings S36,T32N,R38E	158-202	200	÷	-	-	183	÷	-		-	(-)	-	98	-		24	$\overline{\mathbf{H}}$	190		Waring, 1965, No. 64, 8
	836,T32N,R38E	93 			175 La = 70µg/	/I, W = 132	3 248:/1, Вт	= 70µn/i,	181 Sb = 14pa	11 g/l, Mo =	3µg/l, Rb	= 125µ ₀ /	, Cs = 122	30 2µg/l, As =	16 <i>μ</i> g/l, F	e <52με		.02µg/1,	1	8	Wollenberg & others, 1977
÷	ooal 836,T32N,R38E		 Remarks: U < An = 55µg/l.		89 Ia = 190µ		10 ра/1, Вг	= 7 <i>5</i> µgА,	154 Sb = 9µg/	H 1, Mo = 1	μα/1, Rb =	98,µg/1, C	s = 102µg	26 J. As = 3p	 g/l, Fe <	75μg/1, 5	e <0.02	— цg/I,	(4)	Э	Wollenberg & others, 1977
	ool S36,T32N,R38E			:0.1дg/l, Ва	99 i = 170µg	(I, W = 125	7 iµg/l, Br	= 60µgЛ,	164 Sb = 10#	g g/1, Ma =1	.5де/I, Rt	e = 105μg	/l, Cs = 1)	27 Юде/I, Аз	<4µg0, F	е <55µg	/1, Sc <0	.02µ¢/l.))),	Wollenberg & others, 1977
r	ool \$36,T32N,R38E		temarks: U < An = 12µg/l.	0.3µg/l, Ва	= 190µg	/1, W = 80£	8 ig/l, Br =	 35μg/1, S	80 6 - 180де	4 g/1, Mo =	і 3µg/I, Rb	- 1 20µg	 /1, Cs = 11	12 5дg/I, Аз	<5µу/Л, F	e = 950µ	α/I, Š¢ =	0.16µz/	1.	() (=	Wollenberg & others, 1973
	nol \$36,T32N,R38E	203 1	 temarks: U <	0.2µµ/1. W	183 = 25µµ/I,	Br = 30,4g	7 /1, Sb = 1	40μg/1, Ν	89 lo=13µg	7 /1. Rb = 1	20pg/1, Cs	= 115µg		14 2µg/l, Fe <	25µµ/1. S	c <0.03	 g/l, Mn •	- = 55де/1	2	4	Wollenberg & others, 1977
	ning NE4NW45E4 S36,T32N,R38E	167 R	lemasks: U =	0.10 ppb;	W = 84 pp	b; Mo = 0	.H ppb; 5	- Б = 9.3 р	149 pb; Ba = 1	86 ppb.	1	17	7	25	3	-	-		2		Wollenberg & others, 1975
	rring NE4NW4SE5 S36,T32N,R38E	167 B	temarks: U =	0.40 ppb;	w - 94 pp		9 ppb; S	b = 13 pp	167 h; Ba = 28	86 ppb.		2	ា	27	Ξ.	5	2	5	5 0	0	Wollenberg & others, 1975
	oring NE4NW4SE4 S36,T32N,R38E	203 B	lemarks: U <	0.28 ppb; '	W = 24 pp	- b; Mo = 13	- 3 ppb; Sb	- = 134 pj	87 1b;Ba = 1	 26 ppb.		æ	×	12	ā	-	Ξ.			5	Wollenberg & others, 1975
	pting NEMNWMSEM \$36,T32N,R38E	203 F	Remarks: U +	0.35 ppb;	W = 44 pş	ob; Mo = 1	4 ppb; Si	b = 156 p	89 pb: Ba = 2	- 14 ppb.		7	8	13	5		ίΞ.	2	-	2	Wollenberg & others, 1975
	pring NEWNW4SE4 \$36,T32N,R38E	201 p	lemarks: U <	0.25 ppb;	w - 75 pp	b; Mo = 1	- 3 ppb; St	o = 177 p	77 pb; Ba = 1	82 ppb.		-	15	12	2	5	97. 1	3	1		Wollenberg & others, 1975
5	pring NEWNWASEW S36,T32N,R38E	174	temarks: U =	0.08 ppb;	W = 120 3	npb; Ma =	1.5 ppb;	- Sh = 10 p	159 opb;Ba =	- 166 ppb.	2	12	3	26	it.	3		5		ã	Wollenberg & others, 1975

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO ₃ (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							PE	RSHING	COUNT	Y (conti	nued)	0047000	0.000.000.0							
[236] Humboldt (Rye Patch) area																				
Phillips Petroleum Co. Campbell E No. 1 well SEI4S21,T31N,R33E	325	– Remarks: De	1977 pili - 1853	fl. Geot	hermal ex	plorator	y well,		5	5	27	57	2	<u>ت</u>	27	27	53	30		unpublished data, Nevada Bureau of Mines & Geol
spring S20,T30N,R33E	warm) 64		24		-	$\overline{\mathcal{G}}$	5	5	24	5	3		5	5	100	(\overline{a}_{i})	: : :??	3	Crofutt, 1872
[237] Southwest Dredging Co. well SE4534,T29N,R34E	75	2 Remarks: De	15May52 pth - 136 t		0.05	50	9.3	33	1.3	210		23	29	0.1	2.0	0.18	271	463	7.4	Loeltz & Phoenix, 1955
[238] Kyle Hot Springs																200				
spring SW4S1,T29N,R36E	171	5 Remarks: Li		150		95	25.5	540	80	544	≤ 1	51	770	5.7		3.8	Ð	3220	6.5	Mariner & others, 1974
spring SWAS1,T29N,R36E		Remarks: Al Gas (volume						, Sr = 0.2	9, Mn = 0.	02, Cu = 0).01, Hg =	a.8006,	δD(%00) =	-130.0,	80 ^{1.9} (%	 (eo) =	5.30.	140	÷	Mariner & others, 1975
spring NW4NW4S12.T29N,R36		Remarks: PO Mn <0.01, N	20Feb74 04 <0.1, NH 1 = 0.02, Pb	4 = 1.3, .	Ag < 0.02	97 1, As = 1. 38, Sh <0	20 5µg/1, Ba),1 , Se < 1	518 38, Be 0µg/1, Sn	80 <0.005, Bi <0.05, St	544 <0.1. Cd - 4.93, Z:	0 = 0.007, n = 0.021	47.8 Cr <0.02			<0.1 . Hg = 0	5,42/1, Li	1968 = 0.667	3312	7.0	Sanders & Miles, 1974
spring \$2,129N,R36E	100-160	small Remarks: Sev		; sinter d	eposits; f	ormer re		-		-	-	1	-	1	24	1	-	-		Waring, 1965, No. 66
spring NWWNW4S12,T29N,R36	159 E	0	25Mar46	53	tı	96	20		574	512	54	59	770	_	-	-	1970	-	\sim	Locitz & Phoenix, 1955
spring. S121?),T29N,R36E		Remarks: (Fi Sc <0.04µµ/l			<0.7µg/l	87 , Ba = 56	5.pg/1, W -	535 82µq/1, 1	77 sr = 720μg	/1, Sb - 8µ	#/1, Mo <	2μη/l, Rh	730 - 760дд/I	. Cs = 340	– Jug/l, As	<20µe/I	, Fe - 29	- Юре/1,	×	Wollenberg & others, 1977
spring	_	Remarks: U	<0.7 mph: W	- 80 nn	h-Mo <1	nnh: Sh	- 8 pmh-1	569 8a = 550	- han	-	-	4	721	-	-	-	÷.	14	-	Wollenberg & others, 1975
[239] Colado					101200		1.1.1.1.1	10 (110) 10 (110)												
Mineral Materials well SE%833,T28N,R32E	150	5	80ct64	76	0.4	115	19	1700	120	186	0	282	2580	4.1	42	5.4	5040	10200	7.9	Everett & Rush, 1965
drill hole NE45E945E94 S27,T28N,R32E	155 1	Remarks: Ho	d water tep	orted at 8	50 ft in a	drill hole	and in a :	10-ft deep	- shaft abou	ut 350 fr t	- to the sou	thwest.	-	-	i.	÷	1	-	ø	Pruss, Bonham & Spruck, 1961
[240] well NW%S2,T27N,R38E	70	2	1May52	36	0.05	1	-	98	6.5	204	D	71	126	0.3	1.1	0.2	505	842	7.6	Cohen & Everett, 1963
Paris well NW%S2,T27N,R38E	72 F	10 Remarks: De	24Jul63 pth – 382 f		0.04	46	19	101	fi.4	205	0	69	124	0.5	1.3	0.3	503	853	7.9	Cohen & Everett, 1963
241] well NW4528,T27N,R38E	71 F	Remarks: De		t; artesiar	n flow of	 10 gpm :	- reportedly	from the	gravel-cl:	ay contact	at 90 fee	t.	$\overline{\mathbf{x}}$	2	\sim		(22)	8		Cohen & Everett, 1963
242] Jersey Valley																				
spring SW4S28,T27N,R40E	84 J	5 temarks: Li		110	10	36	4,4	180	20	374	<1	150	40	7.8		1.9		1040	7.1	Mariner & others, 1974
spring SW%SW%S28,T27N,R40E	hot	1	29Ju159	17	10	\overline{a}	1	200	\approx	-	-	8	5	-		-	-	3		Cohen & Everett, 1963
Home Station Ranch Hot Spring SEMS29,T27N,R40E	135	50	8Jun50	×	3	-		-	-		-	÷	÷	÷	æ	×	200	9	÷	Collen & Eserett, 1963; Johnson, 1977, p. 106
243] Sou (Seven Devils, Gilbert's) He	ot Springs																			
spring SE%S29,T26N,R38E	158 P	lemarks: PO In = .042, N	20Feb74 4 = 0.1, NH i <0.02, Pb	4 = 1.0.7	0.30 Ag <0.02 tb = .202	.As <0.0	19,8)Sµде/1, Ва 1, Se <1.0	167 10, Be 0g/1, Sn <	26 <0.005, B .05, St = 8	324 ii <0.1, Co i.37, Zn =	0 i <0.01,0 .085.	352 7 <0.02,	77 Cs = 1.30,	5.5 Cu <0.01	0.2 , Hg <0	Spell, L	978 i = .704.	1411	7.3	Sanders & Miles, 1974
spring SE%S29,T26N,R38E	163		1973	65	2	110	22	165	26	312		370	75	20	8	÷	-	1407	8.1	Manner & others, 1974
springs SE%S29,T26N,R38E	160-185		5	1	5	2	-		≅	100	15	7	7		\overline{a}	5	1			Hague & Ernntons, 1877; Waring, 1965, No. 68
Devil's Ranch Springs S29,T26N,R3BE	2	1	6 - 556	Ĩ	72	142	571	165	n	308	1	327	85	7	2	÷		3	ŧ.	Miller, Hardman & Mason, 1953

	Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO _A (ppm)	Cl (ppm)	,F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
								PE	RSHING	COUNT	Y (conti	nued)									
	spring T24N,R36E?	-	– Remarks: Prot	5000101	- lot Spring	es, 529,T	u 26N,R35	0 SE,	169	-	122	-	88	124	8	3	0.66	2	$(\exists \cdot)$	2	Miller, Hardman & Mason, 1953
	spring \$1,T25N,R36E	hat F	Remarks: Near	r north end	of Disie	(Salt Ma	rsh or Os	obb) Vali	ey. Section	Townsh	ip and Ra	ngo as giv	en in War	- ing (1965)	are prob	ably inco	mect.			-	Waring, 1965, No. 67
244]	McCoy (J. Saval) springs NW4S33,T26N,R39J.	120		28Ju159	-	-		9 2	-	9 142	8			183 O		3 18	1.0	-	-	-	Cohen & Everett, 1963
	J. S. Ranch spring SW4533.T26N.R39E	119	670	7Jun50	20	- 20		22	-		$\hat{\mu}$	3 90	8	99	\approx	÷	9	\tilde{H}	-	Э	Cohen & Everett, 1963
245]	New York Canyon kaolin deposi	t i																			
	drill hole	hot			-		-		-	373	\overline{a}	100			125			12	-	1	K. Papke, personal
246]	SW451,T25N,R35E Hyder (Cone) Hot Spring SW4S28,T25N,R38E	83	Remarks: Dep	6JulS0	- Steam e	eported	in a drill i	hole at the	e deposit.		73			1				2	1	5	communication, 1977 Cohen & Everett, 1963
	Hyder Hot Spring SW4528 T25N,R38E	175	Reinarks: An i	7Jun50 area of tray	ertine is r	eported.	1 20	÷		e,	=	-	2	1	5	5	5	5		5	Cohen & Everett, 1963
	Hyder (Cone) Hot Spring SW4S28,T25N,R38E	125	smatl	2	- 20		9 7 50	汞	5	17.1	5	17.0	2		2			2	223	Q.	Waring, 1965, No. 69
247)	Lower Ranch Hot Spring \$35NW34\$16,T25N,R39E	144	12	1973	42	23	31	15	143	12	456	2	63	29	3	2	2	-	850	8.1	Mariner & others, 1974
248]	spring NW\4519,T25N,R39F	83	50	7Jun50	140	4	90	-	-	-		-	12	-	12	9	1	÷	199	2	Cohen & Everett, 1963
									STOP	EY CO	UNTY										
250]	hot spring T19N,R23E	73	Remarks: Poss	sibly same a	s Biddlen	nan Sprir	ngs.	5	323	÷	5	5	-	2	17	5	2				Waring, 1965, No. 58
252]	Comstock mining district																				
	Ophir shaft SEMNWMNEM S29,T17N,R21E				38	ţ,	78	98	La.	11		76	198	6	2	-	2		14	-	Peale, 1886, p. 330
	C & C shaft SW4SE4ANE% S29,T17N,R21E	-,	Remarks: Al =		133 n 2250-ft	6.3 level,	100	5.8	130	53	82	20	475	19			2	Ξ.		Ξ.	Reid, 1905
	Savage Mine NE45E45W14 S29.T17N.R21E	-,	Remarks: Al+	• Fe = (),5 p	30 pm. Fron	n 600-ft	155 level.	24	7.4	74	=	100	390	1.34	5	2	10		570	8	Church, 1878
	Gould & Curry Mine CS29,T17N,R21E	-	Remarks: From	m 1800-ft H	69 evel,	tr	83	-	7.8	225	573	193	203	12		\overline{a}	i:			2	Church, 1878
	Gould & Curry Mine CS29,T17N,R21E	-	Remarks: From	m 1700-ft 1	.38 evel.	T.	71	15	0.27	63	3.42	47	173	0.43	1		1			-	Church, 1878
	Hale & Norcross shaft NWSS32,T17N,R21E	100	1		60		112	-	146	82		242	273	14	5	7			172	3	Church, 1878
	New Yellow Jacket shaft SW4SE4S32,T17N,R21E	170 1	Remarks: Max	Nov1880 dintam wate	r tempera	ature rec	orded ; of	her temps	ratures me	intioned i	n text. Fr	om 3000-	ft level.	50	\overline{a}	2	2	5	35	3	Becket, 1882, p. 230
									WASI	IOE CO	UNTY										
253]	spring NW45512,T44N,R191	73	\$ 5	-							÷		-	9 .	9			8			Sinclair & Malchow, 19
	springs SE4S12,T44N,R19E	warm	Remarks: Six	springs sho		(4))	-	\mathbb{R}^{2}	÷	-	2						18	2	2	3	Alkali Lake 7%-minute quad
	Hill's Warm Spring SW5518,T44N,R20F	80	i ie	2 12 H	3	2	8		1			÷	20	10	28	28			173	\overline{c}	Sinclair & Malchow, 1
	Hill's Warm Spring \$18,T44N,R20E	83	10					\approx	, =		-				1	2	÷	\overline{a}	195		Waring, 1965, No. 35A
2541	Twin (Vy2) Spring NW4S4,T42N,R19F	71	50	÷.,	8 7 8	1							37	10	1	7				5	Sinclair & Malchow, I

	Identification number, name, location	Temp. (°F)	Dischurge (gpm)	Date	\$iO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	рH	Reference
								WA	SHOE	COUNTY	(contin	nued)									
	Twin (Vya) Spring 54,T42N,R19E	70	200		121				25	2	=		65	5	i i i	1	8	5		2	Waring, 1965, No. 350
255	spring T38N_R18E	hat F	comarks: At in the	the south o	nd of Su t in Califo	prise Val	ley, possib	ly along t	he Suprise	e Valley fi	ult (Sloss	en, 1974;	Woods, 1	974), whic	h has ext	ensive as	sociated	geothern	nal –		Waring, 1965, No. 36
256]	Leadville Springs T37N,R23E	warm	1	08	-		00	$\overline{\mathcal{T}}$		-			1	\sim	25	5	1	7	120		Smith, 1956
257]	"New Spring" S18,T34N,R22E	84	1	12	86		32		25	7		0	-	2.8	2	ŝ	5		17.1	7.8	Grose & Keller, 1975b
	spring SEMS18,T34N,R22E	84 F	500 temarks: Five	e springs a	igned to 1	ighly nor	th-northea	ist for a di	stance of	700 feet :	along a Q	uaternary'	fault zor	ne. Flows in	nto Squay	v Creek	8		-	6.0	Grose & Keller, 1975a
2581	Ward's (Fly Ranch, Hualapai Fla	t) Hot Spr	ings		-																
0.000	well SEMNEMS23,T35N,R23E	75	22	25Jut67	20		34	13		61	174	12	61	48	55	ŝ	8		440	8,2	Harrill, 1969
	well NW%SE%S24,T35N,R23E	37	122	28Sep67			34	13	100	59	172	4	56	38	-	-	-	4	420	8.3	Harrill, 1969
	well SWMNEMS25,T35N,R23E	70 F	- lemarks: Dep	21May67 nh - 158		0.02	44	14	35	8.9	178	1	42	46	0.1	1.2	0	339	509	7.3	Harrill, 1969
	Richard Bailey well SW4SW456,T35N,R24E	78 F	emarks: Dep		ft; possib	ly in Pers	1.8 hing Coun	0.9 Ity.	- 1	124	166	-	77	44	9	4	1	-	480	8.1	Harrill, 1969
	Cordero Fly No. 1 temperature test hole NW45E4NE4 51,T34N,R23E	108 F	– temarks: Dep	14Jun72 11h - 660		_ ninantly	in sand.		-	2	- 23	12	2	2	a.	52	÷			2	George Berry, written communication, 1972
	pool H-82 SEMSW%NW% \$1,T34N,R23E	90			82	224	20	0.2	400	18	440	0	368	245	8	24		1	-	8.0	Grose & Keller, 1975b
	"The Geyser" well (Fly Geyser) SW4S1,T34N,R23E	>220 F	Remarks: Dep	oth – shall	- ow.			-				5	1	<i>i</i>	0		S	5	174	ē	Koenig, 1970
	"The Geyser" well (Fly Geyser) \$W4\$1,T34N,R23E	boiling F	temarks: Dep	3May61 oth - shall		5 ft bisb	18 Jower of t	4.5 ravertine	386 around w	16 ell bore	336	40	205	250	7.9	0.2	2.1	1170	1840	9.0	Sinclair, 1962b
	spring H-63 NW42SW4SW4 S1,T34N,R23E	180	emarks: Tra		86		24	0.2	405	15	456	ð	390	255	2	5	75	5		7.2	Grose & Keller, 1975b
	Ward's Hot Spring (Ward's Ranch, Fly Ranch) SW5S1,T34N,R23E	bailing F	temarks: Li =		113	-	36	3	355	19	$\langle \mu \rangle$	3tr	390	239	э	ж	8			2	Russell, 1885; Wating, 1965, No. 37
	Ward's Hot Spring (Ward's Ranch, Fly Ranch) SW4S1,T34N,R23E	-	500 Remarks: Bot	1961 h calcareo	us and sili	icelous sp	- ring depos	āts.	i.e.	2				-		4	2		-		Sinclair, 1962b
	well H-18 SE4SE4NE4 S2,T34N,R23E	196			88	-	28	0.2	400	18	452	-0	-	245	\sim	-	-	÷	-	7.2	Grose & Keller, 1975b
	Cottonwood Springs SW4SW4S2,T34N,R23E	73-79	12	114	÷	1	227		1. ja	-	-	4	2	3	10	1	24		140	-	Alvin McLane, written communication
	Western Geothermal Inc. Fly Ranch No. 1 well SW%S2,T34N,R23E	207 F	440 Remarks: Dep			-	33	4.3	347	17	436	4	187	244	ä	5	ŝ	1667	ф.,	<i>ii</i>	Alvin McLane, written communication, 1972
	Western Geothermal Inc. Fly Ranch No. 1 well SW452,T34N,R23E	207 F	440 lemarks: Dep		+ ft; peot	- hermal e	33 xploratory	4.1 weil.	335	13.8	431		186	229	~	2	-	1768	2	÷	Alvin McLane, written communication, 1972
	John Casey steam well NEWSEWS2,T34N,R23E	-		3May61	76	1	18	4.6	386	16	336		205	250	7.9	0.2	2,1	1170	1840	9.0	Harrill, 1969
	pool H-50 SEMNEMSEM S2,T34N,R23E	90			82	æ	17	0.2	430	15	452	Ø	380	250	×	×	ž	25 7 5		8,0	Grose & Keller, 1975b

Identification number, name, location	Temp. (F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
							W	ASHOE G	OUNTY	(contin	ued)									
pool(7) H-41 SEMNEMSEM S2,T34N,R23E	92	÷.	9	90	+	18	0.2	440	16	448	0	380	260	1		-	4	-	7.9	Grose & Keller, 1975
well H-16 SEMNWMSEM S2,T34N,R23E	201 P	emarks: Trave	ertine cone	90	-	22	0.19	405	18	486	0	245	250			121	64	75	7.2	Grose & Keller, 1975)
Western Geothermal Inc. Fly Ranch No. 1 well SW%NE%SE% S2,T34N,R23E	205 P	– Remarks: pH m	nay be 7,2.	90		22	0,2	386	17	458	D	46	275	7	-	2	27	1800	8.4	Grose & Keller, 1975)
pool H-8 NW4NE45E4 S2,T34N,R23E	109	77	÷	84	378	18	0.2	405	16	456	0	250	245		×		æ		7.5	Grase & Keiler, 1975
pool H-5 NE4NW45E4 S2,T34N,R23E	88	÷.	~	88		22	0.15	424	17	450	0	-	240	263	-	-	9	1000	8.2	Grose & Keller, 1975
pool H-3 NE4/NW4SE4 S2,T34N,R23E	95	×	×	89	-	24	0,2	380	17	458	0		240				9	1	8.4	Grose & Keller, 1975
pool(?) H-1 CW%S2,T34N,R23E	90	÷.	-	88	14	28	0.2	380	17	446	0	+	250	120	122	-	-	-	8.4	Grose & Keller, 1975
"Geyser" well CW%S2,T34N,R23E	183	÷	÷	90		32	0.18	456	17	484	0	260	260	1	140	140		2	8,4	Grose & Keller, 1975
flowing well S2,T34N,R23E	176 R	132 (emarks: Li = (1973 0:46.	82	100	31	4.2	340	17	458	4	46	240	7.0	$\langle \varphi \rangle$	1.9	4	1800	7.9	Mariner & others, 19
spring NE%S10,T34N,R23E	72	- 1	13Dec61	89	1	72	21	54	10	223	-	67	93	0.1	0.3	0.1	516	755	7.2	Harrill, 1969
spring NE4S10,T34N,R23E	72	2-3 1	13Dec61	89		72	21	54	10	223	0	67	93	0.1	0.3	0.1	549	755	7,2	Sinclair, 1962b
9] Granite Ranch																				
Cordero Fly No. 3 temperature test hole NW4SE45E4 S35,T34N,R23E	hot R	emarks : Dept]	4Aug72 h - 462 R	Near ho	t abandor	ned water	well.	L.	20	Π.	: T			120	1	100	5	5 5 2		George Berry, writter communication, 1972 Olmsted & others, 19
USGS test hole BR AH-9 NE%S2,T33N,R23E	hot R	emarks: Dept)	1973 h - 102 ft	-	-	-	÷	÷		-		ж.:	a.	94		-	-			p. 128 Olmsted & others, 19
Wall Spring \$3,T32N,R21E	warm	100		357	133		\overline{a}	<u>.</u>	-								2			Wating, 1965, No. 41
[] Gerlach area																				
Cordero Gerlach No. 3 temperature test hole SEMSEMSEM S9,T32N,R23E	boiling R	— 2 emarks: Depth	29Jun72 h – 365 ft	_ hole in g	_ ranodiori	– ite; tap bo	- oiling wat	er at 90 fi	3	B	576	3	5	0	50	5	5	(7).		George Berry, written communication, 1972
spring NE%\$10,T32N,R23E	207			184	172	73	2.2	1440	121	84	43	386	2150		-		17	17.2	7,7	Grose & Keller, 1975
spring G-3 SW4SW4SW4 S10,T32N,R23E	147	1551		186	153	80	2.3	1800	130	83	0		2430	5.0		10	<u>,;;;</u>	17.0	7.7	Grase & Keller, 1975
spring G-9 SE%SW%SW% \$10,T32N,R23E	167			178	-	73	2.0	1560	110	90	0	(E)	2100	~		at i	5	175	7.6	Grose & Keller, 1975
spring G-18 SEMSWMSWM S10,T32N,R23E	136			186	202	73	2,5	1560	135	84	0	÷	2230		28		÷	7600	8.3	Grose & Keller, 1975
spring G-19 SE%SW%SW% S10,T32N,R23E	208		•	174	8	95	1.0	1610	140		0	2	2100	2		1	5	÷.	7.4	Grose & Keller, 1975)

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	S)O ₁ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	К (ррт)	HCO3 (ppm)	CO3 (ppm)	SO ₄ (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							WA	SHOE (OUNTY	(continu	ed)									
spring G-22 SEMSWMSWM S10,T32N,R23E	132	2	×	180	() <u>-</u> -)	75	2.5	1800	128	88	0	-	2460	-	-	-	94		8.2	Grose & Keller, 197
"spring" G-23 SE%SW%SW% S10,T32N,R23E	95 F	temarks: H ₂ 5	- 6 = 0.5; fro		nt,	150	12	1900	270	10	0	1350	4950	-	-	-	9	27600	4.5	Grose & Keller, 197
spring G-24 SE%SW%SW% \$10,T32N,R23E	200	-	-	172	12	73	2.0	1590	135	66	0	360	2880	-		*	22	7800	7.6	Grose & Keller, 197
spting G-27 SEMSWMSWM S10,T32N,R23E	145	5	0	176	373	75	2,2	1590	148	82	0	272) 	2180	575	-		197		7.8	Grose & Keller, 197
spring G-28 SE/45W/4SW/4 S10,T32N,R23E	204	÷.,	n	172		68	2,4	1560	134	156	0	410	2180				10	7620	7.1	Grose & Keller, 197
spring NEMS15,T32N,R23E	145	7	×	182	1	74	1.0	1380	130	74	0	35.6	1915			3 7 8	10	1	7.6	Grose & Keller, 197
Gerlach Hot Springs (Great Boiling Spring) NW42NW42S15,T32N,R23E	÷		=	135	260	102	26	1476	8	227	Ð	353	2016			(a))	4135		÷	Sinclair, 1963b
Gerlach Hot Springs NW4NW44S15,T32N,R23E	188-194	+	=			-	-	=	(2)	8							-	1		Waring, 1965, No. 3
Gerlach Hot Springs NW4NW4515,T32N,R23E	boiling P	200 comarks: Fe	7May40 • Al = 1r.	199	8	67	5		576	97	0	363	2146	17.1	10	553	4486		27	Adams, 1944
Great Boiling Spring NW4515,T32N,R23E	187 R	emarks: Li =	1973 1.6.	165		68	1.2	1400	130	63	<1	460	2200	4.5		9.9		7610	7.2	Mariner & others, 19
spring NW4515.T32N,R23E		enziks: Al - O ¹⁸ (%oo) -		- 0.80, P -	0.10,7	vs = 0.05,	Br = 6, 1	- 0.01, R	b = 0.94, (e = 0.3, 5	= - 2.6, I	c = 0.02,	Mn = 0.03.	. Cu = 0.0	8, lig <0	.0001,8	D(⁹ 00)	+ -100.5.		Mariner & others, 15
Gerlach Hot Springs NL/ENW/ENW/E S15,T32N,R23E		emarks: PO ₄ ii = .05, Pb =		4 = 0.6. A		As = 3.3)	og/l, Ba <												8.1	Sanders & Miles, 19
Gerlach Hot Springs NW4NW4S15,T32N,R23E	203	50	6Aug47	32			Ξ.			=	1		2136			- 7	\simeq	6850	7,1	White, 19556
spring G-37 NEMNWANWA S15,T32N,R23E	149		÷	192	86	70	2.2	1420	133	7	0	1	2340	-	17	120			7.8	Grose & Keller, 1973
spring G-43 NE/ANW/ANW/a S15,T32N,R23E	114	2 0	E	172		69	2.3	1760	130	90	.0	356	2230	-		-	Ξ	-	6.8	Grose & Keller, 197
spring G-46 NE/ANW/ANW/S S15,T32N,R23E	183	-	2	172		96	2,3	1360	136	83	10	400	2350	4,8	9	10	-	7600	1.7	Grose & Keller, 197
spring G-55 NEMNWANWS S15,T32N,R23E	172	-	1	180		73	2.3	1600	140	12	30	360	2130			-	-		7.0	Grose & Keller, 197:
Hughes well SE%S15,T32N,R23E	142 B	15 emarks: Flov	6Aug47 ving (1947	£.	-		2	25	123	20	2		1996				2	6600	7.3	White, 19556
well \$15(?),T32N,R23E	70 B	emarks: 4 m	6Aug47 il east of G	erlach Hot	Springs		-	-	1.61	2		-	2004	-	-	2	-	6600	7,2	White, 1955b
spring MS-13 NEWSW%S16,T32N,R23E	108		1	172	-	50	2.3	1600	131	2	0	-	2400	1				1	7.2	Grose & Keller, 1975
spring MS-2 NE4(7)SE5 \$16,T32N,R23E	149	-		172	-	75	2.8	1530	135	-	0	-	2100	-	-	9	×		8,2	Grose & Keller, 197.
spring MS-1 NE4SE4S16,T32N,R23E	165	-	÷	172	-	174	2.5	1540	134	-	0	-	2075	-	4	-	2	1	7.2	Grose & Keller, 197:
spring MS-9 NW4SE4S16,T32N,R23E	184	-	_	165		73	2.4	1470	143	-	0	290	2130	20	-	-		-	7.0	Grose & Keller, 1975

	Identification number, name, location	Temp. (°F)	Discharj (gpm)		Date	SiO ₂ (ppm)	Fe (ppm	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	CI (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
									WA	SHOE	COUNTY	(continu	ued)									
	spring SE%S16,T32N,R23E	153		8 38	140c166	-	1.00	66	8.1	3	510	126	0	400	2100	-	-	-	×	6800	7.9	Glancy & Rush, 1968; Waring, 1965, No. 39
	spring SE%S16,T32N,R23E	153		792 U	14Oct66	-	-	66	8.1		510	\geq	-	400	100				1	-	- 22	CWRR, 1973
	"pool" \$16,T32N,R23E	80 F	Cemarks: 5		6Aug47 de from ar	inactivi	e mud v	olcano 500	ft northe	ast of th	e geyser po	ol.	19	120	4500	-	173	त्त ंत	$\overline{\alpha}$	15740	6.3	White, 1955b
262]	Buffalo Spring 56(?),T31N,R20E	watm		5	3	1	S ti	100			25	-	1	-	100	(π)	-	1	1	25	-	Russell, 1885; Waring, 1965, No. 42
[263]	Rotten Egg Spring \$2(?),T29N,R19E	92 1		10 Wate	r smells st	rongly a	fH ₂ S.	5	-	-	1	22	375	225	(2)	250	100	100		5		Waring, 1965, No. 44
264	Round Hole Spring S26(2),T29N,R19E	warm I	Remarks: .	Also	several flo	wing we	ills. Refe	erence gives	location						151	122	-	1			-	Waring, 1965, No. 45; Russell, 1885
	Buckbrush Spring T29N,R19E	warm I	Remarks:	There	e is also a	spring w	ith this	name in S1	2,T28N,F	21E, bu	t it is not k	nown if i	is the sp	ting refer	red to in th	e referens	e -	7	17	879	2	Waring, 1965, No. 43
265]	San Emidio Desert (Mud Flat)																					
	wells \$9,T29N,R23E	boiling.	Cemarks: !	- Stear	1966 n and hot		- tcounte	- red at 25-i	- 87 ft in se	- veral wel		2	-	-	- a- 2		-	-	-		-	T. A. Alberg, writton communication, Aug 7
2661	Jack Bonham Ranch well NE%S12,T28N,R19E	74	Cemarks:		13Sep66 h now ow	ned by I	David B	37 iyers (July	2.3 1978)		815	155	0	528	849	-	-	-		3490	8,0	Glancy & Rush, 1968
	Ross Spring S7(?),T28N,R20E	hot I	temarks: I	Possi	 bly near tl	- e Bonh	am Ran	 2h,	-	-	-	-		(4)		-	00	-	194	(e)	-	Waring, 1965, No. 46; Russell, 1885
267]	spring S26.T28N,R23E	187	temarks:	Boilin	ne spring o	d Warin	- g.					-	1	-		79 4 3,	-	-	÷	(1 4 1	-	Hose & Taylor, 1974
	Boiling Spring SWIGNEMNEIG S34,T28N,R23E	warm		1	-	-	8) 5 16 5	() () ()	÷	3	1	9	-				-	1	æ	(e)		Waring, 1965, No. 50; Kumiya Peak 15-minut quad
268]	Fish Spring SEWSE%S19,T26N,R19E	73		(m) (m)	27Jul66	1	-	3,0	3.0		78	179			18				÷	328	8.0	Rush & Glancy, 1967; Waring, 1965, No. 48
269]	The Needle Rocks																					
	spring? S12,T26N,R20E	141 1	temarks: I	H ₂ S	Aug75 = 2.	110	57	198	0.3	1040	120	110	0	350	1760		1	-	3770	5800	7.8	Grose & Keller, 1975b
	well? \$12,726N,R20E	180 1	Remarks: 1	1125		117		163	0.1	1040	120	50	0	335	1950	1	-	17. 1	4615	7100	7.4	Grose & Keller, 1975b
	Western Geothermal Inc. Needles No. 2(?) well CWWNEWS12,T26N,R20E	191 1	Remarks: (- Geot	Dec71 hermal ext	oloration	n well. I	- Depth - ±4	- 000 ft. Tr	- emperatu	ne of water	- escaping	from cap	ped well.			-	-	1			L. Garside, unpublishe data
	spring NE%NW%S12,T26N,R20F	208		2	5	UE			3	ž	1	Ż	100	122	1		+				2	Waring, 1965, No. 49
	Western Geothermal Needles No. 1 well NW4SW4SW44 S6.T26N,R21E	133 1	temarks: 1	– Unsu	1973 rveyed (pr		from w	260 sst). Li = 0	0,1 61.	1100	160	24	0	340	1900	3.0		6,1		6200	8,4	Mariner & others, 1974 The Needle Rocks 7%-minute quad
	Western Geothermal Needles No. 1 well NW4SW45W4 S6,T26N,R21E	∿240 	Cemarks: I	_ Dept	h - 5888	 ft; stean	i and he	– 1 water end		, but fart	ther tests w	ere disap	pointing;	water at v	vell head w	as 140 [°] F	(Dec 71	۶.	<u>-</u>	1	-	Koenig, 1970
	The Needles Spring NW45W45W4 S6,T26N,R21E	hot			2		-		5	79	15.1	2	90		17	50	17.1	170	5			The Needle Rocks 7%-minute quad
	Western Geothermal Needles No. 1 well NW45W45W4 S6,T26N,R21E	– R L	temarks: / Insurveyee	 1, pre	0.018, N = ojected fre	0.20, P m west.	- 0.04,	A1 = 0.02,	- Br = 10,	I = 0.3, R	ь - 0.19, 0	7e = 0.2, 5	Sr = 0.06,	- Cu = 0.0	1, Hg <0.00	001.δD(^σ	- (00) =	- 106.5,δ	0 ¹⁸ (%a	o) = -6.33.		Mariner & others, 1975
	Western Geothermal Needles No. 1 well SEWSEWS6,T26N,R21E	N	temarks: 1 (g = .12, A	$L_{i} = 1$ As <0	0.01, Bi <	<0.1, P 0.10, Cs	O ₄ <0.1 - 4.17,	282 , As = 1.1µ Hg <0.1µµ ; continuo	¢g/l, Ba ≃ /l, Li ≃ .7	6, Rb = .	31 :0.005, Cu 80, Sb = </td <td>11.5 <0.01, Pi 0.1, Se =</td> <td>0 5 <0.02,1 <1.0μg/1,</td> <td>338 Mn <0.01 Sn = <0.</td> <td>1841 , Sr = 4.2, 02, North e</td> <td>3 Zn = 0.02 nd of Pyr</td> <td><0.1 , Ni <0 ramid La</td> <td>- 02, Cd = ike; norf</td> <td>3676 0.006, C h-south</td> <td>6072 'r <0.02, fault</td> <td>8.1</td> <td>Sanders & Miles, 1974</td>	11.5 <0.01, Pi 0.1, Se =	0 5 <0.02,1 <1.0μg/1,	338 Mn <0.01 Sn = <0.	1841 , Sr = 4.2, 02, North e	3 Zn = 0.02 nd of Pyr	<0.1 , Ni <0 ramid La	- 02, Cd = ike; norf	3676 0.006, C h-south	6072 'r <0.02, fault	8.1	Sanders & Miles, 1974

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm()	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO ₄ (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	ŗН	Reference
							W/	SHOE	COUNTY	(contin	ued)									
Western Geothermal Needles No. 1 (steam geyser) well S6,T26N,R21E	151 P	emarks: H ₂ S	Aug75 = 0.	110	343	260	0.1	1100	160	22	0	340	1880	3.0	-	6.1	4225	6500	8.4	Grose & Keller, 1975b
spring(?) S7,T26N,R21E	150 J	emarks: H ₂ S	Aug75 = 2.	82	1	315	0.4	1150	280	100	30	330	1850	9	s,	52	4680	7200	7.6	Grose & Keller, 1975b
spring T28N(?),R21E	hot R	emarks: Fe +		147 reral sprii	ngs. Prob	272 ably in Ti	5 6N.	3	1661	78	0	255	2693	÷	0	9	5170		10	Adams, 1944; Waring, 1965, No. 9 7
Pyramid Island Hot Spring SW%NW%S3,T24N,R22E	R	emarks: Stean om the crack.	Mar72 n issues fro	- an a smal	l craek i	n the rock	_ about 6	– 0 ft above	- the level	of Pyrami	d Lake or	the west	face of Py	amid Isla	- and ; a sm	all amou:	nt of wat	ler flows		L. Garside, unpublished data
Anabo Island Spring S16(?),T24N,R22E	120 R	emarks: On A	naho Islan			14	-	261	-	240		-	-	-	9	-		14	2	Waring, 1965, No. 52
 [*] Spring SE%\$10,T26N,R23E 	63 R	emarks: Alonj	g west sho	e of Win	nemucca	Lake. Ex	- ict locat	ion unkno	- wn. *Not	_ shown or	Plate 1.	-	-	-	-	5	÷	14	9	Waring, 1965, No. 51; unpublished data
[270] spring E%S22,T23N,R20E	hot		. –		-	-		-	-			3	-	æ		Э	*	-	Ξ	Sutcliff 15-minute quad; Reno 1 x 2 degree sheet
[271] Cottonwood Spring S26,T23N,R21E	warm R	emarks: Locat	tion uncert	tain,	1	28	1	25	3		8			-	3	3	1000	-	8	Waring, 1965, No. 53
[272] McCulloch Corp. well SEMNW457,T22N,R21E	110	= 7	11 Mar67	0	5	16	1	i.	154	56	8	168	114	Э	2		788	25	8.9	CWRR, 1973
[273] spring \$21(?),T21N,R24E	warm R	emarks: Locat	tion, uncert	ain; in D	ead Ox O	anyon 12	mi sout	h of Nixo	n. –	1	17	-	=	\sim	\overline{a}	3	(1)	17	Ξ.	Waring, 1965, No. 54
[*] Well SW%S23,T20N,R19E	140 R	emarks: Temp	5Feb58 wrature pr	obably in	correct (50 probably	25 60°F), 9	Not show	en on Plat	160 e 1.	15	126	7.5		-	2			15	Bateman & Scheibach. 1975
[*] Well SW4S27,T20N,R20E	113 R	emarks: Temp	8Aug60 sevature pr	obably in	correct (54 probably	12.7 45°F). 1	77 Not show	on Plat	205 e 1.		110	27	5	25	-	486	2	7.7	Bateman & Scheibach, 1975
[274] Wedekind Mine																				
Wedekind shaft SW36S2B,T20N,R20E	hot R	emarks: Hot,	1903 seid water	encounte	red at 2	13 n.	-	-	-		-	-	-	-	-	-	in the	-	-	Morris, 1903
275] Lawton Hot Springs																				
spring S13,T19N,R18E	120	250		-	-	1	-	+	12	22	2		5	10		2	523	-	1	Waring, 1965, No. 55
spring SW%NE%S13,T19N,R18E	120 R	— cmarks: Al =	1Feb58).1, Mn = (46), 1,i = ();	0 5, U = 0.	6.2 1 ррб.	0,1	117	5,4	12	20	144	57	2,5	0	1.3	361	625	9.0	Cohen & Loeltz, 1964
spring S13,T19N,R18E	120 R	emarks: Fe +	AL = 2.	46	-	8	0.9	1	21	16	18	137	68	2	1	-	429	1		Adams, 1944
artesian well S13,T19N,R18E	140 R	emorks: As = (5May70 0.10.	3	0.15	8	14	з	30	61	16	165	57	2.9	0.4	-	400	-	9,1	R. B. Scheibach, written communication, 1975
276] well \$17,T19N,R18E	78 R	emarks: Dept)	9Aoz71 1 - 32 ft;1	PO ₄ = 0.1	1	2	-	-	10.	-	2	-	5	2	1	Ξ.	ie.	-	7.0	CWRR, 1973
[277] Moana Hot Springs area																				
well SW4SW4SE4 S4,T19N,R19E	72 R	emarks: Depth	9Aug60 1 – 582 ft.	32	6	26	6.2	55	2	110	12	84	8	0.2	17	÷	333	÷	8.6	Bateman & Scheibach, 1975
Sierra Pacific well SW4NW4S13,T19N,R19E	86 R	emarks: Depth	(6Jun31) – 785 ft;	55 Al = tr.	п	39	12	1	48	193	0	258	30	\sim	± 1		648	æ		Cohen & Loeltz, 1964; White, 1964a
Washoe Olt & Development Co. No. 1 well SE4S21,T19N,R19E	>90 R- la-	emarks: Depth sustrine and fi iler and still h	uvatile sed	iments of	the Pho	cene Coal	ter was Valley I	reported : formation	n 1200 ft 1. Mud fro	- the water m the bot	rase to v torm of th	rithin 200 e well (an	ft of the s oil test) w	_ urface; th is brough	- ie well w it up thre	– us almost ugh cold	entirely water in	in the	-	Anderson, 1909
well SWMNE4S22,T19N,R19E	74 Ro	– 1 marks: Depth	3Feb58 (- 184 ft;		0.04 (n = 0, t		7,1 = 2.9 pp	23 6	2,6	156	0	48	22	0.4	8.5	23	307	436	8.1	Cohen & Loeltz, 1964
Al Koenig well SW4SW4S22,T19N,R19E	94 Re	— 3 marks: Depth	00ct58 i – 460 ft.	– chief aqu	ifer 325	-350 ft.		141	-	-		-	-	-	Ξ.	-		-	-	Nevada Division of Water Resources, unpublished well drilling report

entification number, name, location	Temp. (°F)	Discha (gpm		Date	SiO2 (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (Janhos/cm)	pН	Reference
								WA	SHOE CO	DUNTY	(continu	ed)									
AI Koenig well 5W%SW%S22,T19N,R19E	87 R	emarks:		20Jan59 h 500 ft;c	– hief aqui	- fer 335-	 363 ft	21	-	2		1	0		-	-	-	20	-	20	Nevada Division of Wat Resources, unpublished well drilling report
well SE45W4S22,T19N,B19E	87 R	emarks;		8Aug46 1 - 270 ft	41		336	112	51	10	378	0	1959	26	0	2	0	3305			Cohen & Loeltz, 1964
Jack Horgan well SW4SE4S22,T19N,R19E	72 R	emarks:		6May55 n — 150 ft	ě					2		2	-	2	-		-			2	Nevada Division of Wat Resources, unpublished well drilling report
Crano well NE4SE4S23,T19N,R19E	99 R	emarks:		0May58 n - 103 ft	79 ; Al = 0,		21 Li = 0.8,	4.1 U = 3,5 pp	199 b; formeri	3.7 y used fo	211 or domestic	0 hot wat	325 er.	32	1.5	2.0	0.74	856	1210	7.9	Cohen & Loeltz, 1964
Country Club well SW4SE4S23,T19N,R19E	hat B	emarks:	Depti	i – 140 ft	-	2	5	1973		5	3		-	1		-	2	12	2	1	White, 1968
Mark Twain Motel well NEMNWMNWM S24,T19N,R19E	108 R	emarks:	Depti	- 900 fi	57.8 ; As = 1.	3, Li = 1	15.8 .2. Used f	1.5 or motel s	175 nd poel h	6.0 rating; orl	131 tesian whe	n drilled	258 in 1953.	31	0.75	2	0.75	679	942	8.0	Bateman & Scheihach, 1975
Pepper Mill Motel well NE%NW%NE%NW% S24,T19N,R19E	117 R	ernarks:	As = (0.10, Li =	85.4 0.17, Us	- ed for m	5.2 otel heatir	0.3 1e.	139	7,4	136	5	175	20	0.81		0.76	567	724	8.1	Bateman & Scheihach, 1975
Nevada Lakeshore Co., Inc. well NW&SEMSW&NW4 S24,T19N,R19E	hot R	emarks:		6Jun70 - 1125 f	- 1; As = 0	0.06 .05.	11	3	15	3	154	12	206	23	0.68		-	568		8,3	R. B. Scheibach, written communication, 1975
Nevada Lakeshore Co., Inc. well NWMSEMSWMNWM S24,T19N,R19E	138 R	emarksi	Depth	- 1006 1	85.8 1: As = 0	.01, Li =	5.7 0.18: use	0.4 d for dom	155 estic hot v	6,5 vater.	144		227	26	0.5	-	0.6	650	886	7.8	Bateman & Scheibach. 1975
well SWI4SEI4SEI4 S24,T19N,R19E	118		5 9	8Jan58	ji.	ц.	19.2	0.97	182	2	119	1	294	31	-	-	-	646	Ξ.	7.4	Bateman & Scheibach. 1975
Moffat well NW%NE4S25,T19N,R19E	107 R	emarks:	Depth	- 662 ft.	⊆ ®	2			22	2	524			25	2	-	2	-	-	1.0	White, 1968
Moffat well NW4NE4525,T19N,R19E	105 R	emarks:	_ Depth	- 500 ft	2	-	2	123	-	-	+	-	-	26	-	-	-	+	836	7.9	White, 1968
Moana Springs well NE%NW4S25,T19N,R19E	127 R	emarks)	_ Depth	- 571 n	2	Ω.	-	-	-23	23	+	2	-	-	P		-		1	1	White, 1968
Moana Springs well NEWNW%S25,T19N,R19E	124+		9	20	÷	-	10	-	140	20	-	2	2	28	-	-	-		832	8.1	White, 1968
well SEMNWMS25,T19N,R19E	112 R	emarksil		9Jul47 - 95 ftt	27 Al = tr.	tr.	38	10	12	8	139	17	225	32		-	-	528	Ξ	-	Cohen & Lochtz, 1964
well NEMNW%S25,T19N,R19E	96 R	emarks: 1		1Feb58 - 67 ft; /	97 41 = 0, M	0.03 n = 0.01		0.7 , U = 0,6 ş	139 ipb,	2.6	165	0	153	16	4.5	0.5		532	697	8,0	Cohen & Loehtz, 1964
well NEMNWMS25,T19N,R19E	114 R	emarks:		l Feb58 - 700 ft;		; farmer	15 ly used to	0.1 heat Moa	150 na swimmi	8.2 alg pool.	134		221	24	2.1			641	792	7.9	Batemañ & Scheibach, 1975
sld Van Slyck well SEMNW%S25,T19N,R19E	92 R	emarksti	Depth	Apr74 - 77 ft; /	50 As = 0.04	, Li = 0.	121	1.0	127	5.5	159		156	17	2.9		0.9	532	725	8,1	Bateman & Scheibach, 1975
Van Slyck well SEMNW4S25,T19N,R19E	92 R	emarks:	Depth	- 77 ft.	2	5	2	100	17.1	-	100		\sim	5		5	2	20	3	5	White, 1968
Smith well NWWNWWS25,T19N,R19F	90 R	emarks:	Depth	- 60 n.					-	5		ē	\sim	29	20	Ξ	-	Q7)	944	7,3	White, 1968
Randall well SEKNWKS25,T19N,R19E	114 R	emarks:	Depth	1 – 260 ft	÷.	5	12			17	+	6	3	-	\sim	5	5	072	5	8	White, 1968
Randall well SEMNW%S25,T19N,R19E	114 R	emarks:	Depth	- 11Î îî	2	83	5	157	555	5	1	8	5	(T)	5	5	-	5	-	2	White, 1968
Johnson well SEMNW4S25,T19N,R19E	112 R	emarks:	Dept	. – 95 n.	2	5	3	200	-	-		8	-		-	-			2		White, 1968
well CNMS25,T19N,R19E	75 R	ematks:		l 1Jan63 1 – 86 ft.	2	0,03	14.4	0.98	9	7	181	0	72	20	3.8	u.		505	2	7.9	R. B. Scheihach, written communication, 1975

dentification number, name, location	Temp. (°F)	Dischatge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO ₄ (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µnhos/cm)	pН	Reference
							WA	SHOE C	COUNTY	(contin	ued)									
Clark well NWANWANWASWA 525,T19N,R19E	146	Remarks: Dep	- th - 225 f1	93 ; As = 0.		16 0.14; used		L89 ment and		131 ing		305	33	4.2		1.4	780	1035	8.1	Bateman & Scheiha 1975
Pecknam well NE4SE4S25,T19N,R19E	76	Remarks: Dep	th - 700 ft	-	÷		-	E.		-		-	-		223					White, 1968
University Farm well SW4SE4525,T19N,R19E	hot	Remarks: Dep					2	- E 	1995) 1995		2.00 005	- 5 3 3 0-440	1723) 2730	20		1777	3 1000	-		White, 1968
Moana Hot Springs \$25,T19N,R19E	100-200	Remarks: Fe +	A) = 2, ho	97 t waters i	utilized le	21 ocally for	2 hathing.	1	67	126	0	264	34	Ξ	2	2	661			Adams, 1944; Wati 1965, No. 55A
Frey well SEMNEMS26,T19N,R19E	180+	Remarks: Dep	th - 464 ft	2		8	-	1	(#1)	Ťč							2	-		White, 1968
Yates well SEWNE%S26,T19N,R19E	168	Remarks: Dep	th - 197,5	ti;			8	5		5					7	7.5	2	121	2	White, 1968
Yates well SEMNEMS26,T19N,R19E	160	Remarks: Dep	th - 168 ft				<u></u>	5		75	1201	:20	17.1	17.0	문건	30	2	-		White, 1968
Yates well SEMNE%S26.T19N.R19E	160	Remarks: Dep	th - 184 ft	1	2.5	2.54	2	5	1922	55	8 7 58	17.0	22		-		-	1000 C		White, 1968
Moana well SEMNE%S26,T19N,R19E	196+		R :	2	-		1	3	-				52					1320	7.9	White, 1968
Moana well SEMNE%526,T19N,R19E		Remarks: Dep	th – 179 ft	1			-	12		29			55	-	-	-	-		-	White, 1968
Erskine well SW%NE%S26,T19N,R19E		Remarks: Dep	th - 155 ft		1	-	-		-	1	+	-	-	-	-	-	×		-	White, 1968
Martic well NE%NE%S26,T19N,R19E		Remarks: Dep	1h - 600 ft	÷	-	5 - 2	-	-	1443		-	-	-	-	-	-	-			White, 1968
Kimberly well NEWNEWS26,T19N,R19E		Remarks: Dep	th - 155 ft		-	-	-	9	-	14	-	-	-	-	-	-	-	-		White, 1968
Parragari well SEMSW%NE% \$26,T19N,R19E	180		ih - 635 ft	; used for	t home h	cating.	-	-		-	(-)	90	(9)		0.00		-		3	Bateman & Scheib 1975
Brown well NEMSWMSEMNEM S26,T19N,R19E	187	Remarks: Dep	th - 200 ft	; well is a	rtesian a	nd used f	or home b	eating.		-	-	-	-		-	-	×	14	3	Bateman & Schrib 1975
Hobson well NEMSEMNEM S26,T19N,R19E	185	– Remarks: Used	– I for home	heating.	-	-	2	41	+	1	-	- 10	-	-	-		-	141		R. B. Scheibach, w communication, 1
King well SWMSWMSEMNEM S26,T19N,R19E	176	Remarks: Dep	th - 225 ft	; used for	r horne h	eating.	2	2		2		-	-	-	-	-	2	-		Bateman & Scheib 1975
well NEWSEWSEMNEW S26,T19N,R19E	176	Remarks: Dep:	ih – appro	x. 200 ft;	used for	home he	ating.	8	2	<u>7</u> 3	38						2		1.4	Bateman & Scheib 1975
King well SWMSWMSFMNEM S26,T19N,R19E	185	Remarks: Dep	th - 210 fi	; used fo	r home h	eating.	2	2		-			-		-	-	2	525	1	Bateman & Scheib 1975
Siti well SEMSWMNEW S26,T19N,R19E	140	Remarks: Dep	ch – 250 ťi	; used fo	r home a	nd swimn	ving pool	_ licating,		3		20	127				2	1.00	-	Bateman & Scheib 1975
Etnyre(?) well SE4NW4SE4ANE44 S26,T19N,R19E	185	Remarks: Dep	th – appro	x. 200 ft	; former1	y used for	pool kea	ting.	2	-	121	50 1	179). 1	175		50	00	323		Bateman & Scheib 1975
McCullach well NW45W45E4NE4 \$26,T19N,R19E	185	– Remarks: Dep	th - 360 fi	; used fo	r home a	nd pool h	eating.	7		-						120	10		2	Bateman & Scheib 1975
Edmiston well SW4NW4SE4NE4 S26,T19N,R19E	185	Remarks: Dep	- th - 300 fi	; used fo	r pool he	ating.	\approx	×		×		283		-	1				Ċ	Bateman & Scheib 1975

dentification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppni)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (umbos/em)	pН	Reference
							WA	SHOE C	OUNTY	(continu	ed)									
Holms well NEMSEMSWMNEM S26,T19N,R19E	R	emarks: Warr	– n water wo	ති used fo	er pool he	- cating.	~	-	-	-		100	-	-		-	2		1	Bateman & Scheibach, 1975
DeGiovanni well NEWNWWSEWNEW \$26,T19N,R19E	176 R	emarks: Dept	h - 265 N	t; used for	r home h	eating.	-	22		12	-	5473	-	-	120	-	2	9	9	R. B. Scheibach, writt- communication, 1975
Clark well NE45W4SEKINE4 S26,T19N,R19E	185 R	emarks: Dept	- h - 204 fi	- ; used for	r home h	eating.	2	2	1	2	120				20		20			Bateman & Scheibach, 1975
Berrum well SW4SE4SE4NE4 S26,T19N,R19E	185 R	emarks: Dept	h – 170 fi	; was üsei	d to heat	Moana s	- wimming	paol, now	used for l	home heat	ing.	357	17	0	25		77		1	Bateman & Scheibach 1975
Glatly well NEWNWWSEWNEW S26,T19N,R19E	180 R	emarks: Dept	h – 201 fr	; used for	home h	cating.	1	53			17.1	-				2	2	121	55	Bateman & Scheibach, 1975
Hill well NW4SE4SE4NE4 S26,T19N,R19E	185 R	emarks: Dept	h - 197 ft	; used for	hame h	eating.		7	1773	-	3	Ξ.	Ξ.		3	1			Ξ.	Bateman & Scheibach 1975
Drendel well SW4SE4NE4 S26,T19N,R19E	171 R	emarks: Dept	h – 180 ft	; used for	home h	eating.	÷	-	(\odot)		-	1	2	2	-	3	£	-	Э	Bateman & Scheibach 1975
Arbico well SW%SE4NE% S26,T19N,R19E	185 R	ematks: Dept	h - J18 ft	; used for	home h	eating.	75	-		÷	94	20	9	÷	34	9	8	943	ж	Bateman & Scheibach 1975
Matley well SEMNE4S26,T19N,R19E	hot R	emarks: Dept	l6Jul73 h - 250 fi		-	30	÷	÷	-		-	54	1	14	3	54	÷,	-	-	Nevada Division of W Resources, unpublish well drilling report
Gibbons well NE4SE4SE4NE4 S26,T19N,R19E	172 R	emarks: Dept		103 ; As = 0.2	- i; used fo	25 r home h	0.26 coting.	293	8,1	101	1	465	53	6.3	1	1.2	1057	1320	8.2	Bateman & Scheibach 1975
Etcheberry well NEMSEMNEM S26,T19N,R19E	185 R	emarks: Dept		92 ; As = 0.1	1,11-(0.8 sian well,	259 used for h	7.2 ome heati	99 ng.	17.1	478	53	4.8	1	2.1	1012	1430	7.8	Hateman & Scheibach 1975
DeGiovanni well NE%SE%NE% S26,T19N,R19E	185 R	emarks: Dept	h - 245 A				0,2	243	7.7	97		448	54	5.1	1	1.9	984	1423	8.4	Bateman & Scheibach 1975
Upton well NEMNEMSEMNEM S26,T19N,R19E	184 R	emarks: Dept	h – 247 ft)6, LI = (0.2	266	7.6	108		463	54	5.1	÷	2.1	1033	1454	8,3	Bateman & Scheibach 1975
old Yates well SENSENSENNEN S26,T19N,R19E	194 R	emarks: Dept			, Li = 0.			243 ient and p	7,4 ool heatin	86 g.	-	457	50	4.8	Э	2.0	975	1367	8.3	Bateman & Scheibach 1975
Terrill well SW4SW4SE4NE4 S26,T19N,R19E	194 R	emarks: Dept		135 ; As = 0.0	14, Li - 0			203 heating.	7,4	146	ж. С	348	42	4.8	52	1.8	918	1185	7.7	Bateman & Scheibach 1975
McKenzie well SE%SW%SE%NW% S26,T19N,R19E	185 R	emarks: Dept	– h – 750 fi	_ ; used for	– home ar	- nd pool h	eating.	Ξ.	-			-	2		2	2	1	120	i) N	Bateman & Scheibach 1975
Isbell well SWMNEMNEMSWM S26,T19N,R19E	199 R	emarks: Dept	h – 360 ft	; used for	home ar	nd pool h	eating.	~	-		20	2	17	17	5		2	570	010	Bateman & Scheibach 1975
Morrey well NE&SW&SW& S26,T19N,R19E	180 R	cmarks: Dept	h – 660 ft	; used for	home h	cating.		-						-	1	120	a.			Bateman & Scheibach 1975
well SW%SE%526,T19N,R19E	180 R	emarks: Dept	25Oct39 h – 750 ft		tr	33	9.0	2	41	88	tr	478	52	; ;;	-	$\overline{\omega}$	980	1327	7,9	Cohen & Loeltz, 1964
well NW%NW%SE% \$26,T19N,R19E	149 R	emarks: Dept	h – appro	x. 100 ft;	used for	home he	ating.		-			1	10	1	1	\mathcal{X}_{i}		7.0	27	Bateman & Scheibach 1975

Identification number, name, location	Temp. ([°] F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO ₃ (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NOa (ppm)	B (ppm)	TDS (ppm)	SC (jimhos/cm)	pH	Reference
							WA	SHOE	COUNTY	(contin	ued)									
Quadrio well SEMNEMNWMSEM S26,T19N,R19E	198 1	Remarks: Dep	th - 98 ft;	well is ar	tesian an	nd is used	for home	- heating.	1000	55.	-	7		1			5			Bateman & Scheibach, 1975
Miles well NWMNWMNEMSEM S26,T19N,R19E	140 1	– Remarks: Dep	th – 75 ft,	used for	home he	ating.	÷	÷	1	1	()	-	3	-	-	(H))	2		2	R. B. Scheibach, writte communication, 1975
Moore well NEMNWMNEMSEM S26,T19N,R19E	176	emarks: Dep	18Feb74 th 198 ft)9, Li ≈ (20 0.22; used	0.3 I for home	248 e heating.	7.1	95	-	419	53	4.9		1.7	959	1070	7.5	Bateman & Scheibach, 1975
Campbell well SW4SE4526,T19N,R19E	180+ 1		 lh – 750 ft	-	-	-	-	-	-	-	54.0	1	48	-	-	-	×	1327	7.9	White, 1968
Kelty well NW4SE4S26,T19N,R19E	204 F	 temarks: Dep		-	-	-	×	20	-	Ξ	$\dot{\star}$	-	48				×	1384	8,3	White, 1968
Kelty well NEWSEWS26,T19N,R19E	196 	- temarks: Dep	n – 200 n	-		200	8	8		8			-	- 20	3	- 20)	÷.	1	ini. Line	White, 1968
Biglin well NW4SW4NE4SE4 S26,T19N,R19E	185 F	emarks: Dep		106 ; As = 0.1		23 0.19. Arte	0.08 sian well,	236 used for	8,0 home hea	86 ting.	-	455	48	5.1	2	1.9	969	1345	8.0	Bateman & Scheibach, 1975
Guisti well SW4SW4NE4NE4 S27,T19N,R19E	167 F	- Remarks: Dep	1h - 850 ft	; used for	r horne h	eating,	-	-	-	-	-	-	(+)	54			Ξ		3	Bateman & Scheibach, 1975
well NE%NE%NW% S36,T19N,R19E	82		4Jun62		-	21	5.8	58	-	185	-	29	316	-	-	-	309	(23)	7,3	Bateman & Scheibach, 1975
Willis well \$25,36,T19N,R19E	82 F	- temarks: Dept	14May62 th - 110 ft	. 700-blo	ck, Hash	21 Lane,	5.9		58	185	0	29	11	S2	\$	4	365	190 C	7.3	R. B. Scheibach, writt communication, 1975
J. R. Martie well T19N,R19E	hot F	- temarks: Loca	20Jan38 ited at Frey	Lane, R	eno.	36	6	128		112		553	52	-	1	-	÷.	141	-	Miller, Hardman & Mason, 1953
well SE42SW43E4 S6,T19N,R20E	72 F	emarks: Dept	120ct68 th - 550 ft	. 56	-	38	12	35	-	128	-	98	4	0.6		10	379	410	7.9	Bateman & Scheibach, 1975
well SEMNW%S8,T19N,R20E	74 F	- lemarks: Dept	24Jul59 lh - 752 ft	39 ; Al = tr.	tr	22	3.9		43	116	0	57	7.0	-	5	4	313	325	8.0	Cohen & Loeltz, 1964
well NWWSEMSEM S8,T19N,R10E	72	Remarks: Dep	21Nov66 th – 621 ft		2	8	2	126	320	165	-	149	8	0.8	4	÷	500	616	7,6	Bateman & Scheibach, 1975
well NWMNWMS17,T19N,R20E	75 F		4Aug59 th - 1025	11 (sample	0.3 collecti	15 ed with se	6.3 reen set a		157 3 ft belov	200 / surface;	0 packer at	204 745 feet	21 below land	surface),	, S.	2	551	796	8.1	Cohen & Loeltz, 1964
well NWMNWMS18,T19N,R20E	70 F	- temaiks: Dep	22May59 th – 660 ft	10	0.2	4,8	0.7		69	104	0	70	5.0		-	-	85	321	8.3	Cohen & Loeltz, 1964
well NW%SE%S18,T19N,R20E	70 F	 lemarks: Depi	27Aug60 th - 685 ft	18	-	4.2	1.2	80	-5	122	0	78	5	0.3	с н		309	375	8.1	Bateman & Scheibsch, 1975
well SWWNE%S27,T19N,R20E	72		13Jan58 h - 650 ft	88 : Li = 0.2		107	41	160	21	241		225	264	0.2	-		1148	1600	7.4	Bateman & Scheibach, 1975
well SWMNW4S30,T19N,R20E	76		13Jan58	94	0.35	18 1.03, Li =	0.3 0.4, 11 = (170),2 ppb,	9.5	116	0	280	30	2.5	0.5	49	665	917	7.8	Cohen & Loeltz, 1964
Fife well SW4SW4S30,T19N,R20E	80	lemarks: Dept	8 - 1906 7 53		1	172	E.			\sim			\sim		5	12	52	877.5	2	White, 1964a
Newton well SW4NW4S30,T19N,R20E	84+	lemarks: Dept	- 2010- T -1		5	170	5	\overline{C}^{+}	570	$\overline{\mathcal{T}}$	-24	$(\overline{a})_{i}$	5	5	5	2	7	-	(†	White, 1964a
Steamboat Hot Springs area																				
Huffaker Springs S3,T18N,R20E	79-81 F	10 Cemarks: Sove	ral springs	on bank c	of creek.	5 miles s	– outheast c	of Moana	- bathing re	- sort.	2		-	92	-	22	-	-	-	Waring, 1965, No. 558
Haffaker Spring SW4NE44S3,T18N,R20E	81	5		-	-0301625		-	-	-	enteri F	-	-	420	9	14	24	2	-	7.1	White, 1964a
well NW%NE%S6,T18N,R20E	71 F	- Remarks: Dept	20Aug68 h – 504 ft	62	+	14	4	45	191	154	-	18	2	0.2		9	299	213	7:9	Bateman & Scheibach, 1975

lentification number, name, location	Temp. (°F)	Discharge (gpm)	Da	te	StO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (ganhos/em)	pН	Reference
					1125-2-			WA	SHOE	COUNTY	(continu	ued)					e				
Double Diamond Spring SE%NW%S9,T18N,R20E	84	20	ŀ	5		13	1	2		172	2	175		250		150	15.5	3	1500	7.2	White, 1964a
Christman well NW\SE\S12,T18N,R19E	70	Romarks: De	pth – 3	376.5	- ft.	2.53	-	1	17	172	5		12.5	8.0	17.5		120	,=:	256	7.8	White, 1964a
well SE%NW%S9,T18N,R20E	86	 Remarks: De	8M2 pth - 1			-	19	12	262	7.4	227	0.73	50	313	0.3	1	12.3	1032	1508	7.9	Bateman & Scheibac 1975
Double Dirmond(?) well SEMNW4S9,T18N,R20E	84	Remarks: De	pth - 2	29.3 fi				2	-	~	8	-	-	310	-	3		3	1500	7.2	White, 1964a
well NE%SW%S9,T18N,R20E	72	– Remarks: De	8Ma pth – 4		111	-	3.0	2,2	147	13	151	9.0	30	128	0.4	0.2	8.2	524	752	8.5	Cohen & Loeltz, 19
well SW4SW4S9,T18N,R20E	80	 Remarks: De	19Ma pth – 8			0.04 In = 0.1,	10 Li = 3.1,	4.6 U = 1.7 p	160 ph.	14	224	0	17	160	0.3	2.0	0.61	709	969	7.5	Cohen & Loeltz, 19
well NWMNWMS14,T18N,R20E	75	Remarks: Al	14Ma) = 0.1. 9			0.04 4, U = 2,	63 0 ppb.	46	313	31	264	0	151	511	0.3	0.8	0.44	1540	2320	7.5	Cohen & Loeltz, 19
LeCroix well NW4NW4S14,T18N,R20E	87	– Remarks: De	pth – 1	- 63 ft.		-	-	-	-	-	-	-	-	680			14	-	2680	6.6	White, 1964a
Davidson well SW/GNW/GS14,T18N,R20E	85	 Remarks: De	pth – 6	50 n.	-		143	-	1	140	2	-	14	509	-	-	-	-	2325	7.4	White, 1964a
well NW4S14,T18N,R20E	72	– Remarks: De	24Ju pth - 1		7 - 2	-	73	23	330	28	268	100	143	490	0.21	-	-	1359	242	7.1	Bateman & Scheibas 1975
well SWMNW4S14,T18N,R20E	71	Remarks: De	14May pth – 4		79 Al = 0.1,	0.36 Mn = 0.0	68 2, Li = 3	43 1, U = 3.	202 3 ppb.	24	258	0	125	360	0.2	1.0	0.66	1230	1810	7.2	Cohen & Loeltz, 19
well SEMSWMSWM S14,T18N,R20E	90	Remarks: Dep		e73 pprox	. 90 ft.		-	8	=			300	20	÷	9		÷	÷	-	Ξ	Dennis Bryan, oral communication, 19
Dimonte Spring SW4SE4516,T18N,R20E	127	70		÷.	4	(4 2)	$\overline{}$	-	÷.,	-	-3	-	-	560	-	92	52		2400	6.8	White, 1954a
Da Monte Springs \$16,T18N,R20E	130	40 Remarks: On		- f cree	k. 1.5 m	ile cast of	Zoleggi	- Spring.	-		12	241	-	1	12	-	12	1	-	2	Waring, 1965, No. 5
well SEMNEMS17,T18N,R20E	72		8Mag	y56	96	0	3.8	0.4	79	5.9	176	9.6	6.2	6.0	1.0	15	0.88	306	369	8.4	Cohen & Loeltz, 19
well SEMNE%S17,T18N,R20E	84	Remarks: Dep	8May pth – 1			0.01	3.0	2.7	94	9.4	228	6.6	7.6	12	0.4	,1.5	2.1	382	457	8.3	Cohen & Locitz, 19
Zoleggi Springs S17,T18N,R20E	103	125 Remarks: Thu		s sout	- hwest of	f Huffake	r Springs	8	-	-		-	ι.	\overline{z}	20			\approx	0 .0 0	×	Waring, 1965, No. 5
Zolezzi Spring SW4SE4S17,T18N,R20E	102	125		-				\overline{a}	-	- 10	=		Ξ	130	\approx	×	\geq	$\overline{\mathcal{T}}$	789	7,4	White, 1968
spring SW45E4517,T18N,R20E	94	Remarks: AI	14Jar - 0.1, 3		134 , Li = 0,	0.53 4, U - 2.4	9.3 ppb.	2.1	130	15	224	Ð	17	94	0.5	3.0	(2)	562	729	7.6	Cohen & Loeltz, 19
Zolezzi Springs well SW4SE4S17,T18N,R20E	114	Remarks: Deg	pth – 9	9 ft.	21							17	it.	86	1	÷	$\overline{\sigma}$	÷	623	7.6	White, 1968
well SW4SE4S17,F18N,R20E	114	Remarks: Dep	220ci pth - 9			tr	72	18	Ť.	15	461	tr	10	82		10	5.0	505	-		Cohen & Loeltz, 19
Hall well NW%NE%S20,T18N,R20E	70+	 Remarks: Dep	pth – 7	3.3 n	34	50	57.0	55		17			1	11.6	1	10		5	308	8.0	White, 1968
well SEMSEMS20,T18N,R20E	74		11Fet	646	25	ti.	27	8.0	3	4.0	102	a	21	14	6	5		153	-	-	Cohen & Loeltz, 19
Herz well SEMSEMS20,T18N,R20E	74	Service and a service of the service			9	21	5			5		-55	5	6.0	5	2		7	282	7.8	White, 1968
well NE%SW%S21,T18N,R20E	73		19May	58		0.05 n = 0, Li		4.6 >0.1 ppb	22	5,7	126	0	5.8	6.0	0.1	9,5	0.05	221	255	7.1	Cohen & Loeltz, 196
McComas well NE4SW4S21,T18N,R20E	70	Remarks: Dep	pth – 4	4 n.	-				22	21	824	5	Ξ	10.0	0	8	÷	122	214	7.0	White, 1968
Sutherland well NE45W4521,T18N,R20E	118				5		52	823	- 21	<u>i</u>	÷	-	<u></u>	1	$\overline{\Box}$	2	2	123	2		White, 1968
Sutherland well NE4SW4S21,T18N,R20E	71	Remarks: Dep		-	-	19 19	-	$\langle \omega \rangle$	ie:	54	22	12	-	-	2	÷	÷	9 2 3	4	2	White, 1968

dentification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO ₄ (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	рШ	Reference
							WA	SHOE (COUNTY	(continu	ied)									
Sutherland well NE45W34521,T18N,R20E	78	Remarks: Dep	ith - 50 ft.		172		5	5	220	$\overline{\gamma}_{i}^{(i)}$	1 2 2	$(\overline{a}, \overline{b})$	5	27	2		17	-74	3	White, 1968
Sutherland well NE45W4521,T18N,R20E	86	– Remarks: Dep	nth - 55 ft.	2			ŝ		227	-					2		120	223		White, 1968
well \$21,T18N,R20E	hat	Remarks: As	= 3.0, Cu =	0.03.	0.01	0	0	3	900	268	62	126	1050	2.2	2		2676	6	8.5	Nevada Division of Health, unpublished analysis
C. B. Concrete well SWMNWMNW4 S23.T18N,R20E	105	Remarks: Dep	8Apr73 nh - 101 fi	; perforit	red 76-9	- 6 ft.	8	5)	979) 1	53	570		3				⇒2000	*	(iii)	L. Garside, unpublish data
well SW%NW%S23,T18N,R20E	106	Remarks: As	0.28.	152		-44	12.4	318	27	306		147	337		2	22.1	1367	1837	7.1	Bateman & Scheibach 1975
well NW4S27,T18N,R20E	120	Remarks: Dep	2Nov72 nh - 115 ft	; As = 0.6	54.	30	3	762		388	12	7.5	950			1	2230	-	8.3	Bateman & Scheibach 1975
McKnight well NE45W4527,T18N,R20E	83		9. 1977 7 0				5	5		-						17	5	120	$\overline{\mathbb{C}}$	White, 1968
Isbell well SW4SW4S27,T18N,R20E	82	Remarks: Dep	nth - 134.7		:5:	17.0	8	50	12).	3	3 2	5	17				-	-	G.	White, 1968
well \$W%\$E%\$27,T18N,R20E	85	field a contract value to	29Mar59	38	0.74 Mn = 0		36 ppb.	100	5.8	148	4	508	6.2	0.1	0	0.06	929	1200	7.6	Cohen & Loeltz, 196
well SE%SE%SE% S27,T18N,R20E	104	and a construction of the	25Aug59			98	43	112	521	158		504	7	-	-	4	927	520	7. J	Bateman & Scheibach 1975
well SW%SE%S33,T18N,R20E	167	Remarks: Dep	oth - 258 ft	4.7	17.2	2.0	0.4	69	6.8	146	19	2.3	8.4	3	1	0.1	182	348	9.0	Bateman & Scheihac 1975
well NW45E44533.T18N,R20E	198	Remarks: As		222	22	3.9	0.5	605	56	191	104	105	747	1.8		24	2066	123	8.6	Bateman & Scheihac 1975
Knox well NESSESS33,T18N,R20E	86	Remarks: Dep				12	2		20		-20		11	-		4	-	120	-	Whate, 1968
Carver well NW45E44533,T18N,R20E	203	Remarks: Dep			-	-	-			-	1	1	<u>1</u>	<u>1</u>	14	4	1	-	÷,	White, 1968
Steamboat 4 well NW4SE4533,T18N,R20E	311	– Remarks: Dep			145	-	2	-	-	2	-	-	702	-	1	-	-	2700		White, 1968
East Reno well SEMNW4528,T18N,R20E	280	– Remarks: Dep		n.		÷	1	-	14	-	-	<u></u>	868	54	14	1			7.0	White, 1968
West Reno well SEWNW%S28,T18N,R20E	280	Rentarks: Dep	ulı - 185 fu	1945	-	1947) 1947)	12	-	-	-	2	9	898	÷	9	\simeq	÷	343	7.5	White, 1968
Reno well SEWNWWS28,T18N,R20E	201			1949	-	-	-	19	-	20	-	-	3	94		25	Ξ	-	3	White, 1968
well NW4SW4S28,T18N,R20E	293	Remarks: Dep	1May50 (h = 200 ft		0.01	11	1.0	640	64	337	-	94	836	2,1	\geq	46	2226	3150	7.6	Cohen & Loeltz, 196
Senges well NW4SW4528,T18N,R20E	294	1	-	-	-		\pm	-		-	-		826	25		1	τ	3440	6.4	White, 1968
well NWWNEW528,T18N,R20E	72	Remarks: Dep	14May58 th - 80 ft;	61 A1 = 0, M		34 - 1.1, U	9.2 = 1.6 ppb.	83	6.6	241	σ	22	73	0.2	5.1	0.03	439	671	7.6	Cohen & Loeltz, 196
Warren well NW4NE4528,T18N,R20E	99			1.0						73			1			2			5	White, 1968
Mount Rose 1 well NEWNWKS28,T18N,R20E	250	11 Contra 1	2. 78872		20		5		-	75		:5	824	5	3	3	5	1.00	2	White, 1968
well SW%SE%NW% S28,T18N,R20E	167	5	2Aug60	-20	175	27	11	630	27	256	37/	130	805	1.55		i.	1862		7.1	Bateman & Scheibach 1975
well NEWNW%S28,T18N,R20E	271	Remarks: Dop	6Mar58 th - 151 ft		0.01 Mn = 0, 1	1.4 i = 10, U	0 = 0.7 ppb	660	68	172	65	130	863	2.5	2.0	17	2230	3360	8.7	Cohen & Locitz, 196
Mount Rose 1 well NE54NW4528,T18N,R20E	271	Remarks: Dep	- 159.6	ft.		3	5	7		2			844	5	1	22	2	3400	7.4	White, 1968

dentification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiD ₂ (ppm)	Fe (ppm)	Cu (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO ₃ (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pН	Reference
							WA	SHOE C	OUNTY	(contin	ued)									
Mount Rose 1 well NE%NW%S28,T18N,R20E	246	– Remarks: Dep	th - 133.2	R.	-	÷.,	-	-	-	-	24	141	844	-	-	-	12	3400	7.4	White, 1968
Harold Herz I well NW4NW4528,T18N,R20E	199	– Remarks: Dep	th - 154.5	- ft.	-	-	-	1	-	5	-		416		- 20		2	1820	7.1	White, 1968
Harold Herz 2 well NWWNW4S28,T18N,R20E	193	– Remarks: Dep	th - 153 f	r. –	-	-	1	-	1	-	-	-	400	-		-	24	1745	7.0	White, 1968
Harold Herz 3 well NW4NW4S28,T18N,R20E	79	– Remarks: Dep	111 - 23.3	ñ.	-	-	(1	9	1	÷	-	-	-	-	-	-	-		÷	White, 1968
spring NE%5W%2S33,T18N,R20F	135	Remarks: As =	Jul45 4, 1.i = 6,	205	-	23	2.0	602	54	419		106	752	1.6		25	2196	-	1.1	Bateman & Scheibac 1975
Nevada Thermal Power Co. No. 2 well SE%SW%S28,T18N,R20E	-	_ Remarks: Dep	- th - 964 f	t.	ंस	-	52	4	-	52	(1 1)		955			-	÷	3770	8.5	White, 1968
spring \$28,T18N,R20E	hoi I	Remarks: A1 =	1888? 0; Li = 7.1		0.14 = tr.	6.9	0.28	680	101) 	240	125	952	+	*	68	-		-	Becket, 1888
Mackay well NE4S29,T18N,R20E	boiling I	– Remarks: Depi	Jan75 th - 309 f	t; boiling	water sta	nds at 10	0 f1.	-		\sim			-			+	-	-	3	Bruce Mackay, oral communication, 197
well NE4S29,T18N,R20E	warm	8	-	10	-	1		1		-	20							100	2	Bruce Mackay, oral communication, 197
Peigh well NEMNEMS29,T18N,R20E		Cemarks: Dep	th - 57 ft	5 STG	3778	1.57	10	1		1	263		1995 1997	-		2				White, 1968
Peigh well NE%NW%S29,T18N,R20E		(emarks: Dep	th - 73.7	ft.	-		2	573		6	-	1	6		*		1		131 i 9800	White, 1968
Peigh well SWMNW%S29,T18N,R20E		lemarks: Depi		n. –	155	633 661	5 241	2	0	् २१४४	-	175 144	2.6	520	1.5		्र २८४७	194	2057.	White, 1968
well NW4S29,T18N,R20E		Gemarks: Dept	th - 160 f		25	51	10	18	150	212		13	6	200 2000			310	-		Bateman & Scheibac 1975
well SW4NW4529,T18N,R20E	93 1	emarks: Dept	Jun49 th - 82 ft	36		15	1.8	12	.5,0	TR	0	11	2,6	2,1	-	46	2226	3150	7,1	Cohen & Loeltz, 190
U. S. Geological Survey GS-2 well NEMSEM529,T18N,R20E	309 1	temarks: Dept	th – 398 f	5	-	1.7.1	5	\sim	10	\sim	-	5	564	:7%	175	:50	2	2730	6.0	White, 1968
U. S. Geological Survey GS-6 well SE45E4529,T18N,R20E	216	temarks: Dept	th - 212 f				2	-	35	ā.	-	-	12	-			1	372	6.7	White, 1968
H. Herz well NW%NW%S28,T18N,R20E	125	temarks: Dept	th – 120 t	a 170 ft;	used for l	home hea	ting in th	e past.	-	1	-	12	-	-			2	1		R. B. Scheibach, wri communication, 197
R. Hertz well S29(?),T18N,R20E	boiling(?) I	temarks: Dept	th - 150 t	t; once us	ed in a gr	cenhouse	=	=	100		100		170	30	(72)	32	5	250	50	R. B. Scheibach, wrj communication, 197
Nevada Power Co. No. 3 well NW54NE5532,T18N,R20E	hot 5	lemarks: Dept	th - 1263	n.	27	55	57	8	1	5	253	120	1080	50	(73)	10		4250	8.4	White, 1968
U. S. Geological Survey GS-7 well NW4NE4532,T18N,R20E		Cemarks: Dept nd other gases		t; Li = 0.		6.0 4; drill ho	0 le penetri	9.3 ated acid	4.5 leached gr		: for 112	24 ft, where	0.5 acid water	0 was foun	tr d; high t	1.3 emperati	tre steam	85 4 CO1	6.5	White, Hem & Warin 1963
Mercury well NWMNE/S32,T18N,R20F	217	emarks; Dept	1 - 1 2 9 fi	2	125	25	<u>:</u>	\odot		\odot	2		600	-	4	1	-	-	7.8	White, 1968
Cox well NW4NE4532,T18N,R20E	203 P	 Remarks: Dept	1h - 93 n.	1 - 22 1	12		0	\sim	121	1	+	:43	543	4	4	194-5	÷	26	-	White, 1968
Nevada Thermal Power Co. Steamboat No. 5 well NW%NW%S32,T18N,R20E	347	i.	5	100	15		<i>.</i> 7	-		8		525	125			20		÷.	-	Thompson & White,
Nevada Power Co. No. 6 well NEMNWMS32,T18N,R20E	354 B	temarks: Dept	uh - 716 fi	23	22	22	С.	2		ŝ			+	4	-	4	2	1940) 1940)	-	White, 1958
Nevada Power Co. No. 4 well NE%NW%S32,T18N,R20E	325 }	- Cemarks : Dept	n - 520 i	1	-	1	5	2	-	-		-	45	14	- 0	-	÷	1950	7.2	White, 1968

dentification number, name, location	Temp. (°F)	Dischar (gpm		Date	SiO2 (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	(ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	(ppm)	NO3 (ppm)	B (pրm)	TDS (ppm)	SC (µmhos/em)	pH	Reference
								WA	SHOE C	OUNTY	(continu	ed)									
Reno Press Brick well NW%NW%S32,T18N,R20E	158 R	emarks:	Depth	- 58 ft.	Э	<u>(</u>	9	(14) (14)	-	-	-	÷÷	Ξ	8	-	×	~	-	1	-	White, 1968
Nevada Thermal Power Co. No. 5 well NW%NW%S32,T18N,R20E	325 R	emarks;	Depth	- 826 ft	-	si	9	12	-	2	12	\sim	\simeq	2	\simeq	\simeq	\simeq		12	i.	White, 1968
U. S. Geological Survey GS-7 well NW4SE/4S32,T18N,R20E	322 R	emarks:	_ Depth	- 407.8	ń. –	54	2	12			-		÷	0.5	2	÷	÷	22	158	6.7	White, 1968
Cox well NW4SE4832,T18N,R20E	136 R	emarks:	Depth	- 14.5 f	- L	24	1	5 4		12		2	-	μ.	-	\cong	-	-	5	-	White, 1968
spring SW4NE44S33,T18N,R20E	hot R	emarks:	- 25 1.i = 8.	May56 3.	125	0	7.8	3.2	665	69	212	62	118	889	2.0	1.0	36.9	2360	3555	8.3	Cohen & Loeltz, I
U. S. Geological Survey GS-8 well NW4NE4533,T18N,R20E	262 R	emarks	_ Depth	- 121.8	ñ. –	2	2			2	1		2	896	¥2	Ξ	÷.	-	3300	6,6	White, 1968
well NW4NE4S33,T18N,R20E	-		- 21	8Sep68	235		2.3	0.4	770	60	300	46	121	999	2.6	1	2	2536	3661	8.7	Bateman & Scheib: 1975
spring NW4NE4533,T18N,R20E	192 R	emarks:	As = 2	Aug49 7. Li = 7	293 6	-	5	0.8	653	31	305		100	865	1.8	2	49	2354	9	7.9	Bateman & Scheib 1975
spring NE%\$33,T18N,R20E	R	emarks: 2 = 6, Cl	AI = 0.	009, Rb CO ₂ = 9	= 0.70.(Ce - 1.5,	St = 1.9,		, Cu = 0.0		.0005, δ D	(⁰ /00 ⁻) =	-116.7.8	io ^{t #} (900)	= -12.16	. Gas Iv	olume %)	01 + A	t = 2.		Mariner & others,
spring NE4533,T18N,R20F	201		13	1973		24	16	0.7	680	66	364	2	73	837	2.1	9	47	1	3340	7.2	Mariner & others,
spring SEMNWMS33,T18N,R20E	136 R	emæks:		Feb57 Mn = 0.		0.08 0.1 ppb.	14	1.9	644	59	328	0.	142	790	2.2	0.4	2.2	2130	3240	6.7	Cohen & Loeitz, I
spring NEWSEMNW% \$33,T18N,R20E	129		- 27	Aug68	245	-	25	0.6	635	65	336	-	141	767	2,2	÷	58	2275	2933	73	Bateman & Scheib 1975
spring NE4NW4\$33,T18N,R20E	203 R	emacks:	As = 1	Jul45 3, Li = 1		-	12	0.5	767	75	292	20	129	949	2.2		30	2542	1	8.2	Bateman & Scheib 1975
spring NE%NW%\$33,T18N,R20E	- R	ematks:		Aug?3 spring or	- upper t	errace.	-	÷.	-	-	() (()	9	÷	-	3	÷	9	2700	28	-	D. Trexler, writter communication, 1
spring 50 SW%NW%S33,T18N,R20E	136 R	emarks:		iFeb57 Mn = 0.		0.08 = 2.7: Ra	14 = 0.3ms	1.9 ;1; U = <0	644	59	328	0	142	790	2.2	0.4	2.2	2130	3240	7	Scott & Barker, 19
Rodeo well NEMNW4S33,T18N,R20E	336		are una	- 276.9	a .e.	12	đ	2.5	540	2	57.)	\overline{a}	ε	836	5	1	Ť.	S.	3440	7.0	White, 1958
U. S. Geological Survey GS-3 well NEMNW4S33,T18N,R20E	327 R	emarks:	Depth	683.6 ft	-	z	2	-		-		-	E.	791	÷	R	÷	-	3280	6.6	White, 1968
U. S. Geological Survey GS-4 well NEMNWAS33,T18N,R20E	340 R	emarks:	_ Depth	- 503 fi	8	æ	~	(e)		×	-	×	÷	816	Ξ	÷	÷	197	3180	6.6	White, 1968
U. S. Geological Survey GS-5 well NEMNW4S33,T18N,R20E	337 R	emarks:	Depth	- 572 ft	×	ся Н	Эř	-		2		-	2	826	÷,	÷	2	-	3270	6.0	White, 1968
U. S. Geological Survey GS-1 well NW4SE4533,T18N,R20E	314 Ri	marks	Depth	- 398 ft	2	-	÷	149	-	-	147	23	241	817	-	÷	-	92	3250	б.1	White, 1968
No. 32 Geyser well NW4SE4S33,T18N,R20E	238		-	- 43.2 fi	1	-	2	-	4	-	140	-	926	885	040	ιe.	(#)	ж);	3335	7.4	White, 1968
South Steamboat well SW4SE4533,T18N,R20E	168			- 258 n	2X (2)	-	-	545		÷.,		+	÷	10		2	1	-	348	7.4	White, 1968
Steamboat Hot Springs \$33,T18N,R20E	(4 ¹⁰		00	4	÷	-	÷	-	-	~	$\{ {\bf a}_i \}$	-	-	-		(e)		(#))	-		Lamke & Moore, 1
Steamboat Hot Springs \$33,T18N,R20E	167-203 Re			Aug49 5 , Mn = (0.05 = 0.5, 1.i =	5.0 7.6, As	0.8 = 2.7, Sb =	653 = 0.4, 1 = 1	71 0.1, Br = (305 1.2, H ₂ S =	0 4.7.	100	865	1.8	(#)	49	(\oplus)	3210		White, Hem & Wari 1963; Waring, 1963 No. 56

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO- {ppn		Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	504 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
							W/	SHOE (OUNTY	(contin	ued)									
spring \$33,T18N,R20E	R	emarks: Sp	oring near 1	ighway.	-	-	2	-	-	-	-	-	1	2.1	-	47	-	-		Dunn & Hanson, 1967
Steamboat Hot Springs S33,T18N,R20E	R	emarks: Fe		- 332	040	30	9	9	90	293	0	237	950	-	54	1	2557		-	Adams, 1944
Steamboat Springs S28,33,T18N,R20E	5 36 5	- 590) .	e 28	1.00	1940	-	-		~	(11 1)	-	900	сж	Э	÷	14)		-	White, 1964a
well S33,T18N,R20E	284	22	- 13Sep6	5 –	2,2	36	5	3	113	339	-	82	308	3		10			8	CWRR, 1973
well S33,T18N,R20E	194	1	22Feb6		3.5	53	3	3	190	337	28	26	490	\sim	÷	÷	5	-		CWRR, 1973
Reno Hot Springs \$33,T18N,R20E	hot Re	emarks: Fe		- 252 drilled w	ells, form	28 er resort.	В	8	32	373	0	125	1044	25	\overline{a}	\overline{a}	2350	<i></i>	\overline{a}	Adams, 1944; Waring, 1965, No. 55
Johnson well SW%NE%S34,T18N,R20E	72 R	emarks: De	pth – 136	5 ft.) (Z)	0.1	1 0	-			12	17	12	17	\mathbb{Z}			1947	7.2	White, 1964a
well NWMNWMS34,T18N,R20E	82	100	11Jun7	3 –	170	64	16	230	19	200	12	543	43	3	5	2	1117	$(\overline{a}, \overline{c})$	7.2	Bateman & Scheibach 1975
Frazier well SEMSW4S34,T18N,R20E	72 R	emarks: De	pth - 160	ñ.	20	9	2	1022		~			R.4			3		367	8.0	White, 1964a
well NE%NE%SW% S34,T18N,R20E	151	-	- 7Jan6.	3 -		66	8.8	5,8		158	62	72	5	3	ΞĨ.	문	316		7,8	Bateman & Scheihach 1975
well SW%\$34,T18N,R20E	158	2	22Fcb63	-	-	67	18	18	Ξ.	242	52	72	6	Ø	5	5	423	170	7.2	Bateman & Scheibach 1975
well NE%SE%S34,T18N,R20E	122		E 112	2 G		78	40	101	2	95	2	480	6	0.5	-	2	806		7.8	Bateman & Scheibach 1975
well S34,T18N,R20E	85 R:	emarks: De	17Ap 201 - 120			32	8	679	12	361	÷.	234	750	1.2			2056	-	7.7	Bateman & Scheibach 1975
Geyser well T18N,R20E	198 Re	emarks: We		245 pting whe	n sampled	15 t	1.0	667	63	340	0	122	885	9	2	52	2322	-	7.4	White, 1964a
Geyser well T18N,R20E	203+ Re	emarks: We		245 when sa	mpled.	11	1,4	728	66	143	100	128	986	2	2	58	2505		8.7	White, 1964a
Forest Eccks well T18N,R20E(?)	hot Re	fmarks: Eig	22Oct41 ght miles s		eno. –	72	18	115		461	14	10	82	\simeq	-	1	-		÷	Miller, Hardman & Mi 1953
Mount Rose Spring(?) T18N,R20E	hot Re	marks: En	upting wel	ls; resort;		_ ath of Ren	- 0.		17	-	-	-	-		-	-				Waring, 1965, No. 55
Tachino well SW4SE454,T17N,R20E	99 Re	miarks: De	pth - 52.	n.	-		+	-	÷	19	9	\sim	3.9	-	-	-	0	256	7.6	White, 1968
Tachino well SW45E454.T17N,R20E	97 Re	marks: De	p1h - 24.3	n.) -	æ		2				-		-	28	± 1	White, 1968
Tachino well SW4SE484,T17N,R20E	81 R.	- marks: De	pth - 21.6	ft. –		1		-	\approx			-	-	-	-	\overline{a}			÷	White, 1968
Tachino well SW4SE4S4,T17N,R20E	72 R	marks: De	pth - 14.8	- 	-	Ξ	677	-	÷	651	3	-	5.6	Ξ.	-	\sim	1.75	256	7.3	White, 1968
Pleasant Valley																				
well SE%\$7,T17N,R20E	75 Re	marks: De	pth - 107	ft.		24	9	19	2	151		3	5	2	-	-	211	-	8,0	Bateman & Scheibach 1975
well NW4SW4S7,T17N,R20E	100 Ra	emarks: De	- 1958 pth - 168			1	121	120	1	223	22	-	-			-	4	Ξ.	-	R. L. Bateman, writte communication, 1977
well S7,T17N,R20E	71		17Nov7(-	0.26	24	9		19	151	0	3	5	0.13	5.9	\odot	24	12	2	CWRR, 1973
well NW%NW%S8,T17N,R20E	81 Re	emarks: De	1968 pth – 194		54	1	194	1.0	2	1943	2		-	\sim	\subseteq	\simeq	192	si	÷	R. L. Bateman, writte communication, 1977
well NW%NW%S8,T17N,R20E	86 Re	- marks: De	1971 pth – 140		-	-	220	-	-	-	2	-	-		-	-	i i i	2	-	R. L. Bateman, writte communication, 1977

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCQ3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (umhos/em)	pН	Reference
							WA	SHOE C	OUNTY	(continu	ied)									
[280] Bowers Mansion (Franktown) B	lot Spring																			
Rowers Mansion, main spring NWWS3,T16N,R19E	117		8Mar54 0.08.	44		2,8	1.0	49	0.4	34	26	35	5.4	\geq	-	0.2		242	9.3	White, Hern & Waring, 1963
main spring NW4S3,T16N,R19E	3	Remarks: Fe	Al - tr.	39	38	7	0.7		54	29	27	37	8		7	5	194	15 17.040	5	Adams, 1944
well SW4NW453,T16N,R19E	75		12Oct65	5	1	19	3.3		16	103	0	6.0	3.8		100	1 ())	121	171	7.8	Rush, 1967
spring NEWNWWS3,T16N,R19E	128	76 Remarks: Hot	12Apr66 waters uti	lized loca	illy.	2.7	0.4		49	78	4	33	6.6	÷		8		236	8.7	Rush, 1967; Waring, 1965, No. 57
Bowers Mansion Hot Springs NEWNWWS3,T16N,R19E		75 Rennacks: Li -	0.11, OH	45 = 0.3, PO	A = 0.06.	3.2	10	45	0.6	20	6.0	36	4.0	3.4	0	0,21	180	-	9.2	Feth, Roberson & Polzer, 1964
spring NW4S3,T16N,R19E	115	Remarks: Li =	0.09, A1=	47 0.02, Hj	; = 0.000	2.9 2, δD(%)	$(0.2)_{a} = -103$	50 2.3,δ0 ¹⁸	0.6 (%00) = _	76 14,79	-	38	6.3	2.8	77	0.20	578	243	9,4	Mariner & others, 1975
spring NE4NW4S3,T16N,R19E	117	50-75	-	19	15	1	353	- 1993) - 1993	375		1		6	- 171 			511	240	9,4	White, 1968
well 53,T16N,R19E	117	Remarks: As	0.005.	17	0.02	3	0		58	15	34	32	15	3.48	0.5	5	212	5	9.2	unpublished data, Washa County Park System
main pool \$3,T16N,R19E	BO	1	18Jul72	5	a	8	1		96	110	0	32	74	1.98	7.2	2	297	=	7.9	unpublished data, Washo County Park System
spring S3,T16N,R19E	-2	()S	3Feb77	42	æ	2.2	0.01	53	0.5	11.9	37	34	4.7	3.3	50	2	187	250	9.6	unpublished data, CWRR
spring SEMNW/ANW/A S3,T16N,R19E	104		7 Mar66		0.18	29	8.7		32	151		24	5	-	27	2	212	-	7.4	CWRR, 1973
[281] well \$6,T16N,R20E	78	Remarks: Dep	16Dec71 th - 80 ft.	17	0,27	13	2 7 0		62	120	6	79	7	7	5	2	253	8	8,4	CWRR, 1973
								WHITE	E PINE C	OUNTY										
[282] Collar and Elbow Spring																				
spring S27,T26N,R65E	92	20		5	1	2			<i>.</i>		2	5	52	5	5	5	1.5	2	2	Waring, 1965, No. 94
spring S33,T26N,R65E	92	18 Remarks: A fl	12Aug18 ow rate of	34 gpm t	eported c	n Aug. 1	2,1918		18	236	ø	26	5.3	(\overline{a})	Π.	7	248	2		Clark, Riddell & Meinzer, 1920
[283] Shell Oil Co. Steptor Unit No. 1 well NEMNEMS19,T24N,R64E	304	Remarks: Dep	th - 8406	ft;explo	ratory oil	well.	25		ŝ		0	8	n	8	2	ĉ		5	72	unpublished data, Nevad Burcau of Mines & Geology
[284] spring NE%S31,T24N,R65E	83	450	-	2		3	-		\sim	\sim	\sim	5	a	\overline{a}	$\overline{\sigma} \tilde{z}$	Ξ.		2		Synder, 1963
[285] Cherry Creek (Young's) Hot Sp	rings																			
springs S2(7),T23N,R63E	118-136	3.6	29Aug18	100	0.12	13	1.1		162	375	7,7	17	17	2	0.75	25	518	8		Clark, Riddell & Meinzer, 1920; Waring, 1965; No. 95
Shellbourne Hot Springs NW4NW4S7,T23N,R63E	124,135	Remarks: Abo	iut 100 fee	t from Cl	terry Cree	rk Hot Sp	orings.		5	12. 1	-	3))))	7	5	8	æ		5	5	Waring, 1965, No. 96
spring S6,T23N,R63E	142	– Remarks: Li =	0.65, Rb	105 0.08, Co	e = 0.1, M	12 In = 0.06	0.3 δD(%00	150 = -127.	H,δ0 ^{4.8} -	380 -16.20.	. A	3	16	1.2	-	4.35		692	7.8	
John Salvi's Hot Spring S7,T23N,R63E			ertine repo	orted.			-	-	-	-	-	1	12			-	-	4	-	Hose & Taylor, 1974
spring S8,T23N,R63E	"thermal"					12		-	-	-	-			-	-	-	22	12		Snyder, 1963
[286] Northern Spring Valley																				
Lawrence Henroid water well NE4\$31,T23N,R66E		50 Remarks: Dep	223un50 th - 600 fi	-	÷	24	7.4		34	141	0.	22	16		÷	÷	-	309	-	Rush & Kazmi, 1965

Identification number, name, location	Temp, (°F)	Discharge (gpm)	Date	SiO ₂ (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	K (ppm)	HCO3 (ppm)	CO3 (ppm)	SO4 (ppm)	Cl (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	p][Reference
							WHIT	E PINE	COUNT	FY (cont	inued)									
Hans L. Anderson water well NW%S31,T23N,R66E	79 1	5-30 Remarks: De		on.	1	17		8	-	-	-	-		Ξ	-			2	÷	Rush & Kazmi, 1965
[287] Giocoechea Warm Springs (Simo	nsen Warn	n Springs, W	arm Spring	Ranch) s	uca															
springs NEWNEWS1,T22N,R56E	74-76	1120 Remarks: (ej) 25Oc166 pm} Na + K		a + Mg =	4.60, CI 4	- SO ₄ = 0.	91	55	955	17.	5	17	5	÷	5	1979	2h	5	Militin, 1968
springs NEMNEMS1,T22N,R56E		900-1350 Remarks: Di		bably vari	es seasor	ally and a	nnuelly; f)	low rate o	of 2700 rs	ported.	-	-	121	-	-		-	-	8	Eakin, 1960
Moore's Ranch Springs T23N,R56E	65-20	200	-		-	5	1/21	-			2	-	2	-		-		<u> </u>	2	Waring, 1965, No. 102
288] Schellbourne Springs																				
Lower Schellhourne Warm Springs \$12,T22N,R64E	77	450 Remarks: (<u>ej</u>	11Sep66 m) Na + K	= 0.36, C	a + Mg =	4.22, C1 +				u.	9	2	2	2	ц.	i i	4	12	2	Mifflin, 1968
Upper Schellbourne Spring SEMNW4S8;T22N,R65E	74	450 Remarks: (ej	11Sep66 m) Na + K		a + Mg =	4.43, CL+	SO4 = 0.3	54, tritiu:		U .	-	Ξ	÷			×	243	2	-	Mittlin, 1968
289] Monte Neva (Melvin, Goodrich)			750																	
spring S24,T21N,R63E	174 8	Remarks: Li	- 0.07, Rh	52 - 0.03, C	0.02 u = 0.01,	63 δD(%00)	21 = -127.8,	δ0 ¹⁸ (?)	5.6 (00) = -10	303 6.68. Gas	(volume 9	26 0: 0 ₂ + /	5.0 Az = 4, N ₂ =	1.0 71, CH4	= <1, C	0.04 O ₂ = 26	æ	522	6.4	Mariner & others, 1975
springs SW4S24,T21N,R63E	173-193	625			10	ŝ			5	1		Ť9	8	÷:	5		25	17		Waring, 1965, No. 98
large spring SW16S24,T21N,R63E	174	625	21Aug17	54	0.19	67	21	(197)	26	324	II.	25	6.6	7.	0.09	72	349	<u>a</u>		Clark, Riddell & Meinzer, 1920
spring	P	Remarks: Fe	+ Al = tr (a	67 malysed b	y Dept.	76 of Food &	22 Drugs, Ug		10 Reno).	346	Ø	34	10		51		361			Adams, 1944
spring NEWNWWS25,T21N,R63E	174		27Oct66	in our Trees	1000 To	an an Server San Server			SWESSER (A)	-	-	-	T 2	5	3	5	1.7		5	Mifflin, 1968
springs	÷	-	-		-	-	-	-	12	239	2	2	-	1	-	-	231	-	22	U. S. Bureau of Re- clamation, 1972, table
Magma Power Co. Monte Neva No. 1 well \$24(?),T21N,R63E	190 R	emarks: De	1961 pth – 402 (It. Geothe	- rmal exp	- loratory w	ell, hot w	ater, no s	ileam.	121	\leq		25			÷	2	ŝ		Koenig, 1970
290] Kern Mountains																				
spring T21N,R70E	warm	10		- e	\sim	-	+	-	×		20			-		-	-	-	÷	Wating, 1965, No. 99
291] Campbell Ranch (North Group) !	Springs																			
springs SW%SS,T19N,R63E	76 R	1350 temarks: In		individual	0.2 springs 1	flowed at 1	ates varyu		50 12 to 22	257 4 gpm.	62	21	6.2	E	=		320	20		Clark, Riddell & Meinzer, 1920; Waring, 1965, No. 100
northern spring SW%S5,T19N,R63E	27	1	9Apr18	32	0.05	52	21		15	268	ō	20	4.5	1351	-	100	268	(7)	=	Clark, Riddell & Meinzer, 1920
292] McGill-Schoolhouse zone																				
Schoolhouse Spring NW4SE44S3,T18N,R64E	- 1	450 lemarks: (ep	21May66 m) Na + K	- 0.58.C.	+ Mg =	3.51, CL+	SO ₄ = 0.7	4.							-	121		2		Mifflin, 1968
Schoolhouse Spring	76		5Jull 8	-21-22-22		-		24	-	147	6.7	27	9.4		100	122	71	23	123	Hardman & Miller, 193
McGill Warm Springs SEMNWMS21,T18N,R64E	76-84 R	4490 temarks: Flo	10Apr13 wed 4500 j		0.10 ad temp		21 84 [°] F on 6	Oct 18.	12	267	0	21	4.3	14	1.2		266	10	1	Clark, Riddell & Meinz 1920, Waring, 1965, No. 101
McGill Warm Springs SE44NW4521,T18N,R64E	R	4578 lemarks: (ep	29Sep65 m) Na + K	- 1.01, Cr	- + Mg =	5.11, CI+	SO4 = 3.3	4.	23			125			125	121	21	25		Mifflin, 1968
293] Ely-Lackawanna zone																				
Lickawanna Hot Springs NESS3.T16N.R631	70	135			-	94		29.4		Ē	55	138	20			26	420	600	8.7	Holmes, 1966, p. 24
Lackawanna Hot Springs NE52S3,T16N,R63E	90-95	5	21 Sep 65		-	32	25	1	9	148	0	83	10	8				÷.	8.0	Lakin, Hughes & Moore, 1967

Identification number, name, location	Temp. (°F)	Discharge (gpm)	Date	SiO2 (ppm)	Fe (ppm)	Ca (ppm)	Mg (ppm)	Na (ppm)	К (ррш)	HCO ₃ (ppm)	CO3 (ppm)	SO4 (ppm)	C) (ppm)	F (ppm)	NO3 (ppm)	B (ppm)	TDS (ppm)	SC (µmhos/cm)	pH	Reference
							WHF	TE PINE	COUNT	Y (conti	nued)									
Lly Warm Springs S10,T16N,R63L	85	22	10Apr18	37	0.22	51	23	3	19	222	0	68	7.5	0.67	-	÷	314	9		Clark, Riddle & Meinzer, 1920; Waring, 1965, No. 102
[294] Big Blue Spring																				10.102
spring \$23,714N,8561	warm	1	-	-	$\overline{27}$	1			\cong	1+1	-		2			Ξ		=		Waring, 1965, No. 103
[295] Williams Hot Springs																				
springs NI-9533.T13N.R60E	124,128	50-185			ŝ		-	-	$\overline{\mathbb{C}}$	(5)	53	5	5	22	3	\mathbb{Z}^{2}	100	Ξ	5	Maxey & Eakin, 1949; Waring, 1965, No. 103A
[296] Preston Springs																				1000.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Preston Big Spring SW34NE34S2,T12N,R61E	20	3900 Cemarks: (opr	13Oct66 m) Na + K -	- 0.64, Ca	+ Mg =			T. U.	-	-	2	-	÷2	-1	-		-	-	-	Mittlin, 1968
Preston Big Springs SWMNE/SS2.T12N,R61E	72	5700	7	-	-	-	-	-	-	20	-	-	-	-		-	-	\simeq	28	Lamke & Moore, 1965; Waring, 1965, No. 104
Cold Spring SWIANWIAS12,T12N,R61E	70 5	780 (emarks: (epr	13Nov66 n) Na + K -	- 0.65, Ca	+ Mg -	3.47, CI +	SO4 = 1.	15, tritiu	n = <8 T.	υ.	\sim	-	-	-	-		1.00	8	÷	Mifflin, 1968
Cold Spring SW4NW4S12,T12N,R61E	25	630	1.12	<i></i>		-		2 1900	1		=	-	(e.	08	-	-	1	-		Lamke & Moore, 1965
Nicholas Spring SW45E4S12,T12N,R61E	71	1125 temarks: (epr	13Nov66 n) Na + K =	0.64, Ca	+ Mg =	3.47, CI +	504 - 1.	31, trition	n = <8 T.	U, -	\sim					-	$(-\infty)$	\approx	÷	Mifflin, 1968
Arnoldson Spring SW4SE4S12,T12N,R61E	72 	1380 Comarks: Cepr	13Nov66 n) Na + K -	0.66, Ca	+ Mg =	2.98, C1 +	SO4 = 1.	28, tritiur	- n = <9 T.	U	$\{ \boldsymbol{\pi}_{i} \}$	्तः	ಿಕಾ	873	37		17	77	*	Mifflin, 1968
Nicholas Spring	5	1200	121	2	5	5	1		-	1			22					-	-	Lamke & Moore, 1965
[297] Southern Spring Valley																				
Bureau of Land Management water well SE4S35,T13N,R67E	73 P	7 temarks: Dep	14Jul64 th – 396 ft	2		18	1.0	9	16	88	Ø	5.8	3.5	:575	1	17	50	158	-	Rush & Kazmi, 1965
Bureau of Land Management water well NEWS2,T12N,R67E	75 H	50 temarks: Dep	16Jul64 ch = 407 ft	-	ē	23	0.9		13	92	0	6.4	5.2					161	7.7	Rush & Kazmi, 1965
[*] Warm Sulphur Springs																				
springs TIIN,R65E	warm R	972 lemarks: At b	ead of War	– m Creek.	– Exact lo	- cation un	certain. *	Not show	n on Plate	Ъ. [–]	-	12	22		122		220			Waring, 1965, No. 106
[298] Big Spring																				
spring \$33,T10N,R70E	61 R	4571 kemarks: May	1966 he several	warm spr	ings in th	is area.	(H)	90	-	-	-	20 - 0	-	-		-	(4))	-	-	Maxey & Mifflin, 1966; Waring, 1965, No. 107A

Operator	Name	API No.	Location	Depth, ft	Completion Date	Maximum Temperature (°F)
		CHURCHII	L COUNTY			
Brady's Hot Springs [10]						
Magma Power Co.	Brady No. 1	27-001-90000	NE% NE% SW% S12,T22N,R26E	700?	1959?	
Magma Power Co.	Brady No. 2	27-001-90001	NE% NE% SW% S12,T22N,R26E	241	1959?	330
Magma Power Co.	Brady No. 3	27-001-90002	SE¼ SE¼ NW¼ S12,T22N,R26E	610	19617	335
Magma Power Co.	Brady No. 4	27-001-90003	SE¼ SE¼ NW¼ S12,T22N,R26E	723	19612	4.0.0
Magma Power Co.	Brady No. 5	27-001-90004	NW% SW% NE% S12,T22N,R26E	1800	1961?	340
Magma Power Co.	Brady No. 6	27-001-90005	NW¼ SW¼ NE¼ S12,T22N,R26E	770	2	57,025
Magma Power Co.	Brady No. 7	27-001-90006	NW% SW% NE% S12,T22N,R26E	250	2	
Earth Energy Inc.	R Brady EE No. 1	27-001-90007	S12?,T22N,R26E	5062?	1964	414
Earth Energy Inc.	Brady Pros. No. 1	27-001-90008	\$12"T22N,R26E	1758?	19657	355
Union Oil Co. of Calif.	SP-Brady No. 1	27-001-90010	NE% SW% SE% S1,T22N,R26E	7275	1974	371
Magma Energy Inc.	SP-Brady No. 2	27-001-90013	NE4 NW4 SE4 S1,T22N,R26E	4446	1975	~~***C
Magma Energy Inc.	SP-Brady No. 8	27-001-90014	NE¼ SE¼ NW¼ S12,T22N,R26E	3469	1975	
	set aready rearies	21-001-00014	141.94 51.94 14 19 51 51 2,1 22 14, R201	240.3	1913	
Desert Peak Area [12]						
Phillips Petroleum Co.	Desert Peak No. 29-1	27-001-90011	SE% SE% \$29,T22N,R27E	7662	1974	
Phillips Petroleum Co.	Desert Peak B No. 21-1	27-001-90015	5½ SE% S21,T22N,R27E	4150	1976	406
Phillips Petroleum Co.	Desert Peak B No. 21-2	27-001-90016	NE% NE% S21,T22N,R27E	3192	1976	390
Sec. 1 . 1 . 1 . 1						
Soda Lake [13]	we can be an end of the second state of the second					
Chevron-Phillips	Soda Lake No. 1-29	27-001-90012	C SE% SE% S29,T20N,R28E	4306	1974	342
Chevron Resources Co.	Soda Lake No. 44-5	27-001-90020	\$5,T19N,R28E	5070	1978	244
Stillwater [14]						
O'Neill Geothermal Inc.	J. I. O'Neill, JrReynolds No. 1	27-001-90009	NE% SW% SW% \$6,T19N,R31E	4237	1964	265
Union Oil Co.	Weishaupt No. 1	27-001-90017	Lot 2, S6,T19N,R31E	4000±	1976	205
Union Oil Co.	Weishanpt No. 2	27-001-90018	Lot 4, \$5, T19N, R31E	4000±	1978	
Union Oil Co.	De Braga No. 1	27-001-90019	Lot 1, \$1,719N,R30E	4000±	1977	
	be binga (10, 1	27-001-20012	4.01 11 31,11 30,000	40004	1377	
Lee Hot Springs [21]						
Oxy Geothermal Inc.	Federal No. 72-33(K)	27-001-90021	NW4 NW4 S34,T16N,R29E	3015	1978	
N A 17 H (4)					1. Contraction (1. Contraction)	
Dixie Valley [4]	87223/01 961-32 970-0					
Sunoco Energy Devel. Co.	S.W. Lamb No. 1	27-001-90022	NW¼ NW¼ S18,T24N,R37E	7255	1978	425
		DOLICIA	COUNTY			
		DOUGLAS	S COUNTY			
Vally's Hot Springs [45]						
U.S. Steel Corp.	Wally's No. 1	27-005-90000	SEM NWM NWM S22,T13N,R19E	1268	1962	181
U.S. Steel Corp.	Wally's No. 2	27-005-90001	SW% SW% NW% S22,T13N,R19E	499	1962	
		FUREKA	COUNTY			
C [04]		DURENA	CODITI			
Beowawe Geysers [94]	22-271 - 172 - 122 - 122 /					
Magma Power Co.	Beowawe No. 1	27-011-90000	NES SEM? NWS S17,T31N,R48E	1918	19597	
Magma Power Co.	Beowawe No. 2	27-011-90001	NW%? NW% \$17,T31N,R48E	715	1959?	
Vulcan Thermal Power Co.	Vulcan No. 1	27-011-90002	NW% SE% SW% NW% S17,T31N,R48E	638	1961	414
Vulcan Thermal Power Co.	Vulcan No. 2	27-011-90003	NE4 SE4 SW4 NW4 S17,T31N,R48E	65.5	1961	407
Vulcan Thermal Power Co.	Vulcan No. 3	27-011-90004	NW% SW% SE% NW% \$17,T31N,R48E	796	1961	407
Vulcan Thermal Power Co.	Vulcan No. 4	27-011-90005	NE% SW% SE% NW% \$17,T31N,R48E	767	1961	410

APPENDIX 2. Exploratory geothermal drilling in Nevada (Major, large-diameter wells only. Additional information on these wells may be found elsewhere in this report using the identification numbers [in brackets]).

	1111	CNDIA 2. (Contin	ica)			
Operator	Name	API No.	Location	Depth, ft	Completion Date	Maximum Temperatur (°F)
Beowawe Geysers [94] - Continued						
Vulcan Thermal Power Co. Vulcan Thermal Power Co. Sierra Pacific Power Co. Sierra Pacific Power Co.	Vulcan No. 5 Vulcan No. 6 Sierra No. 1 Sierra No. 2		S17,T31N,R48E NW5 SW5 NE5 S17,T31N,R48E C NW5 SE5 SW5 S17,T31N,R48E C NE5 SW5 S17,T31N,R48E	237 478 927 418	19632 1963 19642 1964	282
Sierra Pacific Power Co. Sierra Pacific Power Co. Magma Energy Inc.	Sierra No. 3 Sierra No. 4 Batz No. 1		NW4 SE% SW4 NW6 S17,T31N,R48E NW4 NE4 NW4 S17,T31N,R48E SW4 NW4 NE4 S17,T31N,R48E	2052 1005 6002	1965 19642 1975	240
Hot Springs Point (Crescent Valley) [90 Magma Power Co- Chevron Oil Co.	5] Hot Springs Point No. 1(?) Hot Springs Point No. 1		\$1, 2 or 11,T29N,R48E NW4 SW4 NW4 \$1,T29N,R48E	410 2335	1965 1975	166
	HUN	BOLDT COUN	TY			
Hot Springs Ranch [146] Magma Power Co.	Tipton No. 1		SW2 NW2 SW2 S4,T33N,R40E	3071	1974	
	ТА	NDER COUNT	v			
Beowawe Geysers [94]						
Chevron-American Thermal Resources Chevron U.S.A., Inc.	Ginn No. 1-13 Rossi No. 21-19 (Beowawe No. 1)		C SE¼ SE¼ S13,T31N,R47E SW¼ NW¼ NW¼ S19,T31N,R48E	9563 5680	$1974 \\ 1976$	
	L	YON COUNTY				
Hazen (Fernley) [177] Magma Power Co. Magma Power Co. Magma Power Co. Magma Energy Inc.	Hazen No. 1 (?) Hazen No. 2 (?) Hazen No. 3 (?) Fernley No. 1	27-019-90003 27-019-90004 27-019-90005 27-019-90009	SW¼ S18?,T20N,R26E S18?,T20N,R26E S18?,T20N,R26E SW% SW% SE% S24,T20N,R25E	750 300? 300? 3668	1962 1962 1962 1974	275+
Wabuska Hot Springs [181] Magma Power Co. Magma Power Co. Magma Power Co.	Wabuska No. 1 Wabuska No. 2 Wabuska No. 3	27-019-90000 27-019-90001 27-019-90002	\$16?.T15N,R25E \$E4 NE4 \$W4 \$16.T15N,R25E NW4 \$E4 \$E4 \$16.T15N,R25E	488 5327 2223	1959 1959 1959	227
Hind's Hot Springs [184] U.S. Steel Corp. U.S. Steel Corp. U.S. Steel Corp.	Hind's No. 1 (?) Hind's No. 2 (?) Hind's No. 3 (?)	27-019-90006 27-019-90007	SW% SF% S16,T12N,R23E SW% SF% S16,T12N,R23E SW% SF% S16,T12N,R23E	1 1 1 2	1962? 1962? 1962?	150
	1	NYE COUNTY				
Darrough Hot Springs [204] Magma Power Co.	Darrough No. 1 (7)	27-023-90000	SE% SE% SE% S7,T11N,R43E	812	1962	265
	PEF	SHING COUN	ΓY			
Humboldt (Rye Patch) [236] Phillips Petroleum Co. Union Oil Co. Phillips Petroleum Co.	Campbell E No. 1 Campbell No. 1 Campbell E No. 2	27-027-90000 27-027-90001	SE4 S21,T31N,R33E NE4 S3,T31N,R33E NW/4 NW/4 SE/4 S15,T31N,R33E	1853 ~6600 dritling	1977 1978 1979	325

APPENDIX 2. (Continued)

Operator	Name	API No.	Location	Depth, ft	Completion Date	Maximum Temperature (°F)
		WASHOE COUL	NTY			
Ward's Hot Springs (Fly Ranch) [258] Western Geothermal Inc.	Fly Ranch No. 1(?)	27-031-90009	SW% NE% SE% \$2,734N,R23E	1000+	1964	
Granite Ranch [259] Western Geothermal Inc.	(?)Granite Creek Ranch 1	27-031-90010	\$357,T34N,R23E	800	19657	
Gerlach [261] Sunoco Energy Development Co.	Holland Ranch No. 1-15-G	27-031-90013	SW/4 SW/4 SW/4 S15,T32N,R23E	drilling	1979	
San Emidio Desert [265] Chevron Oil Co. Chevron Oil Co.	Cosmos No. 1-8 Cosmos No. 1-9	27-031-90011 27-031-90012	SE¼ S8,T29N,R23E SW¼ S9,T29N,R23E	4013 5367	1975 1978	
The Needles (Pyramid Lake) [269] Western Geothermal Inc. Western Geothermal Inc. Western Geothermal Inc.	Needles No. 1 Needles No. 2(?) Needles No. 3(?)	27-031-90006 27-031-90007 27-031-90008	NW% SW% SW% S6,T26N,R21E C W% NF% S12,T26N,R20E NW% SW% SW% S6,T26N,R21E	58.88 4000± 2	1964 1962 1964	~240
Steamboat Hot Springs [278] Nevada Thermal Power Co. Nevada Thermal Power Co.	Steamboat No. 1 Steamboat No. 2 Steamboat No. 3 Steamboat No. 4 Steamboat No. 5 Steamboat No. 6	$\begin{array}{c} 27&-0.31&-90000\\ 27&-0.31&-90001\\ 27&-0.31&-90002\\ 27&-0.31&-90003\\ 27&-0.31&-90004\\ 27&-0.31&-90004\\ 27&-0.31&-90005 \end{array}$	NW4 NE4 S28,T18N,R20E SE4 SW6 S28,T18N,R20E NW4 NE4 S32,T18N,R20E NE4 NW4 S32,T18N,R20E NW4 NW4 S32,T18N,R20E NW4 NW4 S32,T18N,R20E NW4 NW4 S32,T18N,R20E	1830 964 1263 5207 826 716	1954 1959 1960? 1960 1961 1961	367 347 354
		WHITE PINE CO	UNTY			
Monte Neva Hot Springs [289] Magma Power Co.	Monte Neva No. 1 (?)	27-033-90000	S24?,T21N,R63E	402	1965	190

APPENDIX 2. (Continued)

APPENDIX 3. Temperature Conversion Table.

	To Convert			To Convert			To Convert			To Convert	
To ⁰ F	←°Cor°F→	то°с	Το°F	←°Cor°F→	To°C	To °F	+°C or °F→	To°C	To°F	←°C or °F→	To °C
+33.8	+1	-17.22	+141.8	+61	+16,11	+249.8	+121	+49,44	+357.8	+181	+82.7
	+2		+143.6			and the second se	+122		100000000000000000000000000000000000000	+182	+83.3
+35.6		-16.67	100 C 100 C 100 C 100 C	+62	+16.67	+251.6		+50.00	+359.6		
+37.4	+3	-16.11	+145,4	+63	+17.22	+253.4	+123	+50.56	+361.4	+183	+83.8
+39.2	+4	-15.56	+147.2	+64	+17.78	+255.2	+124	+51.11	+363.2	+184	+84.4
+41.0	+5	-15.00	+149.0	+65	+18.33	+257.0	+125	+51.67	+365.0	+185	+85.0
+42.8	+6	-14.44	+150.8	+66	+18.89	+258.8	+126	+52.22	+366.8	+186	+85.5
+44.6	+7	-13.89	+152.6	+67	+19,44	+260.6	+127	152.78	+368.6	+187	+86.1
+46.4	+8	-13.33	+154.4	+68	+20.00	+262.4	+128	+53.33	+370.4	+188	+86.6
+48.2	+9	-12.78	+156.2	+69	+20.56	+264.2	+129	+53.89	+372.2	+189	+87.2
+50.0	+10	-12.22	+158.0	+70	+21.11	+266.0	+130	+54.44	+374.0	+190	+87.7
+51.8	+11	~11.67	+159.8	+71	+21,67	+267.8	+131	+55.00	+375.8	+191	+88.3
+53.6	+12	-11.11	+161.6	+72	+22.22	+269.6	+132	+55.56	+377.6	+192	+88.8
+55.4	+13	-10.58	+163.4	+7.3	+22.78	+271.4	+133	+56.11	+379.4	+193	+89.4
+57.2	+14	-10.00	+165.2	+74	+23.33	+273.2	+134	+56.67	+381.2	+194	+90.0
÷59.0	+15	-9,44	+167.0	+75	+23.89	+275.0	+135	+57.22	+383.0	+195	+90.5
+60.8	+16	~8.89	+168.8	+76	+24.44	+276.8	+136	+57.78	+384.8	+196	+91.1
+62.6	+17	-8.33	+170.6	+77	+25.00	+278.6	+137	+58.33	+386.6	+197	+91.6
+64.4	+18	-7.78	+172.4	+78	+25.56	+280.4	+138	+58.89	+388.4	+198	+92.2
+66.2	+19	-7.22	+174.2	+79	+26.11	+282.2	+139	+59.44	+390.2	+199	+92.7
+68.0	+20	-6.67	+176.0	÷80	+26.57	+284,0	+140	+60.00	+392.0	+200	+93.3
+69.8	+21	-6.11	+177.8	+81	+27.22	+285.8	+141	+60.56	+393.8	+201	+93.8
+71.6	+22	-5.56	+179.6	+82	+27.78	+287.6	+142	+61,11	+395.6	+202	+94.4
+73.4	+23	-5.00	+181.4	+83	+28.33	+289.4	+143	+61.67	+397.4	+203	+95.0
						and the second second			C. 2015 (11) 161		
+75.2	+24 +25	-4.44 -3.89	+183.2	+84 +85	+28.89 +29.44	+291.2 +293.0	+144 +145	+62.22 +62.78	+399.2 +401.0	+204 +205	+95.5
			4.88.555			11100/06/200			5-308 (115-1		
+78.8	+26	-3.33	+186.8	+86	+30.00	+294.8	+146	+63.33	+402.8	+206	+96.6
+80.6	+27	-2.78	+188.6	+87	+30.56	+296.6	+147	+63.89	+404.6	+207	+97.2
+82.4	+28	-2.22	+190.4	+88	+31.11	+298.4	+148	+64.44	+406,4	+208	+97.7
+84.2	+29	-1.67	+192.2	+89	+31.67	+300.2	+149	+65.00	+408.2	+209	+98.3
+86.0	+30	-1.11	+194.0	+90	+32.22	+302.0	÷150	+65.56	+410.0	+210	+98,8
+87.8	+31	-0.56	+195.8	+91	+32.78	+303.8	+151	+66.11	+411.8	+211	+99.4
+89.6	+32	±0.00	+197.6	+92	+33.33	+305.6	+152	+66.67	+413.6	+212	+100.0
			10.65.045530653		+33.89				100000000000000000000000000000000000000		
+91.4	+33	+0.56	+199.4	+93		+307,4	+153	+67,22	+415.4	+213	+100.5
+93.2	+34	+1.11	+201.2	+94	+34,44	+309.2	+154	+67.78	+417.2	+214	+101.1
+95.0	+35	+1.67	+203.0	+95	+35.00	+311.0	+155	+68.33	+419.0	+215	+101.6
196.8	+36	+2.22	+204.8	+96	+35.56	+312.8	+156	+68.89	+420.8	+216	+102.2
+98.6	+37	+2.78	+206.6	+97	+36.11	+314.6	+157	+69,44	+422.6	+217	+102.7
100.4	+38	+3.33	+208.4	+98	+36.67	+316.4	+158	+70.00	+424.4	+218	+103.3
102.2	+39	+3.89	+210.2	+99	+37.22	+318.2	+159	+70.56	+426.2	+219	+103.8
104.0	+40	+4,44	+212.0	+100	+37.78	+320.0	+160	+71.11	+428.0	+220	+104.4
105.8	+41	+5.00	+213.8	+101	+38.33	+321.8	+161	+71.67	+431.6	+222	+105.5
107.6	+42	+5.56	+215.6	+102	+38.89	+323.6	+162	+72.22	+435.2	+224	+106.6
									Contraction of the second		
109.4	+43	+6.11	+217.4	+103	+39.44	+325.4	+163	+72.78	+438,8	+226	+107.7
111.2	+44	+6.67	+219.2	+104	+40.00	+327.2	+164	+73.33	+442.4	+228	+108.8
113.0	+45	+7.22	+221.0	+105	+40.56	+329,0	+165	+73,89	+445.0	+230	+110.0
114,8	+46	+7.78	+222.8	+106	+41,11	+330.8	+166	+74.44	+449.6	+232	+111,1
116.6	+47	+8.33	+224.6	+107	+41.67	+332.6	+167	+75.00	+453.2	+234	+112.2
118.4	+48	+8.89	+226.4	+108	+42.22	+334.4	+168	+75.56	+456.8	+236	+113.3
120.2	+49	+9.44	+228.2	+109	+42.78	+336.2	+169	+76.11	+460,4	+238	+114.4
122.0	+50	+10.00	+230.0	+110	+43.33	+338.0	+170	+76.67	+464.0	+240	+115.5
123.8	+51	+10.56	+231.8	+111	+43.89	+339.8	+171	+77.22	+467.6	+242	+116.6
125.6	+52	+11.11	+233.6	+112	+44.44	+341.6	+172	+77.78	+471.2	+244	+117.7
									1		
127.4	+53	+11.67	+235.4	+113	+45.00	+343,4	+173	+78.33	+474.8	+246	+118.8
129.2	+54	+12.22	+237.2	+114	+45.56	+345.2	+174	+78.89	+478.4	+248	+120.0
131.0	+55	+12.78	+239.0	+115	+46.11	+347.0	+175	+79.44	+482.0	+250	+121.1
132.8	+56	+13.33	+240.8	+116	+46.67	+348.8	+176	+80.00	+485.6	+252	+122.2
134.6	+57	+13,89	+242.6	+117	+47.22	+350,6	+177	+80.56	+489.2	+254	+123.3
136.4	+58	+14.44	+244.4	+118	+47.78	+352.4	+178	+81.11	+492.8	+256	+124.4
138.2	+59	+15.00	+246,2	+119	+48.33	+354.2	+179	+81.67	+496,4	+258	+125.5
140.0	+60	+15.56	+248.0	+120	+48.89	+356.0	+180	+82.22	+500.0	+260	+126.6
1.40.0	.00	10.00	240.0	120	.40.00		100	.02.22		1200	120.0

BIBLIOGRAPHY

- Adams, W. B. (1944) Chemical analysis of municipal water supplies, bottled mineral waters and hot springs, Nevada: Nevada Univ., Reno, Dept. of Food and Drugs, Pub. Serv. Div.
- Adams and Bishop (1884) The Pacific tourist: New York.
- Albers, J. P., and Stewart, J. H. (1972) Geology and mineral deposits of Esmeralda County, Nevada: Nevada Bur. Mines and Geology Bull. 78.
- Allen, E. T., and Day, A. L. (1935) Hot springs of the Yellowstone National Park. Microscopic examinations by H. E. Merwin: Carnegie Inst. Washington Pub. 466.
- Allen, W. W. (1962) Field data from geothermal steam well tests on Beowawe, Nevada, geothermal steam wells for Magma-Vulcan thermal power project: Magma Power Co., unpubl. report.
- Anctil, R. J. (1960) Areal economic geology of T37N,R43E and 44E, M.D.M.: Southern Pacific Co., unpubl. map.
- Anctil, R. J., and others (1960) Geology of Brady Hot Springs and vicinity, Churchill County, Nevada: Southern Pacific Co., unpubl. map.
- Anderson, Robert (1908) Oil prospects in Lyon County, Nevada, in Contributions to economic geology, pt. II, Mineral fuels: U. S. Geol. Survey Bull. 281, p. 490-493.
- (1909) Geology and oil prospects of the Reno region, Nevada: U. S. Geol. Survey Bull. 381, pp. 475-489.
- Archbold, N. L. (1969) Industrial mineral deposits, in Moore, J. G., 1969, Geology and mineral deposits of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bur. Mines Bull. 75.
- Austin, C. F., Austin, W. H., Jr., and Leonard, G. W. (1971) Geothermal science and technology, a national program: Naval Weapons Center, China Lake, CA, Tech. Ser. 45-029-72.
- Bailey, E. H., and Phoenix, D. A. (1944) Quicksilver deposits in Nevada: Nevada Univ. Bull., v. 38, no. 5 [41].
 Baker, A., III, Archbold, N. L., and Stoll, W. J. (1972) Forecasts
- Baker, A., III, Archbold, N. L., and Stoll, W. J. (1972) Forecasts for the future—minerals: Nevada Bur. Mines and Geology Bull. 82.
- Ball, S. H. (1907) A geological reconnaissance in southwestern Nevada and eastern California: U. S. Geol. Survey Bull. 308.
- Bastin, E. S., and Laney, F. B. (1918) Genesis of ores at Tonopah, Nevada: U. S. Geol. Survey Prof. Paper 104.
- Bateman, R. L., and Scheibach, R. B. (1975) Evaluation of geothermal activity in the Truckee Meadows, Washoe County, Nevada: Nevada Bur. Mines and Geology Rept. 25.
- Batzle, M. L. Hammond, S. E., and Farkash, V. N. (1976a) Telluric traverse location map and profiles for Pinto Hot Springs Known Geothermal Resource Area, Nevada: U. S. Geol. Survey openfile report 76-701A.
- (1976b) Telluric traverse location map and profiles for Ruby Valley Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-701B.
- Becker, G. F. (1882) Geology of the Comstock Lode and the Washoe district: U. S. Geol. Survey Mon. 3.
- (1888) Geology of the quicksilver deposits of the Pacific slope: U. S. Geol. Survey Mon. 13.
- (1889) Summary of the geology of the quicksilver deposits of the Pacific slope: U. S. Geol. Survey 8th Ann. Rept., pt. 2, p. 965-985.
- Berger, B. R., Silberman, M. L., and Koski, R. A. (1975) Discussion on K-Ar relations of granodiorite emplacement and tungsten and gold mineralization near the Getchell Mine, Humboldt County, Nevada — a reply: Econ. Geology, v. 70, p. 1487-1491.
- Beyer, J. H. (1977) Telluric and D. C. resistivity techniques applied to the geophysical investigation of Basin and Range geothermal systems, Part I, The E-field ratio telluric method: Calif. Univ., Lawrence Berkeley Laboratory Rept. 6325.
- (1977) Telluric and D. C. resistivity techniques applied to the geophysical investigation of Basin and Range geothermal systems, Part II, A numerical model study of the dipole-dipole and Schlumberger resistivity methods: Calif. Univ., Lawrence Berkeley Laboratory Rept. 6325.
- (1977) Telluric and D. C. resistivity techniques applied to the geophysical investigation of Basin and Range geothermal systems, Part III, The analysis of data from Grass Valley, Nevada: Calif. Univ., Lawrence Berkeley Laboratory Rept. 6325.
- Beyer, H., Dey, A., Liaw, A., Majer, E., McEvilly, T. V., Morrison, H. F., and Wollenberg, H. (1976) Geological and geophysical

studies in Grass Valley, Nevada: Natl. Tech. Inf. Service, preliminary open-file report LBL-5262.

- Beyer, H., Morrison, H. F., and Dey, A. (1975) Electrical exploration of geothermal systems in the Basin and Range valleys of Nevada: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proc., v. 2, p. 889-894.
- Bidwell, J. (1842) A journey to California (pamphlet).
- Bingler, E. C. (1975) Guidebook to the Quaternary geology along the western flank of the Truckee Meadows, Washoe County, Nevada: Nevada Bur. Mines and Geology Rept. 22.
- Bingler, E. C., and Bonham, H. F., Jr. (1976) Geologic map [Reno 7 ½-minute quadrangle]: Nevada Bur. Mines and Geology Environmental Series, Reno Folio, p. 24-31.
- Blackwelder, Eliot (1948) The Great Basin, with emphasis on glacial and postglacial times; I. The geological background: Utah Univ. Bull., v. 38, no. 20, p. 3-16.
- Blake, W. P. (1873) Diatoms in a hot spring in [Pueblo Valley, Humboldt County] Nevada: California Acad. Sci. Mtg., Aug. 21, 1871, Proc., v. 4, pt. 4, p. 183.
- Bonham, H. F., Jr. (1960) Areal geology map T22N,R25 and 26E: Southern Pacific Co.

(1969) Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bur. Mines Bull. 70.

- Bonham, H. F., Jr., and Bingler, E. C. (1973) Geologic map, Reno Folio: Nevada Bur. Mines and Geol.
- Bowman, H., Hebert, A. J., Wollenberg, H. A., and Asaro, F. (1974) A detailed chemical and radiometric study of geothermal waters and associated rock formations, with environmental implications: Calif. Univ., Lawrence Berkeley Laboratory, U. S. Atomic Energy Comm. contract W-7405-ENG-48.
- (1975) Trace, minor, and major elements in geothermal waters and associated rock formations (north-central Nevada): 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proc., v. 1, p. 699-702.
- Bradberry, C. E. and Associates (1964) Mineral inventory of lands bordering the Western Pacific Railroad Company: Western Pacific Railroad Co., Los Altos, CA.
- Brannock, W. W., Fix, P. F., Gianella, V. P., and White, D. E. (1948) Preliminary geochemical results at Steamboat Springs, Nevada: Am. Geophys. Union Trans., v. 29, no. 2, p. 211-226.
- Breese, C. R., Jr. (1968) A general limnological study of Big Soda Lake: M.S. thesis, Univ. of Nevada, Reno.
- Broderick, A. T. (1949) Geology of the southern part of the San Antonio Mountains: Ph.D. thesis, Yale Univ.
- Brues, C. T. (1928) Studies on the fauna of hot springs in the western United States and the biology of thermophilous animals: Am. Acad. Arts and Sci. Proc., v. 63, no. 4, p. 139-228; 1929, abs., Internat. Cong. Enbiology, 1928, Report, p. 237-240.
- (1932) Further studies on the fauna of North American hot springs: Am. Acad. Arts and Sci. Proc., v. 67, no. 7, p. 185– 303.
- Bushnell, Kent (1967) Geology of the Rowland quadrangle, Elko County, Nevada: Nevada Bur. Mines Bull. 67.
- California Geothermal Resources Board (1971) Economic potential of geothermal resources in California: California Geothermal Resources Board.
- Camozzi, R. O. (1942) How a tough water problem was handled at Jarbidge (Nevada): Eng. and Mining Jour., v. 143, no. 7, p. 45– 48.
- Carlson, H. S. (1974) Nevada place names: Univ. Nevada Press, Reno.
- Carpenter, E. B. (1915) Ground water in southeastern Nevada: U. S. Geol. Survey Water-Supply Paper 365.
- Cartwright, K., Swinderman, J. N., and Gimlett, J. I. (1964) Extension of the East Range fault by gravity exploration: Nevada Univ., Reno, Desert Res. Inst. Tech. Report 2, pt. III.
- Cathrall, J. B., and others (1977) Listing of analytical, streamsediment, water, and algae samples....Charles Sheldon wilderness study area, Humboldt and Washoe Counties, Nevada, and Lake County, Oregon: U. S. Geol. Survey open-file report 77-403.
- Christopherson, K. R., Hoover, D. B., and Cesario, D. J. (1977) Telluric traverse location map and profile for Gerlach Northwest Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-66E.

- Christopherson, K. R., Hoover, D. B., and Senterfit, M. (1977) Telluric traverse location map and profiles for Fly Ranch Northeast Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-66D.
- Church, J. A. (1878) Heat of the Comstock mines: Am. Inst. Mining Metall. Petroleum Engineers Trans., v. 7, p. 45-76.
 (1879) Underground temperatures on the Comstock Lode:
- Am. Jour. Sci., v. 17, p. 289–300.

Clark, W. O., Riddell, C. W., and Meinzer, O. E (1920) Exploratory drilling for water and use of ground water for irrigation in Steptoe Valley, Nevada: U. S. Geol. Survey Water-Supply Paper 467.

- Clebsch, A., Jr. (1961) Ground water in the Oak Springs formation and hydrologic effects of underground nuclear explosions at the Nevada Test Site: U. S. Geol. Survey Trace Element Inv. Rept. TEI-759.
- Cohen, Philip (1962a) Uranium in the waters of the Truckee Meadows, in Contributions to the hydrology of northern Nevada: Nevada Dept. Conserv. and Nat. Resources, Inf. Ser. Rept. 3, p. 1-11.
- East Range fault, Humboldt and Pershing Counties, Nevada:
- U. S. Geol. Survey Prof. Paper 450-B, art. 4, p. B9-B10. (1962c) Preliminary results of hydrogeochemical studies in
- the Humboldt River valley near Winnemucca, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 19. (1964) An evaluation of the water resources of the Humboldt River valley near Winnemucca, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 24.

(1966) Water in the Humboldt River valley near Winnemucca, Nevada: U. S. Geol. Survey Water-Supply Paper 1816.

- Cohen, Philip, and Everett, D. E. (1963) A brief appraisal of the ground-water hydrology of the Dixie-Fairview Valley area, Nevada: Nevada Dept. Conserv. and Nat. Resources, Groundwater Resources-Reconn. Ser. Rept. 23.
- Cohen, Philip, and Loeltz, O. J. (1964) Evaluation of hydrogeology and hydrogeochemistry of Truckee Meadows area, Washoe County, Nevada: U. S. Geol. Survey Water-Supply Paper 1779-S. Also Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 28.
- Cornwall, H. R. (1972) Geology and mineral deposits of southern Nye County, Nevada: Nevada Bur. Mines and Geology Bull. 78.
- Cornwall, H. R., and Kleinhampl, F. J. (1961) Geology of the Bare Mountain quadrangle, Nevada: U. S. Geol. Survey Geol. Quad Map GQ-157.
- Craig, Harmon (1953) Isotopic geochemistry of hot springs [abs.]: Geol. Soc. America Bull., v. 64, no. 12, pt. 2, p. 1410; also (1954) Am. Mineralogist, v. 39, nos. 3-4, p. 322.
- Crofutt, G. A. (1872) Crofutt's transcontinental tourist's guide: New York, Geo. A. Crofutt.
- Crook, J. K. (1899) Mineral waters of the United States and their therapeutic uses: New York and Philadephia, Lea Bros. & Co.
- Crosthwaite, E. G. (1963) Ground-water appraisal of Antelope and Middle Reese River Valleys, Lander County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 19.
- CWRR (1973) (Center for Water Resources Research); Nevada Univ., Reno, Desert Res. Inst., Center for Water Resources Research: computer data bank.
- Dangberg, Grace (1972) Historical sketches of Nevada's first settlement: Carson Valley Historical Society.
- Darlington, P. J., Jr. (1928) New Coleoptera from western hot springs: Psyche, v. 35, no. 1, p. 1-6.
- Darton, N. H. (1920) Geothermal data of the United States: U. S. Geol. Survey Bull. 701.
- Davis, H. C. (1954) Summary report of reconnaissance and exploration for uranium deposits in northern Nevada (rev.): U. S. Atomic Energy Comm. RME-2013, pt. 1.
- Davis, L. E., and Ashizawa, R. Y. (1960) The mineral industry of Nevada: U. S. Bur. Mines, Minerals Yearbook, 1959, v. III, p. 623-648.

(1964) The mineral industry of Nevada: U. S. Bur. Mines, Minerals Yearbook, 1963, v. III, p. 623-648.

- Davis, L. E., Ashizawa, R. Y., and Giorgetti, L. (1961) The mineral industry of Nevada: U. S. Bur. Mines, Minerals Yearbook, 1960, v. III, p. 635-661.
 - (1962) The mineral industry of Nevada: U. S. Bur. Mines, Minerals Yearbook, 1961, v. III, p. 659–685.

- Day, T. J. (1975) A geothermal temperature study in and around Beowawe (Nevada): M.S. report, Stanford Univ.
- de Braga, Marcia (1964) Dig no graves, a history of Churchill County, Nevada: Western Printing and Publishing Co., Sparks, NV.
- Decius, L. C. (1964) Geological environment of hyperthermal areas in continental United States and suggested methods of prospecting them for geothermal power: United Nations Conf. on New
- Sources of Energy, Rome, Aug. 1961, Proc., v. 2, p. 166–178. Dole, R. B. (1913) Exploration for salines in Silver Peak Marsh,

Nevada: U. S. Geol. Survey Bull. 530.

- Dreyer, R. M. (1940) Goldbanks mining district, Pershing County, Nevada: Nevada Univ. Bull., v. 34, no. 1 [33].
- Dudley, W. W., Jr., and Larson, J. D. (1976) Effect of irrigation pumping on desert pupfish habitats in Ash Meadows, Nye County, Nevada: U. S. Geol. Survey Prof. Paper 927, 52 p.
- Dunn, L. E., and Hanson, R. A. (1967) Chemical composition and quality of Nevada waters: Nevada Univ., Reno, Agr. Expt. Sta., Rept. R32.
- Eakin, T. E. (1960) Ground-water appraisal of Newark Valley, White Pine County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 1. (1961) Ground-water appraisal of Pine Valley, Eureka
- and Elko Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 2.
- _____ (1962a) Ground-water appraisal of Diamond Valley, Eureka and Elko Counties, Nevada: Nevada Dept. Conserv. and
- Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 6. (1962b) Ground-water appraisal of Gabbs Valley, Mineral
- and Nye Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 9.
- (1962c) Ground-water appraisal of Ralston and Stonecabin Valleys, Nye County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 25.

(1963a) Ground-water appraisal of Garden and Coal Valleys, Lincoln and Nye Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 18.

- (1963b) Ground-water appraisals of Pahranagat and Pahroc Valleys, Lincoln and Nye Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 21.
- (1964) Ground-water appraisal of Coyote Springs and Kane Springs Valleys and Muddy River Springs area, Lincoln and Clark Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 25.

(1966) Regional interbasin ground-water system in the White River area, southeastern Nevada: Water Resources Research, v. 2, no. 2, pp. 251–271; also Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 33.

- Eakin, T. E., Hughes, J. L., and Moore, D. O. (1967) Ground-water appraisal of Steptoe Valley, White Pine County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 42.
- Eakin, T. E., Maxey, G. B., Robinson, T. W., Fredericks, J. C., and Loeltz, O. J. (1951) Contributions to the hydrology of eastern Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 12.
- Eakin, T. E., and Moore, D. O. (1964) Uniformity of discharge of Muddy River Springs, southeastern Nevada, and relation to interbasin movement of ground water *in* Geologic Survey Research: U. S. Geol. Survey Prof. Paper 501, chap. D., p. 171-176.
- Eakin, T. E., and Robinson, T. W. (1950) Ground-water conditions in Whisky Flat, Mineral County, Nevada: U. S. Geol. Survey open-file report.
- Eakin, T. E., Schoff, S. L., and Cohen, Philip (1963) Regional hydrology of a part of southern Nevada; a reconnaissance: U. S. Geol. Survey Trace Element Inv. Rept. TEI-833.
- Ehrlich, G. G., and Schoen, Robert (1967) Possible role of sulfuroxidizing bacteria in surficial acid alteration near hot springs: U. S. Geol. Survey Prof. Paper 575-C, p. C110.
- Eng. Mining Jour.-Press (1923) No dividend no mill for Divide: Eng. Mining Jour.-Press, v. 115, no. 12, p. 556.
- Evans, A. S. (1869) In Whirlwind Valley: Overland Monthly [San Francisco, CA], v. 2, no. 2, p. 111-115.
- Everett, D. E. (1964a) Ground-water appraisal of Edwards Creek Valley, Churchill County, Nevada: Nevada Dept. Conserv. and

- Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 26. (1964b) Map showing saline ground-water areas of Nevada: U. S. Geol. Survey open-file report.
- Everett, D. E., and Rush, F. E. (1964) Ground-water appraisal of Smith Creek and Ione Valleys, Lander and Nye Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 28.
 - (1965) Water resources appraisal of Lovelock Valley, Pershing County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 32.
 - (1966) Brief appraisal of the water resources of Grass and Carico Lake Valleys, Lander and Eureka Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources– Reconn. Ser. Rept. 37.
- (1967) Brief appraisal of water resources of Walker Lake area, Mineral, Lyon, and Churchill Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 40.
- Facca, G., and Tonani, F. (1962) Natural steam exploration in USA: Boll. Geofisica Teor. ed Appl., v. 4, no. 14, p. 155-170.
- Fall, H. C. (1928) A new coelambus from a thermal spring in [Ruby Valley] Nevada: Psyche, v. 35, no. 1, p. 64-65.
- Ferguson, H. G., Muller, S. W., and Roberts, R. J. (1951a) Geology of the Winnemucca quadrangle, Nevada: U. S. Geol. Survey Geol. Quad. Map GQ-11.

(1951b) Geology of the Mount Moses quadrangle, Nevada: U. S. Geol. Survey Geol. Quad. Map GQ-12.

- Ferguson, H. G., Roberts, R. J., and Muller, S. W. (1952) Geology of the Golconda quadrangle, Nevada: U. S. Geol. Survey Geol. Quad. Map GQ-15.
- Feth, J. H., Roberson, C. E., and Polzer, W. L. (1964) Sources of mineral constituents in water from granitic rocks Sierra Nevada, California and Nevada: U. S. Geol. Survey Water-Supply Paper 1535-I.
- Fiero, G. W., Jr. (1968) Regional ground-water flow systems of central Nevada: Nevada Univ., Reno, Desert Res. Inst., Center for Water Resources Research Misc. rept. 5.
- Fitch, W E. (1927) Mineral waters of the United States and American spas: Philadelphia and New York, Lea & Febiger.
- Frémont, J. C. (1845) Report of the exploring expedition to Oregon and north California in the years 1843-44: Illinois Univ. Press [1970], Expeditions of John Charles Frémont, v. 1, pt. 137.
- Fulton, J. A., and Smith, A. M. (1932) Nonmetallic minerals in Nevada: Nevada Univ. Bull., v. 26, no. 7 [17]; reprinted from Pit and Quarry, v. 24, no. 11, Aug. 24, 1932.
- Garside, L. J. (1973) Radioactive mineral occurrences in Nevada: Nevada Bur. Mines and Geology Bull. 81.
- (1974) Geothermal exploration and development in Nevada through 1973: Nevada Bur. Mines and Geology Rept. 21.
- Garside, L. J., and Schilling, J. H. (1972) Geothermal exploration and development in Nevada, *in* Geothermal overviews of the western United States: Geothermal Resource Council Conf., El Centro, 1972, Proc., paper H; also (1972) *in* Geothermal World Directory, Meadows, K. F., ed.
- Geothermal Resources Council (1974) A brief outline of geothermal regulatory agencies in the western United States: Geothermal Resources Council, Davis, CA.
- Gianella, V. P. (1933) Middle California and western Nevada: 16th Internat. Geol. Congress, United States, 1933, Guidebook 16, Excursion C-1. (Itinerary Reno to Walley Hot Springs and return), p. 108.
- Gianella, V. P., and White, D. E. (1946) Minerals of Steamboat Springs, Nevada [abs.]: Geol. Soc. America Bull., v. 57, no. 12, pt. 2, p. 1196; also (1947) Am. Mineralogist, v. 32, nos. 3-4, p. 200-201.
- Gilbert, G. K. (1875) Report on the geology of portions of California, Nevada, Utah, Colorado, New Mexico, and Arizona, examined in the years 1871, 1872, and 1873: U. S. Geol. Geog. Survey West 100th Meridian, v. 3, no. 1, p. 19-187.
- Gillis, W. R. (1868) Nevada directory for 1868-1869: San Francisco, M. D. Carr and Co.
- Glancy, P. A., and Katzer, T. L. (1975) Water-resources appraisal of the Carson River Basin, western Nevada: Nevada Dept. Conserv. Nat. Resources-Reconn. Ser. Rept. 59.
- Glancy, P. A., and Rush, F. E. (1968) Ground-water appraisal Smoke Creek-San Emidio Desert area: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 44.

- Glancy, P. A., and Van Denburgh, A. S. (1969) Water-resources appraisal of the lower Virgin River Valley area, Nevada, Arizona, and Utah: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 51.
- Godwin, L. H., Haigler, L. B., Rioux, R. L., White, D. E., Muffler, L. P. J., and Weyland, R. G. (1971) Classification of public lands valuable for geothermal steam and associated geothermal resources: U. S. Geol. Survey Circ. 647.
- Godwin, L. H., and Johnson, E. (1967; Rev. July 1976) State of Nevada geothermal land classification map: U. S. Geol. Survey Conservation Division unpublished map, Pacific area, scale 1:500,000.
- Goldstein, N. E., and Paulsson, B. (1977) Interpretation of gravity surveys in Grass and Buena Vista Valleys, Nevada: Calif. Univ., Lawrence Berkeley Laboratory Rept. LBL-7013.
- Goldstein, N. E., Beyer, H., Corwin, R., di Somma, D. E., Majer, E., McEvilly, T. V., Morrison, H. F., Wollenberg, H. A., and Grannell, R. (1976) Geoscience studies in Buena Vista Valley, Nevada: Natl. Tech. Inf. Service open-file report LBL-5913.
- Grose, L. T. (1971) Geothermal energy: geology, exploration, and developments, Part 1: Colorado School of Mines Mineral Industries Bull. v. 14, no. 6.
- Grose, L. T., and Keller, G. V. (1974a) Colorado School of Mines Nevada Geothermal Study—Report of Progress for the Period May 1, 1974 to July 31, 1974: Colorado School of Mines report, Natl. Sci. Found. grant GI 43866.
- (1974b) Colorado School of Mines Nevada Geothermal Study-Report of Progress for Period August 1, 1974 to October 30, 1974: Colorado School of Mines report, Natl. Sci. Found. grant GI 43866.
- (1975a) Colorado School of Mines Nevada Geothermal Study—Progress Report No. 3—for Period November 1, 1974 to January 31, 1975: Colorado School of Mines report, Natl. Sci. Found. grant GI 43866.
- (1975b) Colorado School of Mines Nevada Geothermal Study Progress Report No. 4—for Period February 1, 1975 to October 31, 1975: Colorado School of Mines report, Natl. Sci. Found. grant GI 43866.
- (1976) Research on the physical properties of geothermal reservoir rocks. Summary report on collection of samples of volcanic rocks for petrophysical studies. Progress Report I: Natl. Tech. Inf. Service Rept. COO-2908-1.
- Hague, Arnold, and Emmons, S. F. (1877) U. S. Geol. Explor. 40th Parallel, v. 2.
- Hardman, G., and Miller, M. (1934) Quality of water of southeastern Nevada, drainage basins and water resources: Nevada Univ., Reno, Agr. Expt. Sta. Bull. 136.
- Harrill, J. R. (1968) Ground water in Diamond Valley, Eureka County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 35.
- (1969) Hydrologic response to irrigation ground-water pumping in Hualapai Flat, Washoe, Humboldt, and Pershing Counties, Nevada, 1960-67: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 37.
- (1970) Water-resources appraisal of the Granite Springs Valley area, Pershing, Churchill, and Lyon Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources– Reconn. Ser. Rept. 55.
- Harrill, J. R., and Moore, D. O. (1970) Effects of ground-water regimen of Paradise Valley, Humboldt County, Nevada, 1948– 68, and hydrologic reconnaissance of the tributary areas: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 39.
- Hawley, J. W., and Wilson, W. E. (1965) Quaternary geology of the Winnemucca area: Nevada Univ., Reno, Desert Res. Inst. Tech. Rept. 6.
- Henyey, T. L., and Lee, T. C. (1976) Heat flow in Lake Tahoe, California-Nevada, and the Sierra Nevada-Basin and Range transition: Geol. Soc. America Bull., v. 87, p. 1179-1187.
- Hollander, J. M., Laird, A. D. K., Mirk, K. F., and Wollenberg, H. A. (1974) Utilization of intermediate-temperature geothermal brines in the production of electric power, *in* Geothermal Resources—Parts I and II: Committee on Interior and Insular Affaris, Washington, D. C., p. 126–140.
- Holmes, G. H., Jr. (1966) Water requirements and uses in Nevada mineral industries: U. S. Bur. Mines Inf. Circ. 8288.
- Hoover, D. B., and Batzle, M. (1977) Audio-magnetotelluric data log and station location map for Pinto Hot Springs Known Geo-

thermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-65A.

- Hoover, D. B., Batzle, M., and Rodriquez, R. (1975) Self-potential map-Steamboat Hills, Nevada: U. S. Geol. Survey open-file report 75-446.
- Hoover, D. B., Brougham, G., and Clark, J. (1976) Audio-magnetotelluric data log, station location map, and telluric profile data for the Elko Hot Springs Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-152.
- Hoover, D. B., Manydeeds, S., and Martinez, R. (1975) Audiomagnetotelluric data log, station location map, and telluric profile for San Emidio Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 75-670.
- Hoover, D. B., O'Donnell, J., Batzle, M., and Rodriquez, R. (1975) Map of telluric profiles, Steamboat Hills, Nevada: U. S. Geol. Survey open-file report 75-445.
- Hoover, D. B., Peterson, D. L., and Farkash, V. (1977) Telluric profile location map and telluric data for the Baltazor Known Geothermal Resource Area, Nevada: U. S. Geol. Survey openfile report 77-66C.
- Hoover, D. B., Senterfit, R. M., Fisher, D., and Radtke, B. (1977) Telluric profile location map and telluric data for the Salt Wells Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-66F.
- Horton, R. C. (1964a) Geothermal power in Mineral and water resources of Nevada: Nevada Bur. Mines Bull. 65, p. 267-269.
- (1964b) Hot springs, sinter deposits and volcanic cinder cones in Nevada: Nevada Bur. Mines Map 25.
- Hubbs, C. L., Miller, R. R., and Hubbs, L. C. (1974) Hydrographic history and relict fishes of the north-central Great Basin: California Acad. Sci. Mem., v. 7.
- Hose, R. K., and Taylor, B. E. (1974) Geothermal systems of northern Nevada: U. S. Geol. Survey open-file report 74-271.
- Hughes, J. L. (1966) Some aspects of the hydrogeology of the Spring Mountains and Pahrump Valley, Nevada, and environs, as determined by spring evaluation: M.S. thesis, Univ. of Nevada, Reno.
- Hummel, N. A. (1888) General history and resources of Washoe County, Nevada: Nevada Educ. Assoc. (printed by the Reno Evening Gazette).
- Hunt, C. B., Robinson, T. W., Bowles, W. A., and Washburn, A. L. (1966) Hydrologic basin, Death Valley, California: U. S. Geol. Survey Prof. Paper 494-B.
- Huxel, C. J. (1969) Ground water in Mason Valley, Lyon County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 38.
- Johnson, E. A., Renner, J. L., and Telleen, K. E. (1976) Hydrothermal convection systems in Nevada, *in* Renner, J. L., and others, Selected geothermal resources data: Hydrothermal convection systems in the states of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming: Natl. Tech. Inf. Service PB-250 377.
- Johnson, M. G. (1977) Geology and mineral deposits of Pershing County, Nevada: Nevada Bur. Mines and Geol. Bull. 89.
- Jones, J. C. (1914) Occurrence of stibnite and metastibnite at Steamboat Springs, Nevada [abs.]: Geol. Soc. America Bull., v. 25, no. 1, p. 126.
- Kaufmann, H. (1976) Telluric profiles across the Darrough Known Geothermal Resource Area, Nevada: U. S. Geol. Survey openfile report 76-286.
- Keller, G. V., Grose, T., and Crewdson, R. A. (1974) Colorado School of Mines Nevada geothermal study: Conf. on Research for Devel. of Geothermal Energy Resources, Pasadena, CA, 1974, Proc., p. 73-84; also Natl. Sci. Found RANN Rept. 74-159.
- Kerr, P. F. (1940) Tungsten-bearing manganese deposit at Golconda, Nevada: Geol. Soc. America Bull., v. 51, p. 1359–1389.
- _____ (1946) Tungsten mineralization in the United States: Geol. Soc. America Mem. 15.
- Kiersch, G. A. (1964) Geothermal steam, origin, occurrence, characteristics and exploitation: Cornell Univ., Ithaca, NY (Prepared under contract for U. S. Air Force Cambridge Research Labs.).
- Kingman, D. S. (1958) Camp Desert Rock, Nevada—water supply investigation: report to U. S. Corps of Engineers, San Francisco District, CA.
 - ___ (1959) Water supply investigation: Naval Auxiliary Air

Station, Fallon, Nevada, for District Public Works Office, U. S. Navy, Twelfth Naval District, San Bruno, CA.

- Koenig, J. B. (1970) Geothermal exploration in the western United States: Geothermics, Spec. Issue 2, v. 2, pt. 1, p. 1–13.
- (1973) Worldwide status of geothermal resources, in Kruger, Paul and Otte, Carel (eds.), Geothermal energy-resources, production, stimulation: Stanford Univ. Press, Stanford, CA.
- Koenig, J. B., Anderson, D. N., and Huttrer, G. W. (1975) Exploration and development of geothermal resources in the United States, 1968–1975: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proc., v. 1, p. 139–142.
- Lamke, R. D., and Moore, D. O. (1965) Interim inventory of surfacewater resources of Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 30.
- Lawrence, E. F. (1971) Mercury mineralization at the Senator Fumaroles, Dixie Valley, Nevada [abs.]: Geol. Soc. America Abstr. with Programs, v. 3, no. 2, p. 147 (Cordilleran Section).
- Lawson, A. C. (1912) The recent fault scarps at Genoa, Nevada: Seismol. Soc. America Bull., v. 2, no. 3, p. 193-200.
- LeConte, Joseph (1883) On mineral vein formation now in progress at Steamboat Springs [Nevada] compared with the same at Sulphur Bank [California]: Am. Jour. Sci., 3d ser., v. 25, p. 424-428.
- Liaw, A. L. C. (1977) Microseisms in geothermal exploration studies in Grass Valley, Nevada: Calif. Univ., Lawrence Berkeley Laboratory Rept. LBL-7002.
- Liggett, M. A. (1974) Reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau—Final report: Natl. Aeronautics and Space Admin. CR Rept. 139434, Natl. Tech. Info. Service.
- Lindgren, Waldemar (1905) Occurrence of stibnite at Steamboat Springs, Nevada: Soc. Mining Engineers Trans., v. 36.
- (1911) Tertiary gravels of the Sierra Nevada of California: U. S. Geol. Survey Prof. Paper 73.
- Lintz, Joseph, Jr. (1957) Nevada oil and gas drilling data, 1906-1953: Nevada Bur. Mines Bull. 52.
- Livingston, Penn (1940) Underground leakage from artesian wells in the Las Vegas area, Nevada: U. S. Geol. Survey Water-Supply Paper 849-C.
- Locke, A. (1912) The abnormal temperatures on the Comstock Lode: Econ. Geology, v. 7, p. 583-587.
- Loeltz, O. J. (1953) Hydrologic characteristics of aquifers penetrated by irrigation wells in the vicinity of Orovada, Humboldt County, Nevada: U. S. Geol. Survey open-file report.
- (1953) Results of pumping test of an artesian well near Battle Mountain, Lander County, Nevada: U. S. Geol. Survey open-file report.
- Loeitz, O. J., and Eakin, T. E. (1953) Geology and water resources of Smith Valley, Lyon and Douglas Counties, Nevada: U. S. Geol. Survey Water-Supply Paper 1228.
- Loeltz, O. J., and Phoenix, D. A. (1955) Geology and ground-water resources of Buena Vista Valley, Pershing County, Nevada: State of Nevada, Office of the State Engineer Water Resources Bull. 13.
- Loeltz, O. J., Phoenix, D. A., Robinson, T. W. (1949) Ground water in Paradise Valley, Humboldt County, Nevada: State of Nevada, Office of the State Engineer Water Resources Bull. 10.
- Long, C. L., and Batzle, M. L. (1976a) Station location map and audio-magnetotelluric data log for Monte Neva Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-700A.
- (1976b) Station location map and audio-magnetotelluric data log for Ruby Valley Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-700B.
- (1976c) Station location map and audio-magnetotelluric data log for Rye Patch Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-700C.
- Long, C. L., and Brigham, R. H. (1975a) Audio-magnetotelluric data log for Wabuska, Nevada: U. S. Geol. Survey open-file report 75-444.
- (1975b) Audio-magnetotelluric data log for Steamboat Hills, Nevada: U. S. Geol. Survey open-file report 75-447.
- Long, C. L., and Senterfit, M. (1977a) Audio-magnetotelluric data log and station location map for Baltazor Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-65B.

(1977b) Audio-magnetotelluric data log and station location map for Fly Ranch Northeast Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-65C.

- (1977c) Audio-magnetotelluric data log and station location map for Gerlach Northwest Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-65D.
- Long, C. L., Senterfit, M., and Kaufmann, H. (1975) Audiomagnetotelluric data log and station location map for Gerlach Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 75-669.
- (1976) Audio-magnetotelluric data log, apparent resistivity maps and station location map for the Darrough Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-285.
- Lord, E. (1883) Comstock mining and miners: U. S. Geol. Survey Mon. 4.
- Lutsey, I. A., and Nichols, S. L. (1972) Land status map of Nevada (2nd edition): Nevada Bur. Mines and Geology Map 40.
- Lyle, D. A. (1878) The springs of southern Nevada: Amer. Naturalist, v. 12, p. 18-27.
- Majer, E., Liaw, A., and McEvilly, T. V. (1976) Seismological investigations near Leach Hot Springs, Nevada [abs.]: E⊕S, Am. Geophys. Union Trans., v. 57, no. 3, p. 153.
- Malmberg, G. T. (1965) Available water supply of the Las Vegas ground-water basin, Nevada: U. S. Geol. Survey Water-Supply Paper 1780.

_____ (1967) Hydrology of the valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada-California: U. S. Geol. Survey Water-Supply Paper 1832.

- Malmberg, G. T., and Eakin, T. E. (1962) Ground-water appraisal of Sarcobatus Flat and Oasis Valley, Nye and Esmeralda Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 10.
- Malmberg, G. T., and Worts, F. G., Jr. (1966) Effects of pumping on the hydrology of Kings River Valley, Humboldt County, Nevada, 1957-64: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 31.
- Mariner, R. H., Presser, T. S., Rapp, J. B., and Willey, L. M. (1975) Minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U. S. Geol. Survey open-file report.
- Mariner, R. H., Rapp, J. B., Willey, L. M., and Presser, T. S. (1974) Chemical composition and estimated minimum thermal reservoir temperatures of the principal hot springs of northern and central Nevada: U. S. Geol. Survey open-file report.
- Marshall, Ruth (1928) A new species of water mite from thermal springs: Psyche, v. 35, no. 2, p. 92-96.
- Maxey, G. B., and Eakin, T. E. (1949) Ground water in White River Valley, White Pine, Nye, and Lincoln Counties, Nevada: State of Nevada, Office of the State Engineer Water Resources Bull. 8.
- Maxey, G. B., and Jameson, C. H. (1946) Well data in Las Vegas and Indian Spring Valleys, Nevada: State of Nevada, Office of the State Engineer Water Resources Bull. 4.
- (1948) Geology and water resources of Las Vegas, Pahrump, and Indian Spring Valleys, Clark and Nye Counties, Nevada: State of Nevada, Office of the State Engineer Water Resources Bull. 5.
- Maxey, G. B., and Mifflin, M. D. (1966) Occurrence and movement of ground water in carbonate rocks of Nevada: Natl. Speleol. Soc. Bull., v. 28, no. 3.
- McKee, E. H. (1968) Geologic map of the Spencer Hot Springs quadrangle, Lander County, Nevada: U. S. Geol. Survey Geol. Quad. Map GQ-770.
- Meinzer, O. E. (1917) Geology and water resources of Big Smokey, Clayton, and Alkali Spring Valleys, Nevada: U. S. Geol. Survey Water-Supply Paper 423.
- Mendenhal, W. C. (1909) Some desert watering places in southwestern Nevada and eastern California: U. S. Geol. Survey Water-Supply Paper 224.
- Middleton, W. M. (1961) Report on Beowawe, Nevada, geothermal steam wells for Magma-Vulcan thermal power project: Vulcan Thermal Power Co. unpubl. report.

(undated) Data and comments on geothermal steam wells at Brady Hot Springs, Nevada: Magma Power Co. unpubl. report.

Mifflin, M. D. (1963) Preliminary report on ground-water possibilities in Valley of Fire State Park, Nevada: Nevada Univ., Reno,

- Desert Res. Inst. report to Dir. Nevada Div. of State Parks. (1968) Delineation of ground-water flow systems in Nevada: Nevada Univ., Reno, Desert Res. Inst., Center for Water Resources Research Tech. Rept. H-W, no. 4.
- Mifflin, M. D., and Domenico, P. A. (1964) Hydrogeology in Seismology, hydrogeology, and meteorology of the proposed nuclear power plant site in Mason Valley, Nevada: Nevada Univ., Reno, Desert Res. Inst. report to Sierra Pacific Power Co.
- Mifflin, M. D., and Maxey, G. B. (1963) Preliminary report of the geology and hydrology of the Settlemeyer site, Carson Valley, Nevada: Nevada Univ., Reno, Desert Res. Inst. report to Div. of Fisheries and Wildlife, U. S. Fish and Wildlife Service.
- Miller, M. R., Hardman, George, and Mason, H. G. (1953) Irrigation waters in Nevada: Nevada Univ., Reno, Agr. Expt. Sta. Bull. 187.
- Mirk, K. F., and Wollenberg, H. A. (1974) Lawrence Berkeley Laboratory geothermal program in northern Nevada: Calif. Univ., Lawrence Berkeley Laboratory Rept. 3224, U. S. Energy Research and Devel. Admin. contract no. W-7405-ENG-48.
 (1975) Lawrence Berkeley Laboratory geothermal program in northern Nevada: Conf. on Research for Devel. of Geothermal Energy Resources, Pasadena, CA, 1974, Proc., p. 167-185.
- Mitzger, D. G., Carstens, G. H., and Somers, W. P. (1953) Preliminary report on water resources in the vicinity of the Naval Ammunition Depot, Hawthorne, Nevada: U. S. Geol. Survey admin.report.
- Moore, D. O., and Eakin, T. E. (1968) Ground-water appraisal Snake River tributaries, Elko and Humboldt Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 48.
- Moore, J. G. (1969) Geology and mineral deposits of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bur. Mines Bull. 75.
- Morris, D. (1975) Quadripole mapping near the Fly Ranch geothermal prospect, northwest Nevada: Natl. Tech. Inf. Service Rept. PB-262779.
- Morris, H. G. (1903) Hydrothermal activity in the veins at Wedekind, Nevada: Eng. Mining Jour., v. 76, p. 275-276.
- Morrison, R. B. (1964) Lake Lahontan: geology of southern Carson Desert, Nevada: U. S. Geol. Survey Prof. Paper 401.
- Muffler, L. J. P. (1975a) Present status of resources development: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proc., v. 1, p. iv.
- (1975b) Tectonic and hydrologic control of the nature and distribution of geothermal resources: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proc., v. 1, p. 499-507.
- Muller, S. W., Ferguson, H. G., and Roberts, R. J. (1951) Geology of the Mount Tobin quadrangle, Nevada: U. S. Geol. Survey Geol. Quad Map GQ-7.
- Munroe, R. J., and Moses, T. H., Jr. (1969) Temperature data from exploratory boreholes at the supplemental test site, central Nevada: U. S. Geol. Survey interim report, contract no. AT-(29-2)-474.
- Murbarger, Nell (1956) Geysers of Whirlwind Valley (Nevada): Desert Mag., v. 19, no. 1, p. 17-20.
- Myerson, B. L. (1956) Uranium occurrence near Panaca, Lincoln County, Nevada: U. S. Atomic Energy Comm. RME-2052.
- Myrick, D. F. (1962) Railroads of Nevada and eastern California, the northern roads, v. 1: Berkeley, CA, Howell-North.
- Naff, R. L. (1973) Hydrogeology of the southern part of Amargosa Desert in Nevada: M.S. thesis, Univ. of Nevada, Reno.
- Nevada Mining Association (1964) Geothermal power: Nevada Mining Assoc. Newsletter no. 140, Nov. 15, 1964, p. 9, 10.
- Noble, D. C., Wollenberg, H. A., Silberman, M. L., and Archibald, Douglas (1975) Late Cenozoic structural, volcanic, and hydrothermal evolution of the Leach Hot Springs geothermal area, Pershing County, Nevada: Geol. Soc. America Abstr. with Programs, 1975, p. 357.
- Nolan, T. B., and Anderson, G. H. (1934) Geyser area near Beowawe, Eureka County, Nevada: Am. Jour. Sci., 5th ser., v. 27, no. 159, p. 215-229.
- O'Donnell, J. E. (1976) Magnetotelluric soundings in the Darrough Hot Springs area, Nevada: U. S. Geol. Survey open-file report 76-288.
- O'Donnell, J. E., Brougham, G. W., Martinez, R., and Christopherson, K. R. (1977) Telluric survey data for Pinto Hot Springs Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-66A (Supplement to 76-701A).

- Oesterling, W. A. (1959) Areal economic geology of T33N,R39 and 40E, M.D.M.: Land Dept., Southern Pacific Co., San Francisco, unpubl. maps.
 - (1960) Areal economic geology of T37N,R61 and 62E, M.D.M.: Land Dept., Southern Pacific Co., San Francisco, unpubl. map.
 - (1961) Areal economic geology of T38N,R61 and 62E, M.D.M.: Land Dept., Southern Pacific Co., San Francisco, unpubl. map.
- (1962) Geothermal power potential of northern Nevada: Pacific Southwest Mineral Industry Conf., Am. Inst. Mining, Metallurgical, Petroleum Engrs., San Francisco, unpubl. report.
- Oesterling, W. A., and Anctil, R. J. (1962) Geological and economic appraisal of geothermal steam resources at Brady Hot Springs, Nevada: Southern Pacific Co., unpubl. report.
- Oesterling, W. A., and others (1960) Geological appraisal of geothermal steam resources at The Geysers near Beowawe, Nevada: Southern Pacific Co., unpubl. report.
- Olcott, G. W. (1959) Areal economic geology of T34N,R41 and 42E, M.D.M.: Southern Pacific Co., unpubl. maps.
- Olcott, G. W., and Spruck, W. H. (1961) Areal economic geology of T32N,R33 and 34E, M.D.M: Land Dept., Southern Pacific Co., unpubl. map.
- Olmsted, F. H. (1974a) Hydrologic reconnaissance of geothermal areas in Black Rock Desert and Cason Desert, Nevada [abs.]: Geol. Soc. America Abstr. with Programs, v. 6, no. 3, p. 232. (1974b) Leach Hot Springs geothermal area, Nevada [abs.]: Geol. Soc. America Abstr. with Programs, v. 6, no. 7,
- p. 899. Olmsted, F. H., Glancy, P. A., Harrill, J. R., Rush, F. E., and Van
- Olmsted, F. H., Glancy, P. A., Harrin, J. R., Rush, F. E., and Van Denburgh, A. S. (1973) Sources of data for evaluation of selected geothermal areas in northern and central Nevada—Water resources investigations: U. S. Energy Research and Devel. Admin. Rept. 222948; also, U. S. Geol. Survey Water Resources Inv. 44-73.
- (1975) Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada: U. S. Geol. Survey open-file report 75-56.
- Olmsted, F. H. and Rush, F. E. (1977) Data released on potential geothermal area, Beowawe, Nevada: U. S. Geological Survey Water Resources open-file report.
- Olson, R. H. (1964) Sulfur, in Mineral and water resources of Nevada: Nevada Bur. Mines Bull. 65, p. 254-256.
- Overton, T. D. (1947) Mineral resources of Douglas, Ormsby, and Washoe Counties (Nevada): Nevada Univ. Bull., v. 41, no. 9 [46].
- Paden, I. D. (1949) Prairie schooner detours: New York, The Macmillan Co.
- Papke, K. G. (1969) Industrial rock and mineral deposits in Bonham,
 H. F., Jr., Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bur. Mines Bull. 70.
- (1976) Evaporites and brines in Nevada playas: Nevada Bur. Mines and Geol. Bull. 87.
- Patterson, E. B., Ulph, L. A., and Goodwin, V. (1969) Nevada's northeast frontier: Sparks, NV, Western Printing and Publishing Co.
- Peale, A. C. (1886) Lists and analyses of the mineral springs of the United States (a preliminary study): U. S. Geol. Survey Bull. 32.
- Penrose, R. A. F., Jr. (1893) Pleistocene manganese deposit near Golconda, Nevada: Jour. Geology, v. 1, no. 3, p. 275-282.
- Peterson, D. L. (1975) Principal facts for gravity stations in Steamboat Hills and Wabuska, Nevada: U. S. Geol. Survey open-file report 75-443.
- Peterson, D. L., and Dansereau, D. A. (1975) Principal facts for gravity stations in Gerlach and San Emidio Known Geothermal Resource Areas, Nevada: U. S. Geol. Survey open-file report 75-668.
- (1976a) Principal facts for gravity stations in the Darrough Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-289.
- (1976b) Principal facts for gravity stations in the Elko Hot Springs Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-151.
- Peterson, D. L., and Hassemer, J. H. (1977) Principal facts for a gravity survey of Pinto Hot Springs Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report

77-67B.

- Peterson, D. L., and Hoover, D. B. (1977) Principal facts for a gravity survey of Baltazor Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 77-67C.
- Peterson, D. L., and Kaufmann, H. E. (1977) Principal facts for a gravity survey of Salt Wells Basin, Churchill County, Nevada: U. S. Geol. Survey open-file report 77-67D.
- Peterson, R. E. (1976) Nonelectric geothermal—a versatile resource: Geothermal Energy, v. 4, no. 11, p. 8-18.
- Phillips, J. A. (1871) On the connexion of certain phenomena with the origin of mineral veins: London, Edinburgh, and Dublin Philos. Mag. and Jour. Sci., 4th ser., v. 42, no. 282, p. 401-413.
 (1879) A contribution to the history of mineral veins: Geol. Soc. London Quart. Jour., v. 35, p. 390-396.
- Phoenix, D. A. (1948a) Geology and ground water in the Meadow Valley Wash drainage area, Nevada, above the vicinity of Caliente, with statements on classification of irrigable lands in the Panaca area of Meadow Valley, by George Hardman and H. G. Fox, and Quality of spring and well waters of the Meadow Valley Wash drainage area above the vicinity of Caliente, by George Hardman and M. R. Miller: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 7.
- _____ (1948b) Ground-water conditions in the vicinity of Tonopah, Nye County, Nevada: U. S. Geol. Survey open-file report.
- (1949a) Ground water in the Austin area, Lander County, Nevada: U. S. Geol. Survey open-file report.
- (1949b) Results and description of test drilling in Argenta swamp near Battle Mountain, Lander County, Nevada: U. S. Geol. Survey open-file report.
- Pioneer Nevada (1951): Reno, Harolds Club.
- Piper, A. M. (1923) Geology and water resources of the Goose Creek Basin, Cassia County, Idaho: Idaho Bur. Mines and Geology Bull. 6.
- Prehn, W. L. (1973) Future role of desalting in Nevada: Washington, U. S. Govt. Printing Office, PB Rept. 226760.
- Pruss, D. E., Bonham, H. F., Jr., and Spruck, W. H. (1961) Areal economic geology of T28N,R31 and 32E, M.D.M.: Southern Pacific Co., unpubl. map.
- Ransome, F. L. (1909a) Geology and ore deposits of Goldfield, Nevada: U. S. Geol. Survey Prof. Paper 66.
- (1909b) Notes on some mining districts in Humboldt County, Nevada: U. S. Geol. Survey Bull. 414.
- Reid, J. A. (1905) Structure and genesis of the Comstock Lode: California Univ., Dept. Geology Bull., v. 4, no. 10, pp. 177-199.
- Renner, J. L. (1976) Selected geothermal resources data: Hydrothermal convection systems in the States of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming: Natl. Tech. Inf. Service Rept. USGS-CD-76-001.
- Renner, J. L., White, D. E., and Williams, D. L. (1975) Hydrothermal convection systems, *in* White, D. E., and Williams, D. L., eds., Assessment of geothermal resources of the United States— 1975: U. S. Geol. Survey Circ. 726, p. 5-57.
- Rinchart, J. S. (1968) Geyser activity near Beowawe, Eureka County, Nevada: Jour. Geophys. Research, v. 73, no. 24, p. 7703-7706.
- Roberts, R. J., Montgomery, K. M., and Lehner, R. E. (1967) Geology and mineral resources of Eureka County, Nevada: Nevada Bur. Mines Bull. 64.
- Robinson, T. W. (1950) Ground water for Indian Service hospital at Schurz, Nevada: U. S. Geol. Survey open-file report.
- _____ (1950) Ground water in Nevada: Colorado School Mines Quart., v. 45, no. 4B, p. 33-38.
- Robinson, T. W., and Fredericks, J. C. (1946) Ground water in Lovelock Valley, Nevada: State of Nevada, Office of the State Engineer Water Resources Bull. 2.
- Robinson, T. W., Loeltz, J. O., and Poole, J. L. (1951) Ground water in the vicinity of Verdi, Washoe County, Nevada: U. S. Geol. Survey open-file report.
- Robinson, T. W., and Phoenix, D. A. (1948) Ground water in Spanish Springs and Sun Valley, Washoe County, Nevada: U. S. Geol. Survey open-file report.
- Rosevear, M. D. (1976) Growing up in Tonopah in Nevada official bicentennial book: Las Vegas, Nevada Publications.
- Rush, F. E. (1964) Ground-water appraisal of the Meadow Valley area, Lincoln and Clark Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser.

Rept. 24.

(1967) Water resources appraisal of Washoe Valley, Washoe County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 41.

_____(1968a) Ground-water appraisal of Clayton Valley-Stonewall Flat area, Nye County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 45.

(1968b) Ground-water appraisal of Thousand Springs Creek Valley, Elko County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 47.

(1968c) Water resources appraisal of the lower Moapa-Lake Mead area, Clark Co., Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 50.

(1970) Regional ground-water systems in the Nevada Test Site area, Nye, Lincoln, and Clark Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 54.

- Rush, F. E., and Eakin, T. E. (1963) Ground-water appraisal of Lake Valley in Lincoln and White Pine Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 24.
- Rush, F. E., and Everett, D. E. (1964) Ground-water appraisal of Monitor, Antelope, and Kobeh Valleys, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 30.

(1966) Water resources appraisal of Little Fish Lake, Hot Creek, and Little Smoky Valleys, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 30.

- Rush, F. E., and Glancy, P. A. (1967) Ground-water appraisal of the Warm Springs-Lemmon Valley area, Washoe County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 43.
- Rush, F. E., and Huxel, C. J., Jr. (1966) Ground-water appraisal of the Eldorado-Piute Valley area, Nevada and California: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 36.
- Rush, F. E., and Katzer, T. L. (1973) Water resources appraisal of Fish Lake Valley, Nevada and California: Nevada Dept. of Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 58.
- Rush, F. E., and Kazmi, S. A. T. (1965) Water resources appraisal of Spring Valley, White Pine and Lincoln Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 33.
- Rush, F. E., and Schroer, C. V. (1970) Water resources of Big Smokey Valley, Lander, Nye, and Esmeralda Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 41.
- Russell, I. C. (1885) Geological history of Lake Lahontan: U. S. Geol. Survey Mon. 11.
- Sanders, J. W., and Miles, M. J. (1974) Mineral content of selected geothermal waters: Nevada Univ., Reno, Desert Res. Inst., Center for Water Resources Research Proj. Rept. 26.
- Sass, J. H., Lachenbruch, A. H., Munroe, R. J., Greene, G. W., and Moses, T. H., Jr. (1971) Heat flow in the western United States: Jour. Geophys. Research, v. 76, no. 26, p. 6376-6413.
- Sass, J. H., Olmsted, F. H., Sorey, M. L., Wollenberg, H. A., Lachenbruch, A. H., Munroe, R. J., and Galanis, S. P., Jr. (1976) Geothermal data from test wells drilled in Grass Valley and Buffalo Valley, Nevada: U. S. Geol. Survey open-file report 76-85.
- Sass, J. H., Wollenberg, H. A., di Somma, D. E., and Ziagos, J. P. (1976) Heat flow near Kyle Hot Springs, Buena Vista Valley, Nevada: U. S. Geol. Survey open-file report 76-862.
- Sass, J. H., Ziagos, J. P., Wollenberg, H. A., Munroe, R. J., di Somma, D. E., and Lachenbruch, A. H. (1977) Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada: U. S. Geol. Survey openfile report 77-762.
- Schilling, J. H., ed. (1965a) A.I.M.E. Pacific Southwest mineral industry conference, fieldtrip guidebook.

(1965b) Isotopic age determinations of Nevada rocks: Nevada Bur. Mines Rept. 10.

(1968) Nevada's geothermal resources: Nevada Univ., Reno, Bur. Business and Econ. Research, Nevada Business Review, p. 2, 4.

Schilling, J. H., and Garside, L. J. (1968) Oil and gas developments

in Nevada, 1953-1967: Nevada Bur. Mines Rept. 18.

- Schoen, Robert, and White, D. E. (1965) Hydrothermal alteration in GS-3 and GS-4 drill holes, Main Terrace, Steamboat Springs, Nevada: Econ. Geology, v. 60, p. 1411-1421.
- (1967) Hydrothermal alteration of basaltic andesite and other rocks in drill hole GS-6, Steamboat Springs, Nevada: U. S. Geol. Survey Prof. Paper 575-B, p. B110.
- Schoff, S. L., and Moore, J. E. (1964) Chemistry and movement of ground water, Nevada Test Site: U. S. Geol. Survey Trace Element Inv. Rept. TEI-838.
- Schrader, F. C. (1947) Carson Sink area, Nevada: U. S. Geol. Survey open-file report.
- Scott, R. C., and Barker, F. B. (1962) Data on uranium and radium in ground water in the United States: U. S. Geol. Survey Prof. Paper 426.
- Senterfit, R. M., and Hoover, D. B. (1978) Audio-magnetotelluric station location map and data log for Double Hot Springs Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 78-105A.
- Senterfit, R. M., Hoover, D. B., and Christopherson, K. (1978) Telluric traverse location map and profiles for Double Hot Springs Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 78-106A.
- Senterfit, R. M., Hoover, D., and Tippens, C. (1976) Audiomagnetotelluric data log and station location map for the Dixie Valley Known Geothermal Resource Area, Nevada: U. S. Geol. Survey open-file report 76-292.
- Sigvaldason, G. E., and White, D. E. (1962) Hydrothermal alteration in drill holes GS-5 and GS-7, Steamboat Springs, Nevada: U. S. Geol. Survey Prof. Paper 450-D, p. D113.
- Silberman, M. L., and White, D. E. (1975) Limits on the duration of hydrothermal activity at Steamboat Springs, Nevada, by K-Ar ages of spatially associated altered and unaltered volcanic rocks [abs.]: Geol. Soc. America Abstr. with Programs, v. 7, no. 7, p. 1272-1273.
- Sinclair, W. C. (1962a) Ground-water resources of Desert Valley, Humboldt and Pershing Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 7.
- ______ (1962b) Ground-water resources of Haulapai Flat, Washoe, Pershing, and Humboldt Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 11.
- (1963a) Ground-water appraisal of the Black Rock Desert area, northwestern Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 20.
- (1963c) Ground-water appraisal of the Pueblo Valley-Continental Lake region, Humboldt County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 22.
- Sinclair, W. C., and Loeltz, O. J. (1963) Ground-water conditions in the Fernley-Wadsworth area, Churchill, Lyon, Storey, and Washoe Counties, Nevada: U. S. Geol. Survey Water-Supply Paper 1619-AA; also, Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 17.
- Sinclair, W. C., and Malchow, R. L. (1963) Ground-water appraisal of the Long Valley-Massacre Lake region: Nev. Dept. Conserv. and Nat Resources, Ground-water Res.-Reconn. Ser. Rept. 15.
- Slemmons, D. B. (1964) Part 1, Seismology, in Seismology, hydrogeology and meterology of the proposed nuclear power plant in Mason Valley, Nevada: Nevada Univ., Reno, Desert Res. Inst. report.
- Slossen, J. E. (1974) Suprise Valley fault: Calif. Geol., Dec. 1974, p. 267-270.
- Smith, A. M. (1956a) Resources report, Washoe County, Nevada: Report for the office of George W. Malone, U. S. Senate Nevada. (1956b) The nonmetallic mineral resources of Nevada: unpubl. report, Mackay School of Mines Library.
- (1957) Resources report, Elko County, Nevada: Report for the office of George W. Malone, U. S. Senate, Nevada.
- _____ (1958) Resources report, Lincoln County, Nevada: Report for the office of George W. Malone, U. S. Senate, Nevada.
- Smith, G. H. (1943) The history of the Comstock Lode, 1850-1920: Nevada Bur. Mines Bull. 37.
- Snyder, C. A. (1963) Hydrology of stock-water development in the Ely grazing district, Nevada: U. S. Geol. Survey Water-Supply Paper 1475-L.

- Sperandio, R. J., and Grose, L. T. (1976) Tectonic controls on the Fly Ranch hot-spring system, Hualapai Flat, northwest Nevada [abs.]: Geol. Soc. America Abstr. with Programs, v. 8, no. 6, p. 1116.
- Spurr, J. E. (1903) Descriptive geology of Nevada south of the 40th parallel and adjacent parts of California: U. S. Geol. Survey Bull. 108.
- (1905) Geology of the Tonopah mining district, Nevada: U. S. Geol. Survey Prof. Paper 42.
- (1906) Ore deposits of the Silver Peak quadrangle, Nevada: U. S. Geol. Survey Prof. Paper 55.
- Staatz, M. H., and Bauer, H. L., Jr. (1953) Uranium in the East Walker River area, Lyon County, Nevada: U. S. Geol. Survey Bull. 988-C, p. 29-43.
- Bull. 988-C, p. 29-43.
 Stanley, W. D., Wahl, R. R., and Rosenbaum, J. G. (1976) A magnetotelluric study of the Stillwater-Soda Lakes, Nevada, geothermal area: U. S. Geol. Survey open-file report 76-80.
- Stearns, N. D., Stearns, H. T., and Waring, G. A. (1937) Thermal springs in the United States: U. S. Geol. Survey Water-Supply Paper 679-B.
- Stewart, J. H., and Carlson, J. E. (1974) Preliminary geologic map of Nevada: U. S. Geol. Survey Mineral Inv. Field Studies Map MF 609.
- _____ (1976a) Cenozioc rocks of Nevada: Nevada Bur. Mines and Geol. Map 52.
- (1976b) Geologic map of north-central Nevada: Nevada Bur. Mines and Geol. Map 50.
- St. John, Orestes (1883) Report on the geology of the Wind River district, in Hayden, F. V., U. S. Geol. and Geog. Survey Terr. 12th Ann. Rept., 1878, pt. 1, p. 173-269.
- Tabor, R. W., and Ellen, S. (1975) Geologic map, Washoe City Folio: Nevada Bur. Mines and Geol.
- Thompson, G. A. (1956) Geology of the Virginia City quadrangle, Nevada: U. S. Geol. Survey Bull. 1042–C.
- Thompson, G. A., and White, D. E. (1964) Regional geology of the Steamboat Springs area, Washoe County, Nevada: U. S. Geol. Survey Prof. Paper 458-A, p. A1-A52.
- Thompson, T. H., and West, A. A. (1881) History of Nevada (reprint., 1958): Berkeley, CA, Howell-North.
- Tischler, M. S., Beers, A., and Bonham, H. F., Jr. (1960) Areal economic geology of T20N,R25 and 26E, M.D.M.: Southern Pacific Co., unpubl. map.
- Truesdell, A. H. (1975) Geochemical techniques in exploration: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proc., v. 1, table 1.
- TRW Systems Group (1976) Study of geothermal prospects in the western United States: TRW Systems Group contract 954243.
- Trexler, D. T. (1977) Progress report for evaluation of lineament analysis as an exploration technique for geothermal energy: Nevada Bur. Mines and Geol. unpubl. report to U. S. Energy Research and Devel. Admin., contract no. EY-76-S-08-0671.
- Tschanz, C. M., and Pampeyan, E. H. (1970) Geology and mineral deposits of Lincoln County, Nevada: Nevada Bur. Mines Bull. 73.
- U. S. Bureau of Reclamation (1972) An appraisal of geothermal resources in the Mid-Pacific region: U. S. Dept. of Interior, Bureau of Reclamation Rept.
- U. S. Energy Resources and Development Adiminstration (July 1976) A bibliography of geothermal resources—exploration and exploitation: U. S. Dept. Commerce, U. S. Energy Res. and Devel. Admin., Tech. Inf. Center Abstracts 1-5476.

(September 1976) Geothermal energy update: U. S. Dept. Commerce, U. S. Energy Res. and Devel. Admin., Tech. Inf. Center Abstracts 1-300.

- U. S. Geological Survey (1977) WATSTORE water quality file (computer data bank).
- Van Denburgh, A. S., and Glancy, P. A. (1970) Water resources appraisal of the Columbus Salt Marsh-Soda Spring Valley area, Mineral and Esmeralda Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 52.
- Van Denburgh, A. S., and Rush, F. E. (1974) Water resources appraisal of Railroad and Penoyer Valleys, east-central Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 60.
- Vanderburg, W. O. (1936) Reconnaissance of mining districts in Pershing County, Nevada: U. S. Bur. Mines Inf. Circ. 6902.
 (1940) Reconnaissance of mining districts in Churchill

County, Nevada: U. S. Bur. Mines Inf. Circ. 7093.

- Visher, F. N. (1957) Geology and ground-water resources of Quinn River Valley, Humboldt County, Nevada: State of Nevada, Office of the State Engineer Water Resources Bull. 14.
- Waldron, H. H. (1969) Potential applications of nuclear explosives to the recovery of geothermal energy—Progress report for the fiscal year 1966: U. S. Geol. Survey Rept. 289-2, contract no. AT(04-3)-289, U. S. Dept. Commerce, U. S. Energy Res. and Devel. Admin., Natl. Tech Inf. Service.
- Walker, G. E., and Eakin, T. E. (1963) Geology and ground-water of Amargosa Desert, Nevada and California: Nevada Dept. Conserv. and Nat. Resources, Ground-water Resources-Reconn. Ser. Rept. 14.
- Waring, G. A. (1919) Ground water in Reese River basin and adjacent parts of the Humboldt River basin, Nevada: U. S. Geol. Survey Water-Supply Paper 425.
- (1920) Ground water in Pahrump, Mesquite, and Ivanpah Valleys, Nevada and California: U. S. Geol. Survey Water-Supply Paper 450-C, p. 51-86.
- (1965) Thermal springs of the United States and other countries of the world: U. S. Geol. Survey Prof. Paper 492.
- Warner, L. A., Holser, W. T., Wilmarth, V. R., and Cameron, E. N. (1959) Occurrence of nonpegmatite beryllium in the United States: U. S. Geol. Survey Prof. Paper 318.
- Warner, M. M. (1975) Special aspects of Cenozoic history of southern Idaho and their geothermal implications: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources, San Francisco, 1975, Proc., v. 1, p. 653–663.
- Washington Univ., Seattle, Inst. for Environmental Studies (1974) Seismicity report on Black Rock Desert project—northwest Nevada: Natl. Tech. Inf. Service Rept. PB-262674.
- Wehlage, E. F. (1973) Beowawe still roars, in Meadows, K. F., ed., Geothermal world directory: Glendora, CA, K. F. Meadows, p. 182-192.
- Wendell, W. G. (1970) The structure and stratigraphy of the Virgin Valley-McGee Mountain area, Humboldt County, Nevada: M.S. thesis, Oregon State Univ.
- White, D. E. (1947) Rock alteration associated with thermal springs [abs.]: Geol. Soc. America Bull., v. 58, no. 12, pt. 2, p. 1239; also [abs.] (1948) Am. Mineralogist, v. 33, nos. 3-4, p. 210-211.

(1952) Some recent results of investigations at Steamboat Springs, Nevada [abs.]: Geol. Soc. America Bull., v. 63, pt. 2, no. 12, p. 1374.

(1953) Three-dimensional picture of Steamboat Springs, Nevada [abs.]: Geol. Soc. America Bull., v. 63, no. 12, pt. 2, p. 1311-1312, Dec. 1952; also, Am. Mineralogist, v. 38, nos. 3-4, p. 364.

(1954) Hydrothermal alteration and other characteristics of five explored hot-spring systems [abs.]: Geol. Soc. America Bull., v. 65, no. 12, pt. 2, p. 1325-1326.

(1955a) Thermal springs and epithermal ore deposits: Econ. Geology, Fiftieth Anniv. Vol., p. 100-154.

(1955b) Violent mud-volcano eruption of Lake City hot springs, northeastern California: Geol. Soc. America Bull., v. 66, no. 9, p. 1109-1130.

(1957) Thermal waters of volcanic origin: Geol. Soc. America Bull., v. 65, no. 12, p. 1637-58.

(1964) Preliminary evaluation of geothermal areas by geochemistry, geology, and shallow drilling: U. N. Conf. on New Sources of Energy, Rome, 1961, Proc., v. 2, p. 402-409.

(1965) Geothermal energy: U. S. Geol. Survey Circ. 519. (1968) Hydrology, activity, and heat flow of the Steamboat Springs thermal system, Washoe County, Nevada, geology and geochemistry of the Steamboat Springs area, Nevada: U. S. Geol. Survey Prof. Paper 458-C.

(1973) Characteristics of geothermal resources, in Kruger, Paul and Otte, Carel (eds.), Geothermal energy-resources, production, stimulation: Stanford Univ. Press, Stanford, CA.

- (1974) Diverse origins of hydrothermal fluids: Econ. Geology, v. 69, p. 954–973.
- White, D. E., and Brannock, W. W. (1950a) Sources of heat, water supply, and mineral content of Steamboat Springs, Nevada: Internat. Geol. Geophys. Union, Assoc. Sci. Hydrology Gen. Assembly, Oslo, 1948, v. 3, p. 168-176. Slightly revised, Am. Geophys. Union Trans., v. 31, no. 4, p. 566-574.

(1950b) Sources of heat and water supply of thermal

springs, with particular reference to Steamboat Springs, Nevada [abs.]: Geol. Soc. America Bull., v. 61, no. 12, pt. 2, p. 1534.

- White, D. E., and Craig, Harmon (1959) Isotope geology of the Steamboat Springs area, Nevada [abs.]: Geol. Soc. America Bull., v. 70, no. 12, pt. 2, p. 1696.
- White, D. E., Craig, H., and Begemann, F. (1957) Isotope geology of water of the Steamboat Springs area, Nevada [abs.]: California Univ., Scripps Inst. Oceanog., Conf. on New Research Methods in Hydrology, La Jolla, 1957, Craig, H. B., ed., Proc., p. 28-30.
- White, D. E., Fix., P. F., Gianella, V. P., and Brannock, W. W. (1946) Preliminary results at Steamboat Springs, Washoe County, Nevada [abs.]: Geol. Soc. America Bull., v. 57, no. 12, pt. 2, p. 1258-1259.
- White, D. E., Hem, J. D., and Waring, G. A. (1963) Data of geochemistry, Sixth Ed.: U. S. Geol. Survey Prof. Paper 440-F.
- White, D. E., Sandberg, C. H., and Brannock, W. W. (1953) Geochemical and geophysical approaches to the problems of utilization of hot-spring water and heat: 7th Pacific Science Assoc. Cong., New Zealand, 1949, Proc., v. 2, p. 490-499.
- White. D. E., Thompson, G. A., and Brannock, W. W. (1949) Thermal springs and their possible significance in the future discovery of ore deposits [abs.]: Econ. Geology, v. 44, no. 1, p. 83.
- White, D. E. Thompson, G. A., and Sandberg, C. H. (1964) Rocks, structure, and geologic history of Steamboat Springs thermal area, Washoe County, Nevada: U. S. Geol. Survey Prof. Paper 458-B.
- Willden, Ronald (1964) Geology and mineral deposits of Humboldt County, Nevada: Nevada Bur. Mines Bull. 59.
- Willden, Ronald, and Speed, R. C. (1974) Geology and mineral deposits of Churchill County, Nevada: Nevada Bur. Mines and Geol Bull 83.
- Wilson, C. W., and Peterson, D. L. (1977) Principal facts for gravity stations in Clayton Valley, Nevada: U. S. Geol. Survey openfile report 77-256.
- Wilson, R. E. (1960a) Areal economic geology T28N,R49E, M.D.M.: Southern Pacific Co., unpubl. map.
- (1960b) Areal geology map T29N,R49 and 50E, M.D.M.: Southern Pacific Co., unpubl. map. (1960c) Areal economic geology T35N,R63 and 64E,
- M.D.M.: Southern Pacific Co., unpubl. map.
- Winograd, I. J. (1963) Summary of ground-water hydrology of area between Las Vegas Valley and Amargosa Desert, Nevada, with special reference to effects of possible new withdrawals of ground water: U. S. Geol. Survey Trace Element Inv. Rept.

TEI-840, p. 197-227.

- Wollenberg, H. A. (1974a) Geothermal studies in north-central Nevada [abs.]: Geol. Soc. America Abstr. with Programs, v. 6, no. 7, p. 1009.
- (1974b) Radioactivity of Nevada hot-spring systems: Calif. Univ., Lawrence Berkeley Laboratory Rept. LBL-2482.
- (1974c) Radioactivity of Nevada hot-spring systems: Geophys. Res. Lett., v. 1, no. 8, p. 358-362.
- (1975a) Radioactivity of geothermal systems: Calif. Univ., Lawrence Berkeley Laboratory Rept. 3232, U. S. Energy Res. and Devel. Admin. contract no. W-7405-ENG-43.
- (1975b) Radioactivity of geothermal systems: 2nd United Nations Symposium on Devel. and Use of Geothermal Resources. San Francisco, 1975, Proc., v. 2, p. 1283-1292.
- (1976) Geothermal studies in northern Nevada: Calif., Univ., Lawrence Berkeley Laboratory Rept. LBL-4451, U.S. Energy Res. and Devel. Admin. contract no. W-7405-ENG-48.
- Wollenberg, H. A., Asaro, F., Bowman, H., McEvilly, T., Morrison, F., and Witherspoon, P. (1975) Geothermal energy resource assessment: Calif. Univ., Lawrence Berkeley Laboratory Rept. UCID-3762, U. S. Energy Res. and Devel. Admin. contract no. W-7405-ENG-48.
- Wollenberg, H., Bowman, H., and Asaro, F. (1977) Geochemical studies at four northern Nevada hot-spring areas: Calif. Univ., Lawrence Berkeley Laboratory Rept. 6808.
- Woods, M. C. (1974) Geothermal activity in Suprise Valley (California): California Geol., Dec. 1974, p. 271-273.
- Work Projects Administration (1940) Nevada, a guide to the Silver State: Portland, OR, Binfords and Mort.
- Worts, F. G., Jr., and Malmberg, G. T. (1966) Hydrologic appraisal of Eagle Valley, Ormsby County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources-Reconn. Ser. Rept. 39.
- Zones, C. P. (1961a) Ground-water reconnaissance of Winnemucca Lake Valley, Pershing and Washoe Counties, Nevada: U. S. Geol. Survey Water-Supply Paper 1539-C; also Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 15.
- (1961b) Ground-water potentialities in Crescent Valley, Eureka and Lander Counties, Nevada: U. S. Geol. Survey Water-Supply Paper 1581; also Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 15.
- (1963) Ground water in the alluvium of Kings River Valley, Humboldt County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 16; also U. S. Geol. Survey Water-Supply Paper 1619-L.

INDEX

"A" Spring: 112 Abel Springs: 52, 116, pl. 1 Alamo Springs: 45, 108, pl. 1 Alkali Springs: 27, 95, pl. 1 Allen's Hot Springs: 17, 85 Amargosa Desert: 3, 54, 119, pl. 1 Amargosa Hot Spring: 54, 119 Ambassador well: 47, 109, 110 Anaho Island Spring: 71, 134, pl. 1 Anderson, Hans L., water well: 145 Antelope Valley: 35 Applegate-Lassen Trail: 36 Arbico well: 137 Arnoldsen Spring: 81, 146, pl. 1 Artesia Lake: 47, 109, pl. 1 Ash Creek Spring: 21, 108, pl. 1 Ash Meadow Springs: 54, 55, 121, 123, pl. 1 Ash Spring: 45, 108, pl. 1 Ash Tree Spring: 124, pl. 1 Bailey, Richard, well: 126, 130 Baltazor Hot Springs: 36, 38, 99, pl. 1 Bartholomae Corp. water well: 98 Bartholomae Hot Springs: 34, 98, pl. 1 Bartine Hot Springs: 34, 98, pl. 1 Bartine Ranch water well no. 4:98 Beatty Springs: 54, 119, pl. 1 Belmont Mine: 118 Beowawe Geysers (Hot Springs): 4, 28, 29, 30, 31, 32, 33, 34, 41, 95, 96, 104, 147, 148, pl. 1 Bell Spring: 124, pl. 1 Bennett's Springs: 46, 54, 55, 106, pl. 1 Berrum well: 137 Biasi, Bruna, well: 85 **Biddleman Springs: 64** Big Blue Spring: 49, 81, 112, 146, pl. 1 Big Divide Mine: 28, 95, pl. 1 Big Shipley Hot Springs: 34, 97, pl. 1 Big Soda Lake: 9, 14, 84 Big Spring: 51, 81, 123, 146, pl. 1 Big Warm Spring: 54, 113, pl. 1 Biglin well: 138 Black Canyon: 89, pl. 1 Black Rock Desert: 35, 36, 58, 60, 74 Black Rock Hot Springs: 35, 36, 58, 101, 102, 126, pl. 1 Black Rock Spring: 102 Blossom Hot Springs: 103, pl. 1 Blue Eagle Springs: 50, 115, pl. 1 Blue Point Springs: 86, pl. 1 Bog Hot Springs: 36, 38, 99, pl. 1 Boiling Spring: 133, pl. 1 Bole Spring: 125, pl. 1 Bonham, Jack, Ranch, well: 133 Bond, J. R., well: 88 Borax Spring: 17,85 Bowers Mansion Hot Spring: 79, 144, pl. 1 Brady's Hot Springs and wells: 3, 4, 6, 8, 9, 10, 11, 29, 83, 147, pl. 1 Brooks, George P., well: 125 Brooks Hot Spring: 103, pl. 1 Brown's Spring: 21, 89, pl. 1 Brown well: 136 Bruffey's Hot Springs: 34, 35, 97, pl. 1 Bruno, Tony, well: 87 Buckbrush Spring: 133, pl. 1 Buffalo Spring: 133, pl. 1 Buffalo Valley Hot Springs: 42, 43, 44, 104, 126, pl. 1 Bunkerville Water Users Assoc. well: 85 Burrell Hot Springs: 54, 119, pl. 1 Butte Hot Springs: 60, 126, pl. 1 Butterfield Springs: 117, pl. 1

Button Springs: 121, pl. 1 C & C shaft: 129 Cain (Caine) Spring: 101, 102, pl. 1 Caliente Hot Springs: 45, 107, pl. 1 Caliente's North well: 45, 107 Caliente Public Utility No. 4 well: 45, 107 Calif. Pacific Utilities Co. well: 102 Callville Bay Campground well: 89 Camp Valley: 46 Campbell Ranch Springs: 80, 145, pl. 1 Campbell, U. G., well: 88, 138 Cane Spring: 102, pl. 1 Carlin: 95, pl. 1 Carlotti Ranch Springs: 34, 97, pl. 1 Carson Hot Springs: 6, 82, pl. 1 Carson Sink: 14, 17 Carver well: 140 Casey, John, steam well: 130 Catlin Oil Shale plant: 24 Cayton, A. F., well: 126 Cayton, J. P., well: 126 Cedar Spring: 118, pl. 1 Charnock Springs: 49, 112, pl. 1 Cherry Creek Hot Springs: 80, 144, pl. 1 Chevron-American Thermal Resources Ginn No. 1-13 well: 32, 148 Chevron Oil Co. Cosmos No. 1-8 well: 149 Chevron Oil Co. Cosmos No. 1-9 well: 149 Chevron Oil Co. Hot Springs Point No. 1 well: 148 Chevron-Phillips Soda Lake No. 1-29 well: 147 Chevron Resources Co. Soda Lake No. 44-5 well: 147 Chevron, USA Inc. Rossi No. 21-19 well: 32, 148 Chillis Hot Springs: 105, pl. 1 Chimney Hot Springs: 51, 52, 115, pl. 1 Christian well: 139 Churchill Drilling Corp. T.C.I.D. well No.1:84 Clark well: 136, 137 Clayton Valley Hot Springs: 27 Clobe Hot Springs: 34 Cobre Minerals Corp. No. 1 well: 93 Colado: 61, 128, pl. 1 Cold Spring: 49, 81, 146, pl. 1 Collar Springs: 80, 144, pl. 1 Comstock Lode: 2,63 C. B. Concrete well: 140 Cone Hot Springs: 60, 129, pl. 1 Contact Mineral Spring: 26, 91 Continental Hot Springs: 36, 99, pl. 1 Cordero Fly wells: 130, 131 Cordero Gerlach No. 3 well: 131 Cordero Mercury Mine: 38, 98, pl. 1 Cordero Mining Co. well: 98 Cottonwood Springs: 130, 134, pl. 1 Country Club well: 135 Cox well: 141, 142 Coyotes Holes: 116, pl. 1 Coyote Spring: 52, 60, 126, pl. 1 Crano well: 135 Crescent Valley Hot Springs: 96, pl. 1 Cress Spring: 49 Crystal Spring (Pool): 121 Crystal Springs: 45, 108, pl. 1 DH well: 121 Da Monte Springs: 139, pl. 1 Darrough's Hot Springs: 48, 49, 113, 148, pl. 1 Darrough's Ranch well: 113 Davidson well: 139 Davis Ranch Spring and well: 122, pl. 1

Dead Horse Wells: 48, 111, pl. 1 Deep Spring: 123 DeGiovanni well: 137 Delmue Bros. north well: 107 Delmue's Springs: 45, 106, pl. 1 Desert Peak: 4, 6, 9, 12, 13, 17, 84, 147, pl. 1 Desert Peak No. 21-2 well: 84 Devil's Corral: 41 Devil's Hole: 121, pl. 1 Devils Punch Bowl: 52, 112, pl. 1 Devil's Ranch Springs: 128 Diana's Punch Bowl: 52, 53, 112, pl. 1 **Dimonte Spring: 139** Dixie Comstock Mine: 19, 83, pl. 1 Dixie Valley: 17, 19, 60, 61, 147 Dixie Valley Hot Springs: 83, pl. 1 Double Diamond Spring and well: 139, pl. 1 Double Hot Springs: 35, 36, 48, 58, 101, 111, 126, pl. 1 Doud Spring: 90, pl. 1 Drendel well: 137 Duckwater: 54, 113, pl. 1 Dyke Hot Springs: 38, 100, pl. 1 Eagle Salt Works Hot Springs: 80, pl. 1 Eagle Springs Oil Field: 50 Earth Energy Inc. Brady Pros. No. 1 well: 147 Earth Energy Inc. "R" Brady EE No. 1 well: 147 East Pinto Hot Springs: 101 East Reno well: 140 Eccks, Forest, well: 143 Edmiston well: 136 Eightmile Flat: 17, 85, pl. 1 Elbow Springs: 80, 144, pl. 1 Eldorado Canyon: 47, pl. 1 Elko Hot Springs: 23, 24, 25, 26, 93, pl. 1 Elko wells: 93 Ely-Lackawanna: 80, 145, pl. 1 Ely Warm Springs: 80, 146 Embry well: 121 Emigrant Springs: 6, 116, pl. 1 Emigrant well: 28, 95 Englemann, G. C., well: 107 Erskine well: 136 Etcheberry well: 137 Etnyre(?) well: 136 Fairbanks Spring: 124, pl. 1 Farmstead, Mesquite Water Assoc. well: 85 Fernley Hot Springs and well: 6, 83, 148, pl. 1 Fife well: 138 Filbey, James, well: 87 Fireball Valley: 6 Fish Creek Mountains: 3, 44 Fishlake Livestock Co. well: 28, 95 Fish Lake Valley: 27, 94, pl. 1 Fish Spring: 94, 114, 133, pl. 1 Fivemile Spring: 99, pl. 1 Flag Springs: pl. 1 Flame Geyser: 96 Flatnose Ranch Spring: 45, 106, pl. 1 Fly Geyser: 130 Fly Ranch Hot Springs: 72, 73, 130, 149, pl. 1 Flynn Ranch Springs: 34, 35, 97, pl. 1 Foote Mineral Co.: 28 Forest Eccks well: 143 Fourmile Flat: 17 Franklin Lake: 23 Franktown Hot Springs: 79, 144, pl. 1 Frazier well: 143 Frey well: 136

Gabbs: 52, 112, pl. 1 Gamble's Hole: 91, pl. 1 Gamble Ranch Spring and well: 26, 92, pl. 1 Gap Spring: 27, 94, pl. 1 Garrett Ranch well: 126 Genoa Hot Springs: 21, 90 Gerlach, 74, 75, 78, 131, 149, pl. 1 Gerlach Hot Springs: 72, 74, 132 The Geysers (Cal.): 2, 3 Geyser Ranch Springs: 45, 106, pl. 1 Geyser well: 73, 74, 130, 131, 142, 143 Gibbons well: 137 Gilbert's Hot Springs: 60, 128, pl. 1 Giocoechea Warm Springs: 80, 145, pl. 1 Gladstone Corp. well: 89 Glatly well: 137 Golconda Hot Springs: 36, 37, 38, 102, 103, pl. 1 Golconda Mine: 37, 38, 103 Goldbank: 56 Gondra, E. W., well: 100 Goodrich Hot Springs: 79, 145, pl. 1 Goose Creek: 26, 90, pl. 1 Gould & Curry Mine: 63, 129 Graham, John, and Row, Tip, well: 88 Granite Hot Springs: 64 Granite Ranch: 73, 131, 149, pl. 1 Gray Rock Mine: 91, pl. 1 Great Boiling Springs: 74, 76, 132, pl. 1 Greenwood's store well: 84 Groeppers Humboldt Hot Springs: 23 Guisti well: 138 Gunderson, N. J., well: 107 Guthrie Hot Springs: 55, 127, pl. 1 Hafen Dairy well: 85 Hair, H. H., well: 89 Hale & Norcross shaft: 63, 129 Hall well: 139 Hammond Ranch Springs: 47, 106, pl. 1 Hanks, Carl, well: 115 Hawthorne Naval Ammunition Depot wells: 111 Hay Corral Spring: 51, 114 Hazen Hot Springs: 46, 108, pl. 1 H. D. Ranch Spring: 91 Helms well: 137 Henroid, Lawrence, water well: 144 Herz wells: 139, 141 Hertz, R., well: 141 Hick's Hot Spring: 54, 118, 119, pl. 1 Hiko Spring: 45, 107, pl. 1 Hill's Warm Springs: 129, pl. 1 Hill well: 137 Hinds' Hot Springs: 46, 47, 110, 148, pl. 1 Hinson, W. N., well: 87 Hobo Hot Springs: 22, 89, pl. 1 Hobson well: 136 Home Station Ranch Hot Spring: 128, pl. 1 Horgan, Jack, well: 135 Horseshoe Ranch Hot Springs: 34, 35, 95, pl. 1 Hot Creek: 35, 49, 116, pl. 1 Hot Creek Ranch Spring: 116, 117, pl. 1 Hot Creek Springs: 91, 97, 117, pl. 1 Hot Hole: 24 Hot Hole Spring: 93, pl. 1 Hot Lake: 92, pl. 1 Hot Pot Springs: 103, pl. 1 Hot Springs Flat: 6 Hot Springs Mountains: 6, 22 Hot Springs Point: 33, 34, 96, 97, 148, pl. 1 Hot Springs Ranch: 36, 37, 44, 98, 105, 148, pl. 1

Hot Spring Ranch water well: 98 Hot Springs Valley: 22 Hot Sulphur Springs: 23, 91, 94, pl. 1 Houssels, J. K., well: 88 Howard Hot Springs: 38, 99, pl. 1 Hualapai Flat Hot Springs: 72, 130, pl. 1 Huffaker Springs: 138, pl. 1 Hughes well: 132 Humboldt: 61, 128, 148, pl. 1 Humboldt Hot Springs: 23, 93 Humboldt House: 61 Humboldt Wells: 26, 92, pl. 1 Hyder Hot Springs: 60, 129, pl. 1 Indian Rock Spring: 122, pl. 1 Indian Seep: 122 Indian Springs: 21, 87, 117, pl. 1 Irvin, L. H., well: 88 Isbell well: 137, 140 Iverson's Warm Springs: 86 Izzenhood Ranch Springs: 104, pl. 1 J. S. Ranch Spring: 129 Jackrabbit Spring: 123, pl. 1 Jacks Springs: 115 Jacobson Ranch Springs: 35, 98 Jenison, W. L. and B., well: 88 Jersey Valley: 61, 128, pl. 1 Johnson Ranch Spring: 93, pl. 1 Johnson well: 135, 143 Kate Spring: 50, 115, pl. 1 Kelty well: 138 Kern Mountains: 81, 145, pl. 1 Kerr-McGee Eightmile Flat hole No. 1: 85 Kimberly well: 136 King Pool: 122 King Spring: 122, pl. 1 King well: 136 Klinger, A. G., well: 89 Klobe Hot Springs: 34, 98, pl. 1 Klondyke Hills: 28 Knox well: 140 Koenig, Al, well: 135 Krum Hills: 39 Kyle Hot Springs: 20, 59, 60, 87, 128, pl. 1 Lackawanna Hot Springs: 80, 145, pl. 1 Lake Lahontan: 14, 38, 41, 79 Las Vegas Springs: 20, 87, pl. 1 Laumeister and Groepper's Humboldt Hot Springs: 23 Lawton Hot Springs: 2, 64, 66, 134, pl. 1 Leach Hot Springs: 55, 56, 57, 58, 127, pl. 1 Leadville Springs: 130, pl. 1 LeCroix well: 139 Lee Hot Springs: 17, 85, 147, pl. 1 Lee, Kenneth D., south well: 106 Lewis, Clarence, well: 85 Lister, James, well: 105 Little Ash Spring: 108 Little Fish Lake Valley: 54, 114, pl. 1 Little Hot Springs: 105, pl. 1 Little Warm Spring: 54, 113, pl. 1 Lockes (Locks) Hot Springs: 50, 51, 52, 114, 115, pl. 1 Longstreet Spring: 125, pl. 1 Lower Ranch Hot Spring: 60, 129, pl. 1 Lower Schellbourne Warm Spring: 80, 145 Macfarlane's Bath House Spring: 102, pl. 1 Mack, Nate, well: 88 Mackay well: 141 Magma Energy, Inc. wells: 32, 147, 148 Magma Power Co. Beowawe wells: 147 Magma Power Co. Brady wells: 83, 147

Magma Power Co. Darrough No. 1 well: 148 Magma Power Co. Hazen wells: 108, 148 Magma Power Co. Hot Springs Point No. 1 well: 97, 148 Magma Power Co. Monte Neva No. 1 well: 145, 149 Magma Power Co. Tipton No. 1 well: 104,148 Magma Power Co. Wabuska wells: 109, 148 Magma Power Co. and Assoc well: 114 Main Spring: 125 Manse Ranch Springs: 126, pl. 1 Martic well: 136 Martie, J. R., well: 138 Mathews, Lester, well: 107 Matley well: 137 McComas well: 139 McCoy Springs: 61, 129, pl. 1 McCulloch Corp. well: 134, 136 McGee Mountain: 36, 38, 99, pl. 1 McGill Warm Springs: 80, 145, pl. 1 McKenzie well: 137 McKnight well: 140 McLeod's Ranch Spring: 48, 112, pl. 1 Mecca well: 124 Melvin Hot Springs: 79, 145, pl. 1 Mercury well: 141 Mesquite Farmstead Water Assoc. well: 85 Miles well: 138 Miller's Hot Springs: 23, 94 Mineral Hill Hot Springs: 26, 34, 91, 97, pl. 1 Mineral Hot Spring: 26, 91, pl. 1 Minerals well: 27 Mizpah Mine: 118 Moana Hot Springs and well: 2, 64, 66, 68, 134, 135, 136, pl. 1 Moapa Warm Springs: 20, 86, pl. 1 Moffat well: 135 Monitor well: 105 Monte Neva Hot Springs: 79, 80, 145, 149, pl. 1 Moon River Spring: 117, pl. 1 Moore well: 138 Moore's Ranch Springs: 80, 145, pl. 1 Moorman Spring: 116, pl. 1 Morman Spring: 116, pl. 1 Morrey well: 137 Mosquito Creek Ranch: 114, pl. 1 Mound Springs: 105, pl. 1 Mount Rose Hot Springs: 66, 143 Mount Rose 1 well: 140, 141 Mountain City: 90, pl. 1 Mud Springs: 56, 74, 77, pl. 1 Muddy River Springs: 20, 85, 86, pl. 1 Nanny Goat Springs: 53, 117, 118 Needle Rocks: 71, 72, 133, pl. 1 Nelson's Hot Springs: 55, 127, pl. 1 Nevada Hot Springs: 46, 110, pl. 1 Nevada Lakeshore Co., Inc. well: 135 Nevada Oil and Minerals V.R.S. No. 1 well: 95 Nevada Power Co. wells: 141 Nevada State Prison Spring: 2, 82, pl. 1 Nevada Thermal No. 2 well: 96, 141 Nevada Thermal Power Co. Steamboat wells: 70, 71, 141, 142, 147, 149 Newton well: 138 New Yellow Jacket shaft: 63, 129 New York Canyon: 61, 129, pl. 1 Nicholas Spring: 81, 146, pl. 1 Nickerson, H., well: 88, 89 Nile Spring: 90, pl. 1

Ninemile Springs: 100, pl. 1 Noque's Nevada well: 98 North Group Springs: 80, 145, pl. 1 North Las Vegas Airport well: 87 North Spring: 51, pl. 1 Northern East Range: 39, 103, pl. 1 Northern Smith Creek Valley: 105 Old Dugan Place: 49 Old Duggan Place Hot Spring: 49, 116, pl. 1 Old Page Place: 49 O'Neill Geothermal Inc. Oliphant well: 17,84 O'Neill Geothermal Inc. Reynolds No. 1 well: 17, 84, 147 Ophir shaft: 63, 129 Ormechea, Tom, well: 83 Owl Warm Spring: 45, 106, pl. 1 Oxy Geothermal Inc. Federal No. 72-33 (K) well: 147 Pahrump Springs: 54, 125, pl. 1 Pan American Petroleum Corp.-Cobre Minerals Corp. No. 1 well: 92 Panaca LDS Church well: 107 Panaca Warm Spring: 45, 106, pl. 1 Parent Springs: 120, 125, pl. 1 Paris well: 128 Parragari well: 136 Pat Spring: 49, 116, pl. 1 Patua Hot Springs: 46, 108, pl. 1 Pearl Hot Springs: 27, 28, 95, pl. 1 Peckham well: 136 Pederson Spring: 86 Pedro Spring: 118, pl. 1 Pedro Warm Springs: 55, 56 Peigh well: 141 Pennebaker, R. G., well: 94 Pepper Mill Motel well: 135 Perkins, Woodruff, well: 85 Petaini Springs: 92, pl. 1 Peterson's Mill Hot Springs: 41, 105, pl. 1 Peterson Spring: 85, pl. 1 Phillips Petroleum Co.: 9, 12, 13, 61, 83 Phillips Petroleum Co. Campbell wells: 128,148 Phillips Petroleum Co. Desert Peak wells: 147 Pinjuv, I. M., well: 87 Pinto Hot Springs: 36, 101, pl. 1 Pinto Mountain Hot Springs: 36, 101 Pinyon Hills: 6, 82, pl. 1 Pioche LDS Church well: 107 Pleasant Valley Hot Springs: 55, 127, pl. 1 Point-of-Rock Spring: 122, pl. 1 Pott's Ranch Hot Spring: 52, 53, 112, pl. 1 Preston Big Spring: 81, 145, 146, pl. 1 Pumpernickel Valley well: 36 Purgatory Spring well: 124 Pyramid Island Hot Spring: 71, 134, pl. 1 Quadrio well: 138 Radium Hot Springs: 66 Railroad Point: 3, 36 Railroad Spring: 91, pl. 1 Railroad Valley: 50, 51, 114, pl. 1 Raine Ranch(?) Springs: 35, 96, pl. 1 Ralph's Warm Spring: 26, 93, pl. 1 Randall well: 135 Raycraft, J. M. well: 125, 126 Reed, H. F., well: 88 Reno Hot Springs: 66, 143 Reno Press Brick well: 142 Reveille Mill Springs: 55, 56, 118, pl. 1

Reynolds Spring: 51 Riordon Ranch Spring: 116, pl. 1 Riper(?) Van Springs: 101 Ritter Springs: 79 Rizzi Ranch Hot Spring: 26, 91, pl. 1 Rodeo well: 142 Rogers Springs: 21, 86, 124, 125, pl. 1 Ross Spring: 133, pl. 1 Rotten Egg Spring: 133, pl. 1 Round Hole Spring: 133, pl. 1 Rowe, Tip, and Graham, John, well: 88 Rye Patch: 61, 128, 148, pl. 1 Sadler Hot Springs: 34, 97, pl. 1 Salisbury Spring: 117, pl. 1 Salt Wells Basin: 17 Salvi's Hot Springs: 144, pl. 1 San Emidio Desert: 75, 79, 133, 149, pl. 1 San Jacinto Springs: 26, 91, pl. 1 Sand Spring: 27, 46, 94, 107, pl. 1 Saratoga Hot Springs: 22, 90, pl. 1 Sarcobatus Flat-Beatty: 54, 118, pl. 1 Savage Mine: 63, 129 Saval, J., Springs: 129 Schellbourne Springs: 80, 145, pl. 1 Schoolhouse Spring: 80, 145, pl. 1 Scruggs Spring: 120, pl. 1 Selenite Range: 72 Senator Fumaroles: 19, 82, pl. 1 Senator Mine: 19 Senges well: 140 Seven Devils Hot Springs: 60, 128, pl. 1 Shaws's Hot Springs: 6 Shellbourne Hot Springs: 80, 144, pl. 1 Shell Oil Co. Coyote Unit No. 1 well: 50,115 Shell Oil Co. Eagle Springs Unit No. 2 well: 50 Shell Oil Co. Steptoe Unit No. 1 well: 144 Shipley's Hot Springs: 34, 35, 97, pl. 1 Sierra Pacific Power Co. wells: 96, 134, 148 Silicon Mine: 54 Silver King Mines: 80 Silver Peak Hot Springs: 27, 28, 95, pl. 1 Simonsen Warm Springs: 80, 145, pl. 1 Siri Ranch Spring: 34, 35, 97, pl. 1 Siri well: 136 Smith Creek Valley Hot Springs: 43, pl. 1 Smith Ranch Spring: 94, pl. 1 Smith well: 135 Soda Lakes-Upsal Hogback: 9, 14, 15, 17,84,147,pl.1 Soda Spring: 48, 111, 124, pl. 1 Sodaville Spring: 48, 111, pl. 1 Soldier Meadows Hot Springs: 35, 36, 38,100, pl. 1 Sou Hot Springs: 60, 128, pl. 1 South Spring: 51 South Steamboat well: 142 Southern Big Smoky Valley: 95, pl. 1 Southwest Dredging Co. well: 128 Spencer Hot Springs: 41, 105, 106, pl. 1 Spring of False Hope: 6 Springer's Hot Springs: 6, 83, pl. 1 Steamboat Hot Springs: 2, 64, 66, 67, 68, 69, 70, 71, 138, 141, 142, 143, 147, 149, pl. 1 Steamboat 4 well: 140 Stillwater: 2, 14, 17, 18, 19, 84, 147, pl. 1 Stockyard Spring: 51 Storm (Stormy) Spring: 52, 115, 116, pl. 1 Streshly, Marie, well: 106

Sulfur Mining District: 41 Sulfur Springs: 34, 35, 92, 98, 103, pl. 1 Sulphur Hot Springs: 22, 23, 24, 25, 93, pl. 1 Sunnyside Springs: pl. 1 Sunoco Energy Development Co. wells: 147, 149 Sutherland well: 139, 140 Sutro Tunnel: 47, 63, 64, 109, pl. 1 Sweeney, M. M. well: 88 Swift's Hot Springs: 5, 6 Tachino well: 143 Tanner, Stanley A., well: 117 Tenmile well: 89 Terrill well: 137 Test hole UCE-18: 116 Test well 10:86 The Needles Spring: 133, pl. 1 The Needles: 71, 72, 133, pl. 1 Thomas, Ray, well: 125, 126 Thompson Mine: 54 Thompson Ranch Spring: 35, 98, pl. 1 Thousand Springs: 26, 92, pl. 1 Three Mile Spring: 92, pl. 1 Tipton No. 1 well: 104, 148 Tipton Ranch: 36, 103, pl. 1 Titus Ranch: 50 Tollackson well: 88 Tom Spring: 50, 115, pl. 1 Tonopah: 2, 54, 118, pl. 1 Tonopah Extension Mines: 54 Trego Hot Springs: 36, 58, 61, 126, pl. 1 Trout Creek Ranch well: 91 Mark Twain Motel well: 135 Twelvemile Spring: 26, 92, pl. 1 Twin Spring: 129, 130, pl. 1 Umbaugh, J. H., well: 87 Union Oil Co. Campbell No. 1 well: 147 Union Oil Co. De Braga No. 1 well: 147 Union Oil Co. Weishaupt wells: 147 Union Oil Co. SP-Brady's No. 1 well: 83, 147 University Farm well: 136 Upper Hot Creek Ranch Hot Spring: 49, 117 Upper Schellbourne Warm Spring: 80, 145 Upper Warm Spring: 49, 114, 116, pl. 1 Upsal Hogback: 9, 14, 15, 17, 84, pl. 1 Upton well: 137 U. S. Bureau of Land Management wells: 89,111 U. S. Geological Survey wells: 100, 141, 142 U. S. Steel Corp. wells: 90 U. S. Steel Corp Hinds' wells: 148 U. S. Steel Corp. Wally's wells: 147 Van Riper(?) Springs: 101 Van Slyck (old) well: 135 Vegas Spring: 20 Virgin River Narrows: 21, 86 Virgin Valley Campground No. 1 well: Vulcan No. 1 well: 96 Vulcan Thermal Power Co.: 32, 33, 83, 96 Vulcan Thermal Power Co. Vulcan wells: 147,148 Vya Spring: 129, 130, pl. 1 Wabuska Hot Springs: 3, 46, 47, 109, 148, pl. 1 Wall Spring: 131, pl. 1 Walley's (Wally's) Hot Springs and wells: 21, 22, 23, 24, 90, 147, pl. 1 Wallis Health well: 45, 107 Walti Hot Springs: 33, 97, pl. 1 Warden, Lawrence, well: 88

- Ward's Hot Springs: 72, 74, 130, 149, pl. 1
- Warm Creek: 81, 92, pl. 1
- Warm Spring: 49, 53, 54, 86, 114, 117, 118, pl. 1
- Warm Springs Hotel: 6
- Warm Springs Ranch: 20, 80, 145, pl. 1
- Warm Sulfur Springs: 81, 146
- Warren well: 140
- Washoe Oil & Development Co. No. 1
- well: 134
- Water, T. P. and G. G., well: 89
- Waterworks Hot Springs: 27, 95, pl. 1
- Wedekind Mine: 64, 134, pl. 1
- Wedell Springs: 47, 48, 111, pl. 1
- Weishaupt Ranch well: 84
- Wellington: 47, 110, pl. 1 Wells, T. A., wells: 89 Wendel Hot Springs: 3 West Pinto Hot Spring and well: 101 West Reno well: 140 Western Geothermal, Inc.: 71, 73, 130 Western Geothermal, Inc. Fly Ranch No. 1 well: 130, 131, 149 Western Geothermal, Inc. Granite Creek Ranch 1 well: 149 Western Geothermal, Inc. Needles wells: 71, 72, 133, 134, 149 Western Pacific R. R. Co. well: 93 Wheat well: 82 White Rock Springs: 21, 87, 104, pl. 1 White Sulfur Hot Springs: 93
- Wick, Henry, well: 88 Wilcox well: 125 Wild Horse Hot Springs: 26, 91, pl. 1 Williams Hot Springs: 80, 146, pl. 1 Willis well: 138 Wilson Chris, well: 88 Wilson Hot Springs: 47, 110, pl. 1 Wine Cup Ranch Spring: 26, 91, pl. 1 Wipple, W., well: 86 Wood, A. J. and L. C., well: 87 Woodruff and Perkins well: 85 Yates wells: 136, 137 Young's Hot Springs: 80, 144, pl. 1 Yucca Flat: 55, 119, pl. 1
 - Zolezzi (Zoleggi) Springs and well: 139, pl. 1