

Report on the

Second Phase Rotary

Reverse Circulation Drilling

Wonder Mine

Wonder Mining District

for

Silver Strike (Resources) (U.S.A.) Ltd.

by

John R. Poloni, B.Sc., P. Eng.

June 15, 1981

John R. Poloni & Associates Ltd. 1512B - 56th Street Delta, B.C. V4L 2A8

Table of Contents

		Page No.
1.0	Summary and Conclusions	. 1
2.0	Introduction	2
	Plan No. 1 - Location Map	3
3.0	Location and Accessibility	4
4.0	Claim Information	4 - 5
5.0	Physical Features	6 - 7
6.0	History	7 - 9
7.0	Geology	
	7.1 Regional	9 - 10
	7.2 Local	10 - 11
8.0	Minerology	11 - 12
9.0	Exploration 1981	12
	Results of the Rotary Drilling	12 - 14
10.0	Ore Reserve Calculations	15 - 19
11.0	Recommendations	20
2.0	Appendices	
*	Appendix A - References	21 - 22
	Appendix B - Certificate	23 - 24
	Appendix C - Assay Data - Rotary Drill	25
	Logs - Table 21	
	Appendix D - Map	26

1.0 Summary and Conclusions

The Wonder Mine located about 57 miles east of Fallon, Nevada, is controlled by Silver Strike (Resources) (U.S.A.) Ltd. by Lease and Option Agreement.

Recent reverse circulation rotary drilling has been completed as a second drilling phase designed to evaluate the ore reserve potential of a wide alteration zone surrounding previously mined quartz veins containing gold-silver mineralization. The drill program consisted of twenty-one holes for a total footage of 2,370 feet.

Ore reserves were calculated on a zone having a strike length of about 1,550 feet, to a depth of approximately 250 feet. These calculations indicate 731,780 tons grading 0.019 Au oz/ton - 2.42 Ag oz/ton. Approximately 78,000 tons remain in the Wonder and Extension dumps, grading 0.014 Au oz/ton - 1.59 Ag oz/ton and 0.019 Au oz/ton - 3.12 Ag oz/ton respectively.

Metallurgical and governmental compliance studies are required in preparation to undertaking preliminary feasibility work.

2.0 Introduction

Discovery of the silver-gold mineralization on Wonder mountain was made by T.L. Stroud in early 1906. Operations at the Wonder Mine commenced in 1906 were halted in 1907, and resumed in 1911 when a 200 ton cyanide mill was constructed.

Production from the district is reported to have been 73,892 ounces of gold and 6,867,744 ounces of silver with by far the greatest amount coming from the Nevada Wonder Mining Co. The years between 1911 and 1919 were the most productive.

Silver Strike (Resources) (U.S.A.) Ltd. controls the claims by option agreement with Mr. Frank Lewis of Reno, Nevada. The property consists of nineteen claims including eight patented, one unpatented placer claim, and ten unpatented mining claims.

Two previous work programs were completed by survey crews under the direction of the author; a preliminary program in which surface and underground sampling and mapping, and surveying was undertaken; and a later program of reverse circulation rotary drilling. In the rotary drilling program reported on by the author on November 20, 1980, a total of 1,589 feet of drilling was completed.

This report is a summary of a further detailed reverse circulation rotary drill program undertaken between March 15 and April 6, 1981.

Plan No. 1

Location Map

3.0 Location and Accessibility

The Wonder District is located about 57 miles by road and 40 miles directly east of Fallon, Nevada, near the south end of Dixie Valley on the west slope of the Augusta Range about 16 miles north of Frenchman Station on Highway 50. It lies mainly in T.19N, R.34E, Section 33, and T.19N, R.35E, Section 31.

Access from Fallon, Nevada, the nearest large town is via Highway 50 eastward for 40 miles to Dixie Valley road turn-off 6 miles east of Frenchman Station, then north towards Dixie Valley for one mile and then north easterly past the Chalk Cliffs, by good dirt road to the Wonder Mine, a distance of 14 miles.

4.0 Claim Information

Silver Strike (Resources) (U.S.A.) Ltd. controls the Wonder Mine property of nineteen claims, as an assignment of a 20 year Mining Lease and Option Agreement dated April 26, 1976, between Frank W. Lewis as Lessor and Ronald Smallwood and John Slind as Lessee. The company by Assignment agreement with Ronald Smallwood and John Slind dated June 9, 1976 obtained an undivided 50% interest in and to the Lease Agreement. The remaining 50% interest in the lease of the Wonder property, held by Monogram Developments Ltd. was assigned to Silver Strike by an agreement dated November 8, 1979. The property has recently been transferred to Silver Strike (Resources) (U.S.A.) Ltd.

4.0 Claims data is as follows:

Patented Mining Claims

Survey No. 3071 - Scorpion Lode

Survey No. 3072 - B. and S. Lode

Survey No. 3078 - Nevada Wonder

Survey No. 3079 - Ruby No. 1

Survey No. 3124 - Last Chance No. 1

Survey No. 3325 - Nevada Wonder No. 2

Survey No. 4226 - Hidden Treasure

Survey No. 4227 - North Star Lode

Unpatented Placer

			Reco	rder	
T-1 Pla	acer	Book	32	Page	340
<u>_</u>	Inpatented Mi	ning (Claims		
Wonder	1	Book	70	Page	132
Wonder	2	Book	70 °	Page	133
Wonder	3	Book	70	Page	134
Wonder	4	Book	70	Page	135
Wonder	5	Book	70	Page	136
Wonder	6	Book	70	Page	137
Wonder	7	Book	70	Page	138
Wonder	8	Book	70	Page	139
Wonder	9	Book	70	Page	140
Wonder	10	Book	70	Page	141

Fallon is the County seat of Churchill County. The author has not examined the claims record at the County seat but it is assumed that they are in good standing.

5.0 Physical Features

The property located at elevations between 6,000 and 6,314 feet A.S.L. is on the east flank of the Louderback Mountains, and on the west flank of the Augusta Range, part of the Clan Alpine Mountains. Local topography is moderate, incised by steep sided dry washes, draining north and westerly towards Dixie Valley.

No timber or water is present. Water used in previous mining operations came from Horse Creek in the Clan Alpine Mountains, a distance of 6.5 miles north. Water for the town of Wonder came from Bench Creek 6.5 miles east/northeast. A creek located immediately south of Chalk Cliffs, a distance of 13 miles from the Wonder Mine, had moderate flow during May and June of this year.

The nearest power line to the mine crosses the access road at 12 miles to the south.

Winters are cold with infrequent snow; summers are hot and dry except for occasional thunderstorms causing some flash flooding. Vegetation is sparce, consisting mainly of grass and sagebrush. Roads are passable by two-wheel drive vehicles and have been recently graded to the Wonder townsite.

Recently Mr. Frank Lewis has undertaken the acquisition of the necessary claims to cover the old Wonder Mine water route from Horse Creek and has also obtained clear title to the Nevada water permit No. 1510, Certificate No. 6.

A water pipeline was laid in 1910 to supply the needs for the Wonder Mine. Gravity flow conveyed water a distance of 10 miles from Horse Creek and along Hercules Canyon. The calculated capacity of this established line was 185,000 g.p.d. with a flow rate of 2.57 feet per second. Horse Creek appears to have a sufficient supply for mining and milling requirements.

Bench Creek served as a water source for the town of Wonder.

Actual flow was 5,000 g.p.h. as obtained through Permit No. 303.

Additional drill access road work was completed paralleling the Wonder structure on the hanging wall side. This facilitated drill location and set-up. Plan No. 4 shows road and drill hole locations.

6.0 History

Historical data on the Wonder District is extensive and has been described by many authors. The camp has been included in a series of publications on the Historic Mining Camps of Nevada as Unit 6, by Hugh A. Shamberger.

Discovery was made by Tom L. Stroud in 1906 and the first locations completed on March 18th of that year. The Nevada Wonder Mining Company was organized in September, 1906 and commenced operations which terminated in 1907, but were recommenced in 1911 with the construction of a 200 ton, 10-stamp cyanide mill.

6.0 Production continued until 1919, when the company suspended operations in the district. As reported by Willden, Ronald and Speed, Robert C. 1974,

"Production from the District (Table 21) has amounted to 73,892 ounces of gold and 6,867,744 ounces of silver with a net value of \$6,350,186.00. Of this by far the largest amount was produced by the Nevada Wonder Mining Co. from 1911 through 1919. Over the life of the district, the ore produced has had an average value of about \$15.00 per ton."

Table 21 is included in Appendix D.

The mine was explored down to the 2,000 foot level, with a small amount of mining being done above the 16th level to the 13th level, but with most of the mining being undertaken above the 13th level. Lateral development was about 3,400 feet with over 8 miles of underground workings. Access was via two main shafts, the 3-compartment Nevada Wonder Shaft and the Extension shaft. As described by Cooke, H.R. 1973,

"The 3-compartment Nevada Wonder Shaft was sunk to the 1,300L, but the main stoping from it bottomed at the 700L. The Extension shaft system, 1,300 feet south of the Nevada Wonder Shaft, was sunk to the 2,000L, connecting with the Nevada Wonder Shaft and exploring the vein below it. The Extension shaft itself reached only to the 750L then continued down to the 2,000L via 4 step-off shafts (sub-shafts). Stoping from this shaft system bottomed at the 1,300L."

6.0 Tailings from the milling operation remain at about 1/2 mile west of the old townsite.

Recent work on the property was undertaken during 1977 and 1978 by Mr. Frank Lewis, assisted by Fred L. Humphrey, Ph.D. Mining Geologist. Several dozer trenches were completed and sampled and additional sampling was done on the main Wonder dump.

During May and June 1980, under the direction of the author, geological mapping, extensive sampling and assaying of surface outcrops and the mineralized altered zone, and preliminary detailed surveying (brunton and chain) were completed.

In September of 1980 reverse circulation rotary drilling was completed on the Wonder Mine alteration zone with 1,589 feet being undertaken in eight holes. This work was encouraging, resulting in an additional rotary drilling phase being undertaken between March 15 and April 6, 1981.

7.0 Geology

7.1 Regional

Schrader, F.C. 1947 describes the geology as follows:

"The Wonder District is underlain almost entirely by a rhyolitic complex of Tertiary volcanic rocks..."

Willden, R. and Speed, R.C. 1974, Bulletin 83 describe,

"A sequence of quartz latite to rhyolite welded tuffs and flows of probable late Oligocene to early Miocene

7.1 age makes up most of the area. These are intruded by dacite plugs and stocks, by rhyolite and andesite plugs and dikes, and by balsalt dikes.... Relations that Schrader (1947, P. 36-39) observed underground and on the surface, indicate that the dacite intrusives are the oldest; the rhyolite is next oldest and the andesite and basalt the youngest. Most of the veins are found in the extrusive quartz latite to rhyolite units. Over much of its extent, the most productive vein - the Nevada Wonder - follows the contact between these extrusives and the largest dacite stock."

7.2 Local

Schrader described the Wonder Rhyolite as having been determined by petrographic work as being quartz latite. He states,

"Microscopically, the Wonder rhyolite is brownish drab or dull ash-gray, massive, medium grained or porphyritic with small whitish feldspars, vitreous quartzes, and dark biotite disseminated through the finer ground mass."

The Wonder Vein striking N25°W and dipping at 70-80 degrees to the north east follows the contact between the Wonder rhyolite and the dacite. This contact zone is faulted and crushed and is enclosed in an altered zone that reaches a width of 80 to 100 feet in the vicinity of the Wonder shaft. Schrader described this zone as,

"The rock, however, is nearly everywhere considerably altered, the most common or secondary minerals being

7.2 sericite, calcite, and kaolin derived from the feldspars, limonite and chlorite from the biotite, quartz and epidote."

The Wonder Vein system consists locally of 1 or 4 veins, known as the Nevada Wonder, and the Extension, Badger, Hidden Treasure and North Star Veins with vein width varying from less than one foot to over forty feet. Schrader describes the veins,

"They consist principally of quartz with more or less adularia, broken, crushed and altered wall-rock material and clay-like products resulting from the kaolinization and other alteration of feldspar."

The Wonder Vein lies about 40 feet to the west or foot wall side of a strong pronounced mineralized fault or shear zone. Photo 1.

8.0 Minerology

The principal ore minerals are gold, argentite, cerargyrite, and halogen salts. Silver chlorides and bromides are noteworthy in the Wonder district. Over 40 ore minerals are described by Schrader, mostly being secondary. The main primary minerals are gold, argentite, chalcopyrite, galena, sphalerite, molybdenite, and abundent pyrite.

Production was principally obtained from the oxidized zone which bottomed sharply at about the 1,300 foot level. Below this

8.0 in the sulfide zone pyrite increased and quartz and gold decreased. An ancient water table is indicated between the 500 and 700 foot levels because of increased values at these levels.

9.0 Exploration 1981

Detailed fill-in reverse circulation rotary drilling was undertaken to enable a more complete evaluation of the near surface Wonder Mine mineralization. Twenty-three hundred and seventy feet in twenty-one holes were completed.

Test, data, collection and shipping procedures were maintained as per the first phase drilling program. All samples collected, (5 foot intervals) were boxed and shipped by container unit via Western Airlines to General Testing Laboratories in Vancouver for assaying: Sludge (rock chip) boards were prepared for logging of drill hole geology. These logs are included in Appendic C.

Results of the Rotary Drilling

The recent drill program has explored the Wonder Mine mineralized zone for a distance of approximately 1,550 feet along strike and to a depth of about 250 feet down dip. Averages of the assay data are tabulated below:

9.0	Section	Location	Width Ft.	Au oz/T	ssay Ag oz/T	True Width (Ft)
	4+20N	Surface Cut	55	0.015	4.405	52
		81R-23	67	0.018	2.50	67
		R80-3	35	0.002	1.48	35
			18	0.006	1.12 H.W.	18
		Avg.	53	0.004	1.36	53
		R80-4	20	0.008	5.41 F.W.	16
	0+70N	Dump (81R-1)	30	0.012	0.91	30
		R80-8	60	0.006	1.92	55
		81R-1	25	0.036	4.12 F.W.	19
		R80-8	83	0.010	2.698 F.W.	33
	0+25\$	Dump	15	0.025	1.88	15
	0+905	81R-3	15	0.025	3.70 H.W.	14
			12	0.020	1.36 F.W.	10
			28	0.006	0.50 Middle	e 27
		Avg.	55	0.014	1.56	53
		81R-4	25	0.039	3.32 H.W.	21
			25	0.040	3.07 F.W.	18
			35	0.004	0.63 Middle	30
		Avg.	85	0.025	2.15	68
	1+605	Surface Cut	64	0.031	2.53	64
		81R-5	35	0.013	0.74 H.W.	35
			14	0.093	6.31 F.W.	14
		Avg.	49	0.036	2.33	49
		R80-1	20	0.020	2.64 H.W.	18
			17	0.002	0.49 Middle	15
			6	0.002	0.76 Middle	5
			10	0.009	1.56 F.W.	8
		Avg.	53	0.010	1.53	48
		R80-2	16	0.059	3.35 H.W.	16
			50	0.020	0.42	36

9.0	Section	Loc	ation	Widt Ft		Assay Ag oz/T	True Width (Ft)
				15	0.007	1.90 F.W.	12
			Avg.	81	0.025	1.27	62
	2+65\$	81R-6		25	0.030	0.98 H.W.	24
				20	0.016	1.81 F.W.	19
				50	0.008	0.80 Middl	e 47
			Avg.	95	0.015	1.06	95
	3+405	81R-8		15	0.035	2.40 H.W.	15
				15	0.023	1.51 F.W.	15
			or	16	0.027	2.25 F.W.+	Void 16
				29	0.013	0.14 Middle	29
			Avg.	61	0.022	1.253	61
		R80-6		21	0.006	0.98 H.W.	20
				25	0.008	0.82 Middle	23
				25	0.028	1.95 F.W.	23
			Avg.	71	0.013	1.27	71
	4+40S	81R-9		20	0.019	1.90	20
			or	35	0.018	1.40	35
	5+05S	81R-11		40	0.009	1.09	38
		81R-12		65	0.060	5.67	44
	5+70S	81R-13		10	0.008	1.37 H.W.	7
				45	0.022	4.01 F.W.	32
		81R-14		25	0.023	4.19 F.W.	15
	6+55S	81R-15		5	0.022	4.53	5
			NB:	Rods	broke off	in Void	
			or	11	0.011	2.54	10
		81R-16		41	0.030	3.67	27
	7+65S	81R-17		17	0.011	1.52	15
		81R-18		30	0.015	2.30	23
	8+55\$	81R-19		13	0.019	2.55	12
		81R-20		5	0.028	3.66	4
	9+35\$	81R-21		25	0.032	5.93	25
		81R-22		40	0.020	1.83	30

10.0 Ore Reserve Calculations

Ore reserves can be classified as drill indicated because of the proximity of data reference locations and the continuity of gold-silver mineralization. It is noted that certain areas of the mineralized alteration zone contains voids as a result of previous mining. This presented certain problems for drilling because of the possibility of the loss of rods and bits in excessively wide voids. Generally, where old slope or drifts were encountered, the reverse circulation method was able to test both hanging and foot wall areas without great difficulty.

Drill indicated ore reserves were calculated by measuring the areas of influence of better assay averages on individual sections, and projecting these a reasonable distance, generally one half the distance to the north and south to adjacent sections. A volume conversion factor of 12 cubic feet per ton was used to obtain volumes in tons. Grade averages are weighed.

Reference area calculations were as follows:

10.0

Considering a zone 100' North and 175' South.

Thus reserve volume calculations are as follows:

Calculation of Reserves

Location	Area	Volume Cu.Ft.	Assa	
Section 4+20N	Plan No. 5		Au oz/T	Ag oz/T
	Α	78,776.04	0.017	3.36
	В	27,500.0	0.012	2.00
	С	39,473.9	0.005	2.47
	D	7,791.7	0.008	5.41
Section 0+70N	Plan No.6			
	Α	37,625.0	0.036	4.12
	В	105,260.4	0.010	2.70
Section 0+25S	Plan No. 7			
	Only Dump Ma	terial of interes	t	
Section 0+90S	Plan No. 8			
	Α	34,100.0	0.021	1.91
	Note: Foot	Wall and Hanging	Wall Zones	
	(H.W.	10,850.0	0.034	3.46)
	(F.W.	10,075.0	0.034	2.54)
Section 1+60S	Plan No. 9			
	Α	15,937.5	0.033	2.44
	В	20,364.6	0.022	1.91
	Note: Foot	Wall and Hanging	Wall Zones	
	(F.W.	4,250.0	0.058	4.33)
	(H.W.	8,446.9	0.016	1.43)
	C	21,869.8	0.019	1.37
	Note: Foot	Wall and Hanging N	Wall Zones	
	(H.W.	5,454.2	0.037	2.96)
	(F.W.	4,958.3	0.008	1.76)
	D	25,500.0	0.025	1.27

0	Location	Area		Volume Cu.Ft.	Assa	ay (T	
		Noto	Foot	Mall and Hamain	Au oz/T	Ag oz/I	
		Note:		Wall and Hanging		0.05\	
		(H.W.		4,515.6	0.059	3.35)	
	Sontian DICEC	(F.W.		2,479.2	0.007	1.90)	•
	Section 2+65S	Plan No	. 10				
		Α		29,218.8	0.015	1.06	
		Note:		Wall and Hanging	Wall Zones		
		(H.W.		6,197.9	0.030	0.98)	
		(F.W.		7,791.7	0.016	1.81)	
		В		94,208.3	0.015	1.06	
		Note:	Foot	Wall and Hanging	Wall Zones		
		(H.W.		24,791.7	0.030	0.98)	
		(F.W.		19,833.3	0.016	1.81)	
	Section 3+40S	Plan No	. 11				
		A		9,666.7	0.002	1.03	
		В		24,800.0	0.022	1.25	
		Note:	Foot	Wall and Hanging	Wall Zones		
		(H.W.		5,550.0	0.035	2.40)	
		(F.W.		7,253.3	0.027	2.25)	
		С		39,160.0	0.017	1.26	
		Note:	Foot	Wall and Hanging			
		(H.W.		13,800.0	0.018	1.57)	
		(F.W.		11,400.0	0.026	1.79)	
	Section 4+40S	Plan No.	12			,	
		Α		12,833.3	0.018	1.40	
		В		23,333.3	0.018	1.40	
	Section 5+05S	Plan No.	13			200	
		Α		9,500.0	0.009	1.09	
		В		13,500.0	0.041	3.93	
	Black the section	С		22,500.0	0.060	5.67	
				,,	0.000	3.07	

10.0	Location	Area	Volume Cu.Ft.		say Ag oz/T	
	Section 5+70S	Plan No. 14				
		Α	7,500.0	0.022	4.01	
		В	11,171.9	0.022	4.07	
		C	8,250.0	0.023	4.19	
	Section 6+55S	Plan No. 15				
		Α	2,829.2	0.011	2.54	
		В	13,337.5	0.026	3.43	
		C	12,549.4	0.030	3.67	
	Section 7+65S	Plan No. 16				
		Α	14,582.3	0.015	2.30	
	Section 8+55S	Plan No. 17				
		Α	4,050.0	0.022	2.86	
	Section 9+35S	Plan No. 18				
		Α	12,750.0	0.032	5.93	
		В	8,500.0	0.025	3.41	
		С	24,650.0	0.020	1.83	
		Total	813,089.6	0.019	2.42	

Consideration has been given in certain sections for old stopes and drifts but it would seem reasonable to allow an additional decrease in the calculated volume of 10 percent. Thus volume of drill indicated reserves is:

Certain areas appear to contain volumes of somewhat higher grades. To the north, sections 4+20N to 0+70N indicate:

296,427 tons @ 0.015 oz.
$$Au/T - 3.03$$
 oz. Ag/T

10.0 To the South between sections 5+05S to 9+35S:

165,670 tons @ 0.029 Au oz/T - 3.59 Ag oz/T

The Wonder Mine dump and the Extension dump have been sampled in the recent exploratory work.

Wonder Dump

69 surface-samples (avg)	0.011 Au oz/	T - 1.63 Ag oz/T
81R-1 from 0 - 30'	0.012	0.91
R80-8 from 0 - 60'	0.006	1.92
81R-2 from 0 - 15	0.025	1.88
Avg.	0.014	1.59

Extension Dump

65 samples (Avg) 0.019 Au oz/T 3.12 Ag oz/T

Volume estimates for the Wonder Dump and Extension Dump are 70,000 tons and 8,500 tons respectively.

Summary of indicated Ore Reserves

Location	Volume (Tons)	Ass	ay
		Au oz/T	Ag oz/T
Wonder Mine	731,780	0.019	2.42
Wonder Dump	70,000	0.014	1.59
Extension Dump	8,500	0.019	3.12

An Elm

11.0 Recommendations

It is felt that sufficient exploratory drilling has been completed on the Wonder Mine to indicate volumes and grades of the mineralized alteration zone, to a depth of approximately 250 feet.

Additional work requirements pertain to completion of the water availability survey, examination of governmental regulations with respect to mining, and the undertaking of metallurgical studies, with the intention of initiating preliminary feasibility studies. Appendix A

References

References

- 1.0 Tough, T.R. 1979, Geological Report on the Wonder Mine.
- 2.0 Schrader, F.C. 1947, U.S.G.S. Unpublished Report on the Carson Sink Area Nevada.
- 3.0 Cooke Jr., H.R. 1973, Wonder Silver-Gold Mining District.
- 4.0 Shamberger, H.A. 1974, Wonder Historic Mining Camps of Nevada.
- 5.0 Willden, R., and Speed, Robert C. 1974, Bulletin 83, Geology and Mineral Deposits of Churchill County, Nevada, Nevada Bureau of Mines and Geology.
- 6.0 Humphrey, Fred L., 1978, Wonder Mine Open Cut and Dump Evaluation.
- 7.0 Humphrey, Fred L., 1977, Proposed Program of Exploration and Exploitation of a Large Volume of Low Grade at the Wonder Mine, Nevada.
- 8.0 Lewis, F.W., Various Notes on the Wonder Mine.
- 9.0 Burgess, J.A., 1918, Silver Haloid Salts, Wonder, Nevada.
- 10.0 Plans and Sections obtained from Mines Department of University of Nevada, dated 1917.
- 11.0 Poloni, J.R., August 6, 1980, Report on the Wonder Mine.
- 12.0 Poloni, J.R., November 18, 1980, Report on the Reverse Circulation Rotary Drilling, Wonder Mine, Wonder Mining District.

Appendix B

Certificate

Certificate

I, John R. Poloni, of 5502 - 8B Avenue, in Delta, in the Province of British Columbia,

DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Geologist.
- I am a graduate of McGill University of Montreal, Quebec, where I obtained a B.Sc. degree in Geology in 1964.
- 3. I am a registered Professional Engineer in the Geological Section of the Association of Professional Engineers of the Province of British Columbia.
- 4. I have practiced my profession since 1964.
- I am a Fellow of the Geological Association of Canada and a member of the Canadian Institute of Mining and Metallurgy.
- 6. I have personally visited the Wonder Mine during May, June, September, 1980, and March, 1981, and supervised the recent surveys undertaken by John R. Poloni & Associates Ltd.
- 7. I have no interest in the properties or securities of Silver Strike (Resources) (U.S.A.) Ltd., nor do I expect to receive or acquire any.

Dated this 15th day of June, 1981.

John R. Poloni, B.Sc., P. Eng.

Appendix C

Assay Data - Rotary Drill Logs

Table 21

TABLE 21. Production of gold, silver, copper, and lead from Wonder district 1907-1965.

[Compiled through 1957 by personnel of the Nevada Bureau of Mines and Geology from best available sources, largely U. S. Bureau of Mines Minerals Yearbooks for the listed years, with some additional information from Couch and Carpenter (1943); and for 1958 through 1966 by Ronald Willden from Minerals Yearbooks]

		Gold	S	ilver	Cor	pper	Le	ad	V	
Year	Ounces	Value	Ounces	Value	Pounds	Value	Pounds		Tons	Value
1907	356	\$ 7,367	10,993	\$ 7,255					133	\$ 14,62
1908	362	7,486	79,187	41,969					408	49,45
1909-1910	No record	led production								
1911	2,476	51,183	171,900	91,107					9,797	142,290
1912	7,590	156,897	474,316	291,704					28,376	448,60
1913	9,534	197,085	699,163	422,294					41,870	619,379
1914	9,716	200,839	914,547	505,744			62	\$ 2	50,121	706,585
1915	9,791	202,395	1,175,953	596,208			-		58,399	798.60
1916	8,956	185,135	1,023,288	673,323	4.564	\$1,123	3,350	231	58,142	859,812
1917	7,513	155,302	816,905	673,130		.,,,,,,,	5,550	2.71	55,804	828,432
1918	4,883	100,949	603,528	603,528	1,336	330	602	43	49,741	704,850
1919	5,623	116,232	467,283	523,357	.,	220	002	7.5	40,604	639,589
1920	518	10,699	14,505	15,810			36	3	1,218	26,512
1921	2	34	2	2			. 30	3		
1922	15	308	1,755	1,755					2 24	36 2,06
Subtotal	67,335	\$1,391,911	6,453,325	\$4,447,186	5,900	\$1,453	4,050	\$279	394,639	\$5,840,829
1923	No record	ed production								
1924			86	58					1	58
1925	No recorde	ed production							•	30
1926	103	2,122	902	563					100	2,685
1927-1930	No recorde	ed production							100	2,003
1931	245	5,069	13,377	3,879					416	8,948
1932	14	285	214						200	345
1933	No recorde	ed production							200	343
1934	1.174	41,023	2,619				270		1,697	42.734
1935	43	1,497	14,648				270		233	42,726
1936	134	4,685	14,009							12.025
1937	294	10,290	24,970						364	15,535
1938	618	.0,270	42,198						705	29,605
1939	1,643		119,825						1,583	48,910
1940	1,225		91,468		1,200				5,811	138,841
1941	859		70,512		1,200				5,997	108,055
1942	202		17,993						5,127	80,207
1943-1947		d production	17,993						1.818	19,865
1948	. 40 lecolde	a production	95							
1949	1	35	376	241					1	86
950	2	70		341					8	376
1951-1954	_	d production	1,019						28	992
955	140 recorde	a production	100							
956-1965	No recorde	d production	108						1	98
otal	73,892		6,867,744		7,100		4,320		418,729	\$6,350,186

inch to several feet in width. Locally the gouge is well banded and mineralized and constitutes good ore, some of which, in the Nevada Wonder mine, ran up to \$60 to the ton... Some of the veins probably extend to considerable depth, judging from the Nevada Wonder mine, which has been worked to the depth of more than 2,000 feet, the Jack Pot vein to 1,000 feet, and others to depths of more than several hundred feet... Unfortunately, the Nevada Wonder vein is the only one of the deposits that has produced sufficient ore to be profitably mined... The vein filling in general is soft and is crushed by faulting and pressure, with the result that it is easily mined and milled... The principal gangue mineral is quartz, with which there is frequently associated consider-

able adularia or vein orthoclase, white potash feldspar, and more or less brecciated and crushed wall-rock material. Occasionally there is also present minor quanities of reddish fluorite, and in the oxidized zone there is also present the usual feldspar and rock-alteration products, including much soft clay-like material, kaolin, sericite, limonite, and in places, a little psilomelane or manganese. In places the veins are fairly well banded... The deposits are deeply oxidized. In the Nevada Wonder mine oxidation extends quite uniformly to the depth of 1,300 feet, which level seems to mark a somewhat persistent ancient groundwater table at that depth... The oxidized deposits ordinarily white are, in part, stained yellowish brown with limonite. The deposits constitute a clean silver-gold ore very

General Testing Laboratories A Division of SGS Supervision Services Ind

TO:

EILVER STRIKE MINING SYNDICATE LTD. c/o Mr. John Poloni 1512 B - 56th Ave., Delta, B.C.

CERTIFICATE OF ASSA

8103-2360 DATE: April 22/81

We hereby certify that the following are the results of assays on:

Ore

	GOLD	SILVER	250	XXX	700	XXX	XXX	mx
MARKED	02/st	os/et						
R 1								
7854 0-5	0.014	1.17						
7855 5-		0.65						
7856 10-1	5 0.002	1.28						
7857 15-2	0 0.022	1.16	/					
7858 20-2	5 0.016	0.53				-70000000000000000000000000000000000000		
7869 25-	0.008	0.68	/	8 7 7 7 7				
7860 30-	5 0.006	0.25	/					
7861A 35-L	0.022	0.30	/					
7861B 35-L	0.002	0.17						
7862A 40-1	5 0.002	0.22		1-1				
7862B 40-1		0.29				199		
7863 45-5	0.002	0.36						
7864 50-5	5 0.002	0.34	(
7865 55-6	0.002	0.50						
7866 60-6	5 0.122	8.65	×					
7867 65-7	0.036	8.69	×					
7868 70-7	5 0.014	1.15						
7869 75-8	0.002	1.07						
7870 80-8	5 0.008	1.05	,					
7871 85-9	0.002	0.32					the death	
7872 90-9	5 0.002	0.80						
R 2								
7875 0-1	0 0.022	1.59						
7876 10-1		2.45	X					
7877 15-2		0.16						
7878 20-2	5 0.002	trace		in .				
7879 25-3	0.002	0.02						
7880 30-3		0.14	'					
7881 35-1		0.58						
7882 40-4	A SECTION OF THE PROPERTY OF	0.28						
7883 45-5		0.02	/					
7884 50-5		0.09						1
7885 55-6	0.002	0.23	1					
7886 60-6			/		114			
7887 65-7		0.09	/		10-	timed on		

NOTE. REJECTS RETAINED ONE MONTH PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED

L. Wong

General Testing Laboratories

A Division of SGS Supervision Services Inc

SILVER STRIKE MINING SYNDICATE LTD.

CERTIFICATE OF ASSA'

(Continued) ... page 2

No.: 8103-2360 DATE: April 22/81

We hereby certify that the following are the results of assays on:

TO:

Ore

		GOLD	SILVER	XXX	XXX	XXX	XXX	TXX	XXX
MARI	KED	oz/st	oz/st		rit w. it				
R 2	.1				10 To 18				
7888	70-78	0.002	0.17						
7892	90-95	0.002	0.93						
R 3									
7898	0-5	0.014	0.42						
7895	5-10	0.002	0.11				Sec. 22		
7896	10-20	0.022	0.36						
7897	20-25	0.010	0.71				of days		
7898	25-30	0.042	5.06	×			•	8 35-4	
7899	30-35	0.032	5.02	×					
7900	35-40	0.002	1.024						
7901A	40-45	0.002	0.37						
7901B	40-45	0.030	0.63						
7902	45-50	0.008	0.45						
7903	50-55 55-60	0.002	0.39						
7904	55-60	0.002	0.44	13.5					
7905	60-65	0.002	0.48						
7906	65-70	0.002	0.94						
7907	70-75	0.026	1.78						
RL									
7908	0-5	0.002	0.22						
7909	5-10	0.002	0.21						
7910	10-15	0.012	0.04	1 3					
7911	15-20	0.028	1.03						
7912	20-25	0.018	1.12						
7913	25-30	0.064	7.38	×					
7914	30-35	0.052	5.19	×					
7915	35-40	0.034	1.88	×					
7916	40-45	0.002	0.64						
7917	45-50	0.002	0.79						
7918	50-55	0.002	0.61						
7919	55-60	0.012	0.55						*
7920	60-65	0.002	0.49						
7921	65-70	0.002	0.57			, _			
			100			/ Con	timued or	page 3 .	• • •

NOTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

Le Work

PROVINCIAL ASSAYER

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

General Testing Laboratories

A Division of SGS Supervision Services Inc

SILVER STRIKE MINING SYNDICATE LTD.

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1W. PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVISI

CERTIFICATE OF ASSAY

No.: 8103-2360

DATE: April 22/81

We hereby certify that the following are the results of assays on:

C	74	

	MARKED	GOLD	SILVER	XX	XXX	XXX	XXX	MX.	XX
	MARKED	oz/st	os/st		2 2				
RL							22.2		
7922	70-75	0.008	0.73	B				1	
7923	75-80	0.050	6.24	La la la				1- /	
7924	80-85	0.074	4.46					f /	
7925	85-90	0.045	2.69		1				
7926	90-95	0.012	0.93		1	1 20 1		13 3000	1 2 2
7928	95-100	0.020	1.03 /		1		1		
7929	10		1.00		1.	Law IV			12-4-13
					1:11			(
R 3				4.7	6	,	1	f	-
7929	70-75	0.016	1.47		(13. 1	(- 3) - 1	
7930	75-80	0.018	0.97		(f · · · · · · · ·	
7967	80-85	0.006	0.47		1		1	factor 1	1
R 5	Just the St			" W".	1 1 1 1 1 1 1	1000		1	
	0-5	0.010	-		1	1			
7931 7932	5-10	0.010	0.06	1	, , , , ,			1	
7933	10-15	0.002	0.14		<i>(</i>	f 1	1	1	
7934	15-20	0.002	0.61		<i>i</i>	1 3 4	143	1	
7935	20-25	0.014		×	i 1			1	
7036	25-30	0.020	0.82	^	1	1		, , , ,	
7936 7937	30-35	0.014	0.69		1			(
7938	30-35 35-40 40-45	0.002	0.55		1	(- T	1	,	
7939	1,0-1,5	0.003	0.47		/	1		£ 1	
7940	45-50	0.026	0.86		,)	1		, , , , ,	1.
7942	57-60	0.326	13.06	*	, ·	1	1	,	1
7943	60-65	0.660	5.26	×	, J	1	1	/ * · · · · · · · · · · · · · · · · · ·	1
7944	65-70	0.002	3.23		1-22-1	1			1
7968	70-7571	0.012	6.66			(J	1		1
RL	10 771	0.0.2	0.00			1			1
	400 400	2 201	2 60					1	1
7964A	100-105	0.004	0.69	: I w I I	1. 2. 3. 1	1		, p. 1	(
796LB	100-105	0.020	0.67		A		1 2 2 2		f = 2
7965A	105-110	0.002	0.43	100	. No. 185	1			(
7965B	105-110	0.002	0.60			Page 1	AT See Line 18		(
7966	110-115	0.002	0.04/	20.0		1	A STATE	15 3	
			1		1	()	100000	1 - 1 - 1	
			150		8 : : · · · · · · · · · · · · · · · · ·	() I	ATTENDED		(

NOTE: REJECTS RETAINED ONE MONTH PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED

General Testing Laboratories A Division of SGS Supervision Services Inc

TO:

MR. JOHN POLONI 1512 B - 56th Avenue Delta, BC.

CERTIFICATE OF ASSA

DATE: April 14/81 8103-3053 No.:

We hereby certify that the following are the results of assays on:

Ore

	GOLD	SILVER	XXX	XXX	x xx	BX.	XXX	MX.
MARKED	/	/						
<u>R-6</u>	oz/st	os/st		•		4		100
7945 0-5	0.012	0.70						
7946 5-10	0.020	2.04						
7947 10-15	0.022	1.29					2 3	
7948 15-20	0.004	0.36			1000			
7949 20-25	0.002	0.81						
7950 25-30	0.104	0.41						
7951 30-35	0.006	trace				A SEC		
7952 35-40	0.006	0.03						
7953 40-45	0.010	0.32						
7954 45-50	0.008	trace						
7955 50-55	0.020	5.65						
7956 55-60	0.020	0.53						
7957 60-65	0.004					110000	794	
7958 65-70	0.002	0.37						
7959 70-75	0.002	0.52						
7960 75-80	0.006	0.46						
7961 80-85	0.008	0.08 2.88						
7962 85-90	0.008			1,5	t - Tente			
7963 90-95	0.024	0.38	and the second					
7973 95-100	0.024	2.32	No.					
7969 100–105	0.020	1.64			Maria Perli	1400 44		
7970 105–110	0.002	0.96						
1710 103-110	0.002	0-01						
R-8					¥ 17			
			1 2 - 1 - 1					
7974 0-5	0.014	trace		1			1 300	
7975 5-10	0.002	trace						
7976 10-15	0.002	trace						
7977 15-20	0.002	trace						
7978 20-25	0.002	trace						
7979 25-30	0.024	trace						
7980 30-35	0.002	0.15						
7981 35-40	0.022	0.12				1.0		
7982 40-45	0.016	0.32						
7983 45-50	0.008	trace					1	
	0.004							
7984 50-55 7985 55-60		0.11				1.13		
1303 33-00	0.039	4.72			40			
				1 2 5 10	Con	timued on	page 2	

NOTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Work

General Testing Laboratories

A Division of SGS Supervision Services Inc

TO:

MR. JOHN POLONI

(Continued) page 2

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1V PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVIS

CERTIFICATE OF ASSA

No.: 8103-3053 DATE: April 14 81

We hereby certify that the following are the results of assays on:

Ore

GOLD	SILVER	TTT	TTT	-	***	-	X XEX	
os/st	os/st	s/et						
	100	V			•	3	-	
				100				
	0.34					4	A Service of	
0.024	0.25				and the second			
0.010	0.06			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
0.012	trace							
0.008	0.13							
0.002	0.21				The same of			
0.080	13.31							
0.020	1.64							
0.002	0.51							
0.048							4.	
0.002	0.75	P. Lane						
1				13/34/1				
0.002	trace							
0.002	trace							
0.014	0.05							
0.002	trace					1.9		
0.002	trace		180				1 - Page 1	
0.002	trace							
0.002	trace							
0.006	trace		-					
					1 200			
							15-176	
					1 40 20 32		100	
	0.98				Harris Barre		1 4	
						1		
					/ Conti	nued o n	page 3	

	0.022 0.014 0.022 0.021 0.010 0.012 0.008 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.022 2.14 0.044 0.34 0.022 0.23 0.024 0.25 0.010 0.06 0.012 trace 0.008 0.13 0.002 0.21 0.080 13.31 0.020 1.64 0.002 0.51 0.048 2.39 0.002 trace 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.010 0.92 0.010 0.92 0.012 0.90 0.020 0.98 0.018 0.32	0.022 2.14 0.044 0.34 0.022 0.23 0.024 0.25 0.010 0.06 0.012 trace 0.008 0.13 0.002 0.21 0.080 13.31 0.020 1.64 0.002 0.51 0.048 2.39 0.002 trace 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.004 trace 0.005 0.006 trace 0.007 trace 0.008 1.68 0.010 0.92 0.011 0.92 0.012 0.90 0.012 0.90 0.012 0.90 0.020 0.98 0.018 0.32	0.022 2.14 0.044 0.34 0.022 0.23 0.024 0.25 0.010 0.06 0.012 trace 0.008 0.13 0.002 0.21 0.080 13.31 0.020 1.64 0.002 0.51 0.048 2.39 0.002 trace 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.004 trace 0.005 0.006 trace 0.007 trace 0.008 0.01 0.02 0.009 0.01 0.02 0.001 0.02 0.002 0.020 0.98 0.018 0.32	0.022 2.14 0.044 0.34 0.022 0.23 0.024 0.25 0.010 0.06 0.012 trace 0.008 0.13 0.002 0.21 0.080 13.31 0.020 1.64 0.002 0.51 0.048 2.39 0.002 0.75 0.002 trace 0.001 trace 0.002 trace 0.002 trace 0.003 0.01 0.002 trace 0.004 1.68 0.018 4.73 0.012 0.27 0.042 0.90 0.020 0.98 0.018 0.32	0.022 2.14 0.044 0.34 0.022 0.23 0.024 0.25 0.010 0.06 0.012 trace 0.008 0.13 0.002 0.21 0.080 13.31 0.020 1.64 0.002 0.51 0.048 2.39 0.002 0.75 0.002 trace 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.004 trace 0.005 0.001 trace 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.003 0.01 0.002 trace 0.010 0.92 0.011 0.92 0.012 0.90 0.012 0.90 0.012 0.90 0.013 0.32 0.008 0.06	0.022 2.14 0.044 0.34 0.022 0.23 0.024 0.25 0.010 0.06 0.012 trace 0.008 0.13 0.002 0.21 0.080 13.31 0.002 0.51 0.048 2.39 0.002 0.75 0.002 trace 0.001 trace 0.002 trace 0.002 trace 0.002 trace 0.001 trace 0.001 0.92 0.001 0.92 0.001 0.92 0.001 0.92 0.001 0.92 0.001 0.99 0.002 0.98 0.018 0.32	

NOTE: REJECTS RETAINED ONE MONTH, PULPS RETAINED THREE MONTHS, ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED

General Testing Laboratorie A Division of SGS Supervision Services In

MR. JOHN POLONI

(Continued) ... page 3

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1 PHONE (604) 254-1647 TELEX 04-507514 CABLE SUPERV

CERTIFICATE OF ASSA

8103-3053 No.:

DATE: April 14/81

We hereby certify that the following are the results of assays on:

Ore

	GOLD	SILVER	XXX	XXX	m	xxx	x xx	XX)
MARKED	os/st	oz/st						
R-11								
<u>R-11</u>			_					
8024 0-5	0.002	trace						
8025 5-10	0.002	trace						
8026 10-15	0.002	trace						
8027 15-20	0.002	trace						
8028 20-25	0.002	0.02						
8029 25-30	0.002	trace						
8030 30-35	0.002	0.08						
8031 35-40	0.002	trace						
8032 40-45	0.002	trace						
8033 45-50	0.016	trace						
8034 50-55	0.012	trace						
8035 55-60	0.010	0.12						
8037A 60-75	0.004	0.81					1-21	
8037B 60-75	0.016	2.50	F					
8039 75-80	0.010	0.26						
8040 80-85	0.002	0.38						
8041 85-90	0.012	0.79						
8042 90-95	0.006	1.24						
8043 95-100	0.008	1.05						
8044 100-105	0.002	0.26						
8045 105-110	0.002	trace						
P 40		,						
R-12								
8060 70-75	0.002	trace			14.5	C 40 01	se 2	
8061 75-80	0.002	trace						
8062A 80-85	0.002	0.89						
8062B 80-85	0.002	0.87						
					1 10 2			
*								
	1.				10.27			

NOTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS-CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

General Testing Laboratorie A Division of SGS Supervision Services In

TO: SILVER STRIKE MINING SYNDICATE LTD. 770 - 789 West Pender Street Vancouver, E.C. V6C 1H2

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1 PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERV

CERTIFICATE OF ASSA

No.: 8104-1356

DATE: May 6, 1981

We hereby certify that the following are the results of assays on:

Ore

		GOLD	SILVER	XXX	XX	EX.	XXX	XXX	XXX
	MARKED	oz/st	oz/st					-	-
Ī	1-12								
8046	0-5	0.002	0.14						
8047	5-10	0.002	0.20						
3048	10-15	0.002	0.19						
3049	15-20	0.002	0.13						
3050	20-25	0.014	0.17						1 9 9 9
3051	25-30	0.002	0.16						
3052	30-35	0.002	0.14				19.0		
3053	35-40	0.002	0.14	1.0%					
3054	40-45	0.002	0.09						
3055	45-50	0.024	0.16			Part Part			1 100
3056	50-55	0.002	0.14				*		
3057	55-60	0.002	0.14						
1058	60-65	0.024	0.15	1, 1, 1, 1, 1					
3059	65-70	0.002	0.20					4	
1063	85-90	0.002	0.32						
1064	90-95	0.006	3.06						
1065	95-100	0.004	0.39						
066	100-105	0.014	0.62						
1067	105-110	0.018	1.76						
6068	110-115	0.020	2.33						
069	115-120	0.030	3.53			ayers in the	5. 30. 4.		
070	120-125	0.457	44.37						
071	125-130	0.080	9.10						
072	130-135	0.034	2.35						
073	135-140	0.044	2.75						
074	140-145	0.002	1.21				186,12		
075	145-150	0.032	1.41						30.7
341	150-155	0.040	0.91						
E-	13		81						100
076	0-5	0.002	0.20						1.5
077	5-10	0.002	0.23	2 2					
078	10-15	0.008	0.20						
079	15-20	0.012	1.82		1 7 1 =				
080	20-25	0.004	0.93						
081	25-30	0.002	0.15			111			
	-))	3.002	30.17			/	ed on peg		

NOTE. REJECTS RETAINED ONE MONTH PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

TO: SILVER STRIKE MINING SYNDICATE LTD.

(Continued) page 2

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, VBA 11 PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVI

CERTIFICATE OF ASSA

No.:8104-1366

DATE: Lay 6, 1981

We hereby certify that the following are the results of assays on:

		GOLD	SILVER	XXX	X XX	XXX	x xx	XXX	T.X
	MARKED	oz/st	oz/st						
R	<u>- 13</u>								
0000		0.000	0.00				144		
8082	30-35	0.002	0.07						
8083	35-40	0.002	0.02						
8084	40-45	0.008	0.15						
8085	45-50	0.004	0.20						
8086	50-55	0.010	1.37				5.85-5.6		
8808	60-65	0.018	4.58						
8089	65-70	0.008	0.70						
8 090	70-75	0.012	1.84						
8091	75-80	0.008	0.88						
8092	80-85	0.022	1.28						
3093	85-90	0.026	3.35						
8094	90-95	0.070	18.05						9 97
8095	95-100	0.006	0.96				1 19		
R -	. 14								
8096	0-5	0.004	0.13						
8097	5-10	0.002	0.13				1993		
8098	10-15	0.004	0.15						
8099	15-20	0.002	0.14			Comment of the Comment	1 2 2 - 1		
8100	20-25	0.006	0.12					-0-1200	
8101	25-30	0.002	0.09	100					
8102	30-35	0.002	0.19	-		-			
8103	35-40	0.008	0.54	-			13.		
8104-	40-45	0.004	0.22					7	
8105	45-50	0.006	0.14		44				
8106	50-55	0.002	0.11	a malan a					
8107	55-60	0.004	0.13						
8103	62-65	0.006	0.10						
8109	65-70	0.010	0.22				The state of the s		
8110	70-75	0.002	0.14	11 20 1 1			4 -90		
8111	75-80	0.004	0.25						
8112	80-85	0.009	0.58				100		
8113	85-90	0.002	0.73						
8114	90-95	0.020	0.39			.1',		e , , ,	
8115	95-100	0.002	0.20		-	" "			
	JJ-100	0.002	0.20					n page 2	••••
									1 114

ALL REPORTS ARE THE CONFIDENTIAL PHOPERTY OF CLIENTS PUBLICATION OF STATEMENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Vong PROVINCIAL ASSAYER

(Continued) page 3

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, VBA 11 PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVI

CERTIFICATE OF ASSA

1104-1366

DATE: May 6, 1981

We hereby certify that the following are the results of assays on:

		GOLD	SILVER	XXX	XXX			1.1	1, 18
1	MARKED	oz/st	oz/st		***	3 32	xxx	XXX	XXX
	R - 14								
8116 8117 8118 8119 8120 8121 8122 8124 8125 8123 812	100-105 105-110 110-115 115-120 120-125 125-130 130-135 140-145 145-150 150-155 145-150	0.008 0.004 0.002 0.006 0.020 0.024 0.038 0.008 0.036	0.36 0.22 0.29 0.34 0.37 2.22 6.20 3.53 4.25 4.37	N/s					
8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8143 8144	0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 45-50 55-60 65-70 70-95 90-95 95-000	0.006 0.182 0.004 0.002 0.010 0.006 0.014 0.002 0.024 0.014 0.002 0.008 0.006 0.008 0.008 0.002 0.002 0.002	0.13 0.88 0.18 0.20 0.18 0.17 0.17 0.38 0.36 0.56 0.49 0.24 0.26 0.71 0.91 4.53						
R	- 16								
8146 8147		0.002	0.10			100	tinned on	page B	•••

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

(Continued) ... page & ...

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V8A 1V PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVIS

CERTIFICATE OF ASSA

No.: 3104-1366

DATE: May 6, 1981

We hereby certify that the following are the results of assays on:

Ore

	MADUED	GOLD	SILVER	XXX	2.3.4	XXX	-		
	MARKED	oz/st	oz/st		dent de	LAA	XX	XX	XXX
Ī	1 - 16								
8148	10-15	0.002	0.19						
8149	15-20	0.002	0.12						
8150	20-25	0.002	0.14						
8151	25-30	0.002	0.14						4
8152	30-35	0.002	0.12						
8153	35-40	0.002	0.11						
8154	40-45	0.002	0.17						
8155	45-50	0.002	0.15						
8156	50-55	0.002	0.15						
8157	55-60	0.002	0.15						
8158	60-65	0.002	0.14						
8159	65-70	0.006	0.16						
8160	70-75	0.008	0.14	-					
8161	75-80	0.002	0.12						
8162	80-85	0.002	0.18						
8163	85-90	0.002	0.45						
8164	90-95	0.002	1.19						
8165	95-100	0.006							
8166	100-105	0.008	0.48	S. Mc.					
8167	105-110	0.003	0.55				14		
8168	110-115	0.002	0.71						
3159	115-120		0.62						
8170		0.002	2.40						
	120-125	0.002	2.59			- 6455			
3171	125-130	0.002	1.68						
	130-135	0.012	1.66			2 3 2 4			
3173	135-140	0.094	5.69						
3174	140-145	0.018	4.32						
3175	150-155	0.112	9.65			341			
346	155-160	0.042	5.03.						
347	160-165	0.018	2.62				19821176		
. p	17			5.1					
R	<u>- 17</u>		E CONTRACTOR						
176	0-5	0.022	0.23					Y Y	
177	5-10	0.002	0.11						
178	10-15	0.002	0.15			13 4 20	100	1	
179	15-20	0.002	0.07			. 1	Continued	חת הפתח	5

NOTE. REJECTS RETAINED ONE MONTH PULPS RETAINED THREE MONTHS ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED

SILVER STRIKE MINING SYNDICATE LTD.

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1W2 PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVISE

CERTIFICATE OF ASSAY

8104-1366 DATE: Lay 6, 1981

(Continued) page 5

We hereby certify that the following are the results of assays on:

Ore

	GOLD	SILVER	XXX	30:3X	XX	III	XXX	IXI
MARKED	oz/st	oz/st						
<u>R - 17</u>								
8180 20-25	0.002	0.08						
8181 25-30	0.002	0.13						
8162 30-35	0.002	0.38						
8183 35-40	0.002	0.22						
8154 40-45	0.010	0.34						
8185 45-50	0.002	0.30						
8186 50-55	0.002	0.37						
8187 55-60	0.012	0.10-						
8188 60-65	0.016	0.40						
8189 65-70	0.002	0.16						
8190 70-75	0.018	0.61						
8192 80-85	0.002	0.41						- 24
8193 85-90	0.008	1.32				March Trees	The Trans	
8194 <u>90</u> -98 8195 104-105	0.002	0.08 8.59						
8342 105-110	0.002	1.11						
8343 110-115	0.022	1.02						
R - 18								
8206 0-5	0.002	0.17						***
8207 5-10	0.002	0.15						
8208 10-15	0.002	0.15						
8209 15-20	0.002	0.09						
8210 20-25	0.002	0.34	Challe I					2-14
8211 25-30	0.002	0.35		1				
8212 30-35	0.002	0.18	-					
8213 35-40	0.002	0.22					1 - 3.	
8214 40-45	0.002	0.18						
8215 45-50	0.002	0.19						
8216 50-55	0.010	0.18						
8217 55-60	0.002	0.21	17. W.					
8218 60–65	0.002	0.22						10000
8219 65 -7 0 8220 70 -75	0.002	0.19	V					" " " " " " " " " " " " " " " " " " " "
8220 70 - 75 8221 75 - 80	0.002	0.20						
75-00	0.002	0.20	· .		1	Continued	on page 6	• • • •
							are breed	

NOTE: REJECTS RETAINED ONE MONTH PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

General Testing Laboratorie

A Division of SGS Supervision Services In

TO: SILVER STRIKE MINING SYNDICATE LTD.

(Continued) page 6

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1 PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERV

CERTIFICATE OF ASSA

No.: 8104-1366

DATE: May 6, 1981

We hereby certify that the following are the results of assays on:

Cre

		GOLD	SILVER	-	I				
	MARKED	oz/st	oz/st	XXX	XXX	3000	XXX	300X	X
	R - 18								
8222	80-85	0.002	0.20						
8223	85-90	0.002	0.32						and the same
8224	90-95	0.002	0.07						3
8225	95-100	0.002	0.20						
8226	100-105	0.002	0.25				Lance Co.		
8227	105-110	0.010	0.28						
8228	110-115	0.008	0.61				Profession of		
8229	115-120	0.002	0.66						
8230	120-125	0.002	1.56						
8231	125-130	0.020	3.51		*		N .		
8232	130-135	0.008	3.52				1 120		
8233	135-140	0.006	1.01						
8234	140-145	0.024	3.21		100				
8235	145-150	0.030	0.96						
8344	150-155	0.002	0.61						
8345	155-160	0.010	0.54						
		000.0							
R	- 19								
8236	0-5	0.002	0.21		7-25				
8237	5-10	0.002	0.27						
8238	10-15	0.002	0.18			,	4. 1		N. L. Marin
8239	15-20	0.002	0.19						
8240	20-25	0.010	0.20						
8241	25-30	0.010	0.23						1.30%
8242	30-35	0.006	0.25					2.00	
8243	35-40	0.002	0.18						
8244	40-45	0.006	0.18						
8245	45-50	0.002	0.27	1.1	- N.		276		
8246	50-55	0.002	0.29		.88				
8247	55-60	0.002	0.27	1 100					6
8248	60-682	0.010	0.47	-					
8249	1 65-70	0.064	7.51						
8250	70-75	0.008	0.51		S. 34				
8251	75-80	0.002	1.61						- 7732
8252A	80-85	0.016	0.45						
8252B	80-85	0.018	0.44			0 - 11	on page	_	

NOTE. REJECTS RETAINED ONE MONTH PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED

TO: STIVER CATHLE HEALS SYNDICATE LTD.

(Continued) page 7

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1W PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVIS

CERTIFICATE OF ASSA

No .: 3104-1366

DATE: ... 6, 1991

We hereby certify that the following are the results of assays on:

Ore

	MARKED	oz/st	SILVER OZ/st	XXXX	2003	XXX	x xx	XX	XXX
/12		02/81	04/86						
	R - 20								
8253	0-5	0.002	0.13						
8254	5-10	0.002	0.13						100 (0)
8255	10-15	0.002	0.11						1.7
8256	15-20	0.018	0.19						
8257	20-25	0.006	0.13						
8258	25-30	0.002	0.22				100		
8259	33-35	0.002	0.27				A 46 1		
260	35-40	0.002	0.27						
8261	40-45	0.010	0.21				1. 35		100
J262	45-50	0.012	0.17						
8263	50-55	0.010	0.24						
8264	55-60	0.008	0.26						
8265	60-65	0.018	1.08			4			
8266	65-70	0.002	0.24						
8267	70-75	0.002	0.21	51 y					
8268	75-80	0.002	0.29						
8269	80-85	0.002	0.32						3-7- 5
8270	85-90	0.002	0.32						
8271	90-95	0.002	0.42						
8272	95 -95	0.006							1
8273	100-105	0.028	3.66						35.41
			0.65						Bart 1
8274	105-110	0.010	0.43						
8275	110-115	0.014	0.58						
8276	115-120	0.010	0.98						
8277	120-125	0.002	0.76						7418.
? A	125-130	0.002	0.66						
? B	130-135	0.002	0.50						
E-	21								
8278	0-5	0.002	0.21			- 1			
8279	5-10	0.002	0.39				T. ST		
8280	10-15	0.002	0.22		-				
8281	15-20	0.002	0.31			100			
8282	20-25	0.002	0.13						
8283	25-30	0.002	0.30	9		1 conte	nued on pa	Pa R	23 %

NOTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR.

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS. PUBLICATION OF STATE-MENTS. CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

L. Wone

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V8A 1W

PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVISI

SILVER STRIKE MINING SYNDICATE LTD.

CERTIFICATE OF ASSAY

No.: 6104-1366

DATE: May 6, 1981

(Continued) page 8

We hereby certify that the following are the results of assays on:

TO:

Ore

		GOLD	SILVER	XXX	XXX	1777			
MARK	KED	oz/st	oz/st		and.	XXX	XXX	XXX	XXX
R - 2	1								
	30 - 35 35 - 40	0.006	4.61						
8285BJ	35-40	0.066	21.02						
8286	40-45	0.038	4.48						
8 287 8288	45-50	0.011	0.86						
	50 – 55 55 – 60	0.012	0.79						
	60-65	0.014	0.82	* 1					
	65-70	0.016	0.53						
	70-75	0.006	0.41						
R - 2	2								
8293	0-5	0.002	0.24						
8294	5-10	0.002	0.21						
	10-15	0.002	0.22						
8296	15-20	0.002	0.26	17.99					
8297	20-25	0.002	0.25						
8298	25-30	0.002	0.23						
8299	30-35	0.002	0.27						
8300	35-40	0.002	0.90						
8301	10-45	0.006	4.87						
	5-50	0.034	1.27						
8303	50-55	0.068	3.23						
	5-60 0-65	0.008	1.43						
	5-70	0.008	0.83						
	70-75	0.000	0.58						
	5-80	0.008	1.25					- ,	
	0-85	0.006	0.83					5 2 C	
	5-90	0.004	0.68				**		
	0-95	0.002	0.61						
8312	5-100	0.002	0.83						
8313 10	0-105	0.002	0.50						
8314 10	5-110	0.006	0.58						
						/ Cont	inued on	age 9	•

NOTE: REJECTS RETAINED ONE MONTH. PULPS RETAINED THREE MONTHS. ON REQUEST PULPS AND REJECTS WILL BE STORE FOR A MAXIMUM OF ONE YEAR

ALL REPORTS ARE THE CONFIDENTIAL PROPERTY OF CLIENTS PUBLICATION OF STATE-MENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED.

PROVINCIAL ASSAYER

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

TO: SILVER STRIKE TIMING SYNDICATE LTD.

(Continued) page 9 ...

1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, VBA 11 PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVI

CERTIFICATE OF ASSA

No.: 3101,-1366

DATE: May 6, 1931

We hereby certify that the following are the results of assays on:

		GOLD	SILVER				10 1845 Telephone		
	MARKED	oz/st	oz/st	TOX .	XXX	XXX	XXX	XX.	XXX
	R - 23								
8315	0-5	0.004	0.43	44.		1			
8316	5-10	0.002	0.36	1		197 A 2 19			
8317	10-15	0.008	0.46	7 - 1					
8318	15-20	0.002	0.47						
8319	20-25	0.002	0.49						
8320	25-30	0.002	0.74						
8321	30-35	0.002				1.5			
8322	35-40		4.82						
8323	1,0-1,5	0.002	1.61						
8221	40-45	0.042	3.67			12.00			3 3
8324	45-50	0.088	5.09						- 1
8325	50-55	0.010	2.38						
8326	55-60	0.028	3.83				1 2 3		
8327	60-65	0.016	0.97						
8328	65-70	0.002	1.66						1 1
329	70-75 75-80	0.010	3.01						1 - 1 -
8330	75-80	0.002	2.66						
8331	80-85	0.006	1.33						- 3-43
8332	85-90	0.004	1.02						
8333	90-95	0.006	0.97						-
8334	95-100	0.004	1.06						
							a calific		
		V. 19 W.					100		150 - 1
						eW.			
									30
									34
									- 1
			-						
		1.50		7-5					
			P. 44						- 150 LD
			1.36.0				781		
		· ·					Lype Tong		
OC M	r. John Polon				1.744				
00. r.	. John Folo	-							

ALL REPORTS ARE THE CONFIDENTIAL PHOPERTY OF CLIENTS PUBLICATION OF STATEMENTS CONCLUSION OR EXTRACTS FROM OR REGARDING OUR REPORTS IN NOT PERMITTED WITHOUT OUR WRITTEN APPROVAL. ANY LIABILITY ATTACHED THERETO IS LIMITED TO THE FEE CHARGED

		As	say
Footage	DESCRIPTION	Au oz/ton	Ag oz/ton
0 - 5	Dump Material	0.014	1.17
5 - 10	п	0.010	0.65
10 - 15	II II	0.002	1.28
15 - 20	11	0.022	1.16
20 - 25	n n	0.016	0.53
25 - 30	11 11	0.008	0.68
30 - 35	Rhyolite - with Kanolin and	0.006	0.25
35 - 40	limonitic staining	0.022	0.30
40 - 45	Possibly back fill - mixture of	0.002	0.22
45 - 50	quartz rich andesite and	0.002	0.36
50 - 55	altered Rhyolite	0.002	0.34
55 - 60	Quartz rich zone in Rhyolite	0.002	0.50
60 - 65	11 11 11 11	0.122	8.65
65 - 70	н н н н	0.036	8.69
70 - 75	Andesite with altered feldspar	0.014	1.15
75 - 80	п п п	0.002	1.07
80 - 85	п п п п	0.008	1.05
85 - 90	и и и и	0.002	0.32
90 - 95		0.002	0.80
95 - 100	End of Hole 95'		
100 - 105			
105 - 110			
110 - 115			
115 - 120			
120 - 125			-
125 - 130			
130 - 135			
135 - 140			
			4

Footage	DECORT DETCO		say
0 -	DESCRIPTION Dump Material	Au oz/ton	Ag oz/ton
- 10	11 11		
10 - 15		0.022	1.59
15 - 20		0.030	2.45
		0.002	0.16
20 - 25	II II	0.002	Trace
25 - 30	II II	0.002	0.02
30 - 35	11	0.002	0.14
35 - 40	II II	0.002	0.58
40 - 45	Rhyolite - quartz veining with	0.002	0.28
45 - 50	limonitic staining 45-74'	0.002	0.02
50 - 55		0.002	0.09
55 - 60	11 11 11 11	0.002	0.23
60 - 65	и и и и	0.002	Trace
65 - 70	11 11 11 11	0.022	0.09
70 - 74	11 tt 11 tt		
74 - 80	Old Workings - Void	0.002	0.17
80 - 83	II II II	16.0	
83 - 90	11 11 11		
90 - 95	Silicious Zone, black sooty mineral		
95 - 100	End of Hole 95' Rods Broken Off	0.002	0.93
100 - 105	2nd of hote 33 Rods Broken Off		
105 - 110			
110 - 115			11.74
115 - 120			
20 - 125			
.30 - 135			
35 - 140			

		Ass	say
Foot age	DESCRIPTION	Au oz/ton	Ay oz/ton
0 - 5	Rhyolite - altered, limonitic stain	0.014	0.42
5 - 10	0 - 10'	0.002	0.11
10 - 15	и и и	0.022	0.36
15 - 20	и и и	0.010	0.71
20 - 25	Quartz Zone - Light limonitic stain	0.042	5.06
25 - 30	и и и и	0.032	5 02
30 - 35	n n n	0.002	1.02
35 - 40	Rhyolite - altered with minor	0.002	0.37
40 - 45	limonite stain	0.008	0.45
45 - 50	11 11 11 11	0.002	0.39
50 - 55	Rhyolite - altered with limonite	0.002	0.44
55 - 60	and manganese	0.002	0.48
60 - 63	11 11 11 11	0.002	0.94
63 - 68	Old Workings		
68 - 75	Rhyolite - highly silicious	0.026	1.78 1.47
75 - 80	и и и	0.018	0.97
80 - 85	Andesite - fresh .	0.006	0.47
85 - 90	End of Hole 85'		
90 - 95			
95 - 100			
100 - 105			
105 - 110			
110 - 115			
115 - 120			
120 - 125			
125 - 130			
130 - 135			
135 - 140			

		Assa	Υ
Footage	DESCRIPTION	Au oz/ton	Ag oz/ton
0 - 5	Rhyolite - silicious with heavy	0.002	0.22
5 - 10	limonite staining	0.002	0.21
10 - 15	Rhyolite - altered light limonite	0.012	0.04
15 - 20	staining	0.028	1.03
20 - 25	Quartz Rich Zone	0.018	1.12
25 - 30	11 11	0.064	7.38
30 - 35	II II	0.052	5.19
35 - 40	Rhyolite - altered with moderate	0.034	1.88
40 - 45	limonitic staining	0.002	0.64
45 - 50	11 11 11 11 11	0.002	0.79
50 - 55	и и и и и	0.002	0.61
55 - 60	11 11 11 11	0.012	0.55
60 - 65		0.002	0.49
65 - 70	и и и и	0.002	0.57
70 - 75	11 11 11 11 11	0.008	0.73
75 - 80	u u u u u u	0.050	6.24
80 - 85	Rhyolite - silicious	0.074	4.46
85 - 90	tt tt	0.045	2.69
90 - 95	11 11	0.012	0.93
95 - 100	Andesite - with heavy manganese	0.020	1.03
100 - 105	stain 95 - 105'	0.004 0.020	0.69 0.67
105 - 110	11 11 11 11	0.002 0.002	0.43
110 - 115	11 11 11	0.002	0.04
115 - 120	End of Hole 115'		
120 - 125			
125 - 130			
130 - 135			
135 - 140			

		Assay			
Footage DESCRIPTION	Au oz/tor	Ag oz/ton			
0 - 5 Rhyolite altered	0.010	Trace			
5 - 10 " "	0.018	0.06			
10 - 15 Rhyolite - very silicious, wi	th 0.002	0.14			
15 - 20 limonitic staining	0.006	0.61			
20 - 25 " " " "	0.014	1.16			
25 - 30 Rhyolite - with light limonit	e 0.020	0.82			
30 - 35 stain 25 - 35'	0.014	0.69			
35 - 40 Rhyolite - heavy stain 35 -	50' 0.002	0.55			
40 - 45 " " "	0.008	0.47			
45 - 50 " " " "	0.026	0.86			
50 - 57 Void - old workings					
57 - 60	0.326	13.06			
60 - 65 Quartz Zone - with light mang	anese and 0.060	5.26			
65 - 70 limonitic staining	0.002	3.23			
70 - 71 Andesite	0.012	6.66			
75 - 80 End of Hole 71'					
80 - 85 To be Deepened					
85 - 90					
90 - 95					
95 - 100					
100 - 105					
105 - 110					
110 - 115					
115 - 120					
20 - 125					
125 - 130					
130 - 135					
135 - 140					

		Assay		
Footage	DESCRIPTION	Au oz/ton	Ag oz/ton	
0 - 5	Rhyolite with heavy limonite stain	0.012	0.70	
5 - 10	10 - 20, 65 - 80	0.020	2.04	
10 - 15	и и п	0.022	1.29	
15 - 20	и и и	0.004	0.36	
20 - 25	и и и	0.002	0.81	
25 - 30	n u u	0.104	0.41	
30 - 35	n n	0.006	Trace	
35 - 40	11 11	0.006	0.03	
40 - 45	Rhyolite, sooty black mineral 45 - 60'	0.010	0.32	
45 - 50	rr .	0.008	Trace	
50 - 55	п	0.020	5.65	
55 - 60	··	0.008	0.53	
60 - 65	tt .	0.004	0.37	
65 - 70	**	0.002	0.52	
70 - 75	"	0.008	0.46	
75 - 80	"	0.006	0.08	
80 - 85	" very silicious	0.012	2.88	
85 - 90	ti .	0.008	0.38	
90 - 95	Quartz Rich Zone	0.024	2.32	
95 - 100) II II II	0.020	1.64	
100 - 105	Andesite, very silicious	0.010	0.96	
105 - 110) 11	0.002	0.04	
110 - 115	End of Hole 110'			
115 - 120				
120 - 125				
125 - 130				
130 - 135				
135 - 140				

	[20] - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Ass	say
Footage	DESCRIPTION	Au oz/ton	Ag oz/ton
0 - 5	Rhyolite altered with limonitic staining	0.014	Trace
5 - 10	п п п	0.002	Trace
10 - 15	. " " " "	0.002	Trace
15 - 20	п п п	0.002	Trace
20 - 25	п п п	0.018	Trace
25 - 30	11 11 11	0.024	Trace
30 - 35	п п п	0.002	0.15
35 - 40	" heavy limonitic stain	0.022	0.12
40 - 45	11 11 11	0.016	0.32
45 - 50	и и и	0.008	Trace
50 - 55	" silicious " "	0.004	0.11
55 - 60	и и и и	0.039	4.72
60 - 65	"	0.022	2.14
65 - 70	"	0.044	0.34
70 - 75	II .	0.022	0.23
75 - 80	u u	0.024	0.25
80 - 85	· ·	0.010	0.06
85 - 90	· ·	0.012	Trace
90 - 95	n .	0.008	0.13
95 - 100	11	0.002	0.21
100 - 101	п	0.080	13.31
101 - 110	Void - old workings		
110 - 115	Quartz Rich Zone	0.020	1.64
115 - 120	Andesite - silicious with some manganese	0.002	0.51
120 - 125	staining	0.048	2.39
125 - 130	п п п	0.002	0.75
130 - 135	End of Hole 130'		
135 - 140			

		Assay		
Footage	DESCRIPTION	Au oz/ton	Ag oz/ton	
	hyolite - altered	0.002	Trace	
5 - 10	n n	0.002	Trace	
10 - 15 RI	hyolite, Kaolinized 15 - 55'	n/s		
15 - 20	n n	0.014	0.05	
20 - 25	m m	0.002	Trace	
25 - 30	n n	0.002	Trace	
30 - 35	11	0.002	Trace	
35 - 40	11 11	0.002	Trace	
40 - 45	m m	0.006	Trace	
45 - 50	11 11	0.030	0.01	
50 - 55	" Silicious Zone 66 - 60	0.002	Trace	
55 - 60	heavy limonite stain	0.010	0.92	
60 - 65	n ' n n	0.004	1.68	
65 - 70	н н н	0.018	4.73	
70 - 75	n, n n	0.012	0.27	
75 - 80	n n n	0.042	0.90	
80 - 85	n n n	0.020	0.98	
85 - 90	n n n	0.018	0.32	
90 - 92	11 11	0.008	0.06	
92 - 100 V	oid - old workings			
100 - 103			XII.	
105 - 110	End of Hole 103' - Rods broke			
110 - 115				
115 - 120				
120 - 125				
125 - 130				
130 - 135				
135 - 140				

			Assay				
Foota	Cootage DESCRIPTION		Au oz/ton	Ag oz/ton			
0 -	5	Rhyolite	- altered	Heavy	Kaolin	0.002	Trace
5 -	10	11		"	"	0.002	Trace
10 -	15	"	11			0.002	Trace
15 -	20	11	"			0.002	Trace
20 -	25	"	"			0.002	0.02
25 -	30	"	n			0.002	Trace
30 -	35	11	11	Heavy	limonite stain	0.002	0.08
35 -	40	"	"			0.002	Trace
40 -	45	11		Silic	ious Zone	0.002	Trace
45 -	50	11	11			0.016	Trace
50 -	55	u	11	or and a		0.012	Trace
55 -	60	11	11	Heavy	Kaolin	0.010	0.12
60 -	75	Rhyolite	- altered	Heavy	limonite and	0.004) 0.010	0.81) 1.6
8		mang	anese stai	n		0.016)	2.50)
		a. , 50					
75 -	80	11				0.010	0.26
80 -	85		Silicio	ous		0.002	0.38
85 -	90	i.	33			0.012	0.79
90	95		Silicio	ous		0.006	1.24
95 -	100	"	11		*	0.008	1.05
100 -	105	Andesite				0.002	0.26
105 -	106	u ·				0.002	Trace
110 -	115		End of Hol	e 106'			
115 -	120		18 2		3 2 4		
120 -	125						
125 -	130	le de la companya de					
130 -	135		8				1
135 -	140						

Footage DESCRIPTION		say
0 - 5 Rhyolite - Kaolinized 0 - 80'	0.002	0.14
5 - 10 minor limonite staining	0.002	0.20
10 - 15 " "	0.002	0.19
15 - 20	0.002	0.19
20 - 25 " "	0.002	
25 - 30	0.002	0.17
30 - 35 " "	0.002	0.16
35 - 40	0.002	0.14
40 - 45 " "	0.002	0.14
45 - 50		0.09
50 - 55 " " "	0.024	0.16
55 - 60	0.002	0 14
60 - 65 " "	0.002	0.14
	0.024	0.15
65 - 70	0.002	0.20
70 - 75 "	0.002	Trace
75 - 80 "	0.002	Trace
80 - 85 Rhyolite - heavy limonitic stair	0.002	0.89
85 - 90 " " "	0.002	0.32
90 - 95 " " "	0.006	3.06
95 - 100 " " "	0.004	0.39
100 - 105 " " Silicious	0.014	0.62
105 - 110 " " "	0.018	1.76
110 - 115 " " "	0.020	2.33
115 - 120 . " " "	0.030	3.53
20 - 125 " " "	0.457	44.37
25 - 130 " " "	0.080	9.10
.30 - 135 " " "	0.034	2.35
.35 - 140 " " "	0.044	2.75
40 - 145 " " " "	0.002	1.21
45 - 150 Quartz Rich Zone	0.032	1.41
50 - 155 Andesite	0.040	0.91
55 - 160 End of Hole 155'		0.31

To be Deepened

		Ass	
Footage	DESCRIPTION	Au oz/ton	Ag oz/to
0 - 5	Rhyolite - Altered	0.002	0.20
5 - 10	II II	0.002	0.23
10 - 15	" Chalcedony 10 - 25	0.008	0.20
15 - 20	11 11 11	0.012	1.82
20 - 25	и и и	0.004	0.93
25 - 30	п	0.002	0.15
30 - 35	n n	0.002	0.07
35 - 40	п	0.002	0.02
40 - 45	n n	0.008	0.15
45 - 50	" heavy limonite stain	0.004	0.20
50 - 55	11 11 11	0.010	1.37
55 - 60	и и и	n/s	
60 - 65	" " " "	0.018	4.58
65 - 70	" Silicious	0.008	0.70
70 - 75	11 11 11	0.012	1.84
75 - 80	11 11	0.008	0.88
80 - 85	11 11 11	0.022	1.28
85 - 90		0.026	3.35
90 - 95	п п	0.070	18.05
95 - 100	Andesite	0.006	0.96
100 - 105	End of Hole 100'		
105 - 110			
110 - 115	To be Deepened		
15 - 120			
20 - 125			
25 - 130			
.30 - 135			
35 - 140			
40 - 145			

Footage DESCRIPTION		say
0 - 5 Rhyolite - Heavy Kaolin	Au oz/ton	Ag oz/to
5 - 10 " " "	0.004	0.13
10 - 15	0.002	0.13
15 - 20	0.004	0.15
20 - 25	0.002	0.14
25 - 30	0.006	0.12
30 - 35	0.002	0.09
35 - 40	0.002	0.19
40 - 45	0.008	0.54
Limonitic Staining	0.004	0.22
Heavy Kaolin	0.006	0.14
	. 0.002	0.11
55 - 60 " " " "	0.004	0.13
60 - 65 " " " "	0.006	0.10
65 - 70 " " " "	0.010	0.22
70 - 75 Rhyolite Limonite staining	0.002	0.44
75 - 80	0.004	0.25
80 - 85 " " "	0.009	0.58
85 - 90	0.002	0.73
90 - 95 " " "	0.020	0.39
95 - 100	0.002	0.20
100 - 105 " " "	0.008	0.36
105 - 110	0.004	0.22
110 - 115 " Silicious	0.002	0.29
115 - 120	0.006	0.34
20 - 125 " " "	0.020	0.37
125 - 130 " Silicious	0.024	2.22
130 - 135	0.038	6.20
135 - 140 Void, Old Working		
40 - 145 Quartz Rich Zone Minor andesite	n/s	n/s
.45 - 150 " "	0.008	3.53
.50 - 155 " " "	0.036	4.25
55 - 160 End of Hole 155'	0.010	4.37
1010 133		

Should be deepened!

Footage DESCRIPTION	Au oz/ton	say
0 - 5 Rhyolite - heavy Kaolin	0.002	Ag oz/tor
5 - 10 slight limonitic stain	0.002	0.06
10 - 15 " " "	0.002	
15 - 20	0.002	0.19
20 - 25 " " "	0.002	0.12
25 - 30		0.14
30 - 35 " " "	0.002	0.14
35 - 40	0.002	0.12
40 - 45 " " " ".	0.002	0.11
45 - 50	0.002	0.17
50 - 55 " " "	0.002	0.15
55 - 60	0.002	0.15
60 - 65 " " "	0.002	0.15
65 - 70	0.002	0.14
70 - 75	0.006	0.16
75 - 80	0.008	0.14
20 05	0.002	0.12
85 - 90 heavy limonitic	0.002	0.18
stain, silicious	0.002	0.45
90 - 95 90 - 100'	0.002	1.19
95 - 100 "	0.006	0.48
100 - 105 Rhyolite - heavy to moderate	0.008	0.55
105 - 110 limonitic staining	0.002	0.71
110 - 115 " silicious 110 - 120	0.008	
115 - 120	0.002	0.62
120 - 125 "	0.002	2.40
125 - 130	0.002	2.59
130 - 135	0.012	1.68
135 - 140		1.66
140 - 143 Rhyolite " " "	0.094	5.69
143 - 150 Void, old workings	0.018	4.32
150 - 152 " "	n/s	
152 - 155 Quartz Rich Zone	n/s	
155 - 160 " " "	0.112	9.65
.60 - 165 " " "	0.042	5.03
End of Hole 165'	0.018	2.62

End of Hole 165'
Should be Deepened

	Assay		
Footage DESCRIPTION	Au oz/ton	Ag oz/ton	
0 - 5 Rhyolite - heavy Kaolin	0.022	0.23	
5 - 10 light limonitic	0.002	0.11	
10 - 15 stain 0 - 15	0.002	0.15	
15 - 20 " "	0.002	0.07	
20 - 25	0.002	0.08	
25 - 30	0.002	0.13	
30 - 35 " "	0.002	0.38	
35 - 40	0.002	0.22	
40 - 45	0.010	0.34	
45 - 50 " "	0.002	0.30	
50 - 55	0.002	0.37	
55 - 60 heavy limonitic stain	0.012	0.10	
60 - 65 " "	0.016	0.40	
65 - 70 " "	0.002	0.16	
70 - 75 Rhyolite - moderate limonitic	0.018	0.61	
75 - 80 stain, silicious 75 - 80'	n/s		
80 - 85 "	0.002	0.41	
85 - 90 "	0.008	1.32	
90 - 91 "	0.002	0.08	
91 - 100 Void - old workings	n/s		
100 - 104 " "	n/s		
104 - 105 Quartz Rich Zone	0.032	8.59	
105 - 110 Andesite	0.002	1.11	
110 - 115 "	0.022	1.02	
120 - 125 End of hole 115'			
125 - 130 Should be Deepened			
130 - 135			
135 - 140			

		Assay		
Footage DESCRIPTION	Au oz/ton	Ag oz/ton		
0 - 5 Rhyolite - moderately Kaolinized	0.002	0.17		
5 - 10 with moderate to heavy	0.002	0.15		
10 - 15 limonitic staining	0.002	0.15		
15 - 20	0.002	0.09		
20 - 25 " "	0.002	0.34		
25 - 30	0.002	0.35		
30 - 35 " "	0.002	0.18		
35 - 40	0.002	0.22		
40 - 45 " "	0.002	0.18		
45 - 50	0.002	0.19		
50 - 55 " "	0.010	0.18		
55 - 60	0.002	0.21		
60 - 65 "	. 0.002	0.22		
65 - 70	0.002	0.19		
70 - 75 " "	0.002	0.19		
75 - 80	0.002	0.20		
80 - 85 " "	0.002	0.20		
85 - 90	0.002	0.32		
90 - 95 " "	0.002	0.07		
95 - 100	0.002	0.20		
100 - 105 " "	0.002	0.25		
105 - 110 " " "	0.010	0.28		
110 - 115 Rhyolite - heavy limonitic stain	0.008	0.61		
115 - 120 . 125 - 135'	0.002	0.66		
120 - 125 " "	0.002	1.56		
125 - 130 (0.020	3.51		
130 - 135 " "	0.008	3.52		
135 - 140 Quartz Rich Zone	0.006	1.01		
140 - 145 Rhyolite - moderate limonitic	0.024	3.21		
145 - 150 stain	0.030	0.96		
150 - 155 " "	0.002	0.61		
155 - 160 Andesite	0.010	0.54		

End of Hole 160'

				Assay		
Foo	ta	ge		DESCRIPTION	Au oz/ton	Ag oz/ton
0	-	5	Rhyolite -	heavy Kaolin with	0.002	0.21
5	_	10		moderate to heavy limonitic	0.002	0.27
10	-	15		and manganese stain	0.002	0.18
15	-	20	u u	11	0.002	0.19
20	-	25			0.010	0.20
25	-	30	"	11	0.010	0.23
30	-	35			0.006	0.25
35	-	40	11	11 11	0.002	0.18
40	-	45			0.006	0.18
45	-	50	11	11 11	0.002	0.27
50	-	55			0.002	0.29
55	-	60	n .	n n	0.002	0.27
60	-	62	"	11 11	0.010	0.47
62	-	67	Void - old	workings	n/s	
6.7		70	Rhyolite -	quartz rich with	0.064	7.51
70	_	75		manganese stain	0.008	0.51
75	-	80	Andesite,	altered	0.002	1.61
80	-	85	· · ·	II .	0.016 0.018	0.045
85	-	90	11			
95	-	100	End	of Hole 90'		
100	-	105				
105	_	110	,			
110	-	115				
115	-	120				
120	-	125				
125	_	130	(
130	-	135				
135	_	140				

			Assay	
Footage	DESCRIPTION	Au oz/ton	Ag oz/ton	
0 - 5 Rhyolite - heav	ily Kaolinized	0.002	0.13	
5 - 10 with	moderate limonitic	0.002	0.13	
10 - 15 stai	ning	0.002	0.11	
15 - 20 "		0.018	0.19	
20 - 25		0.006	0.13	
25 - 30 ""		0.002	0.22	
30 - 35		0.002	0.27	
35 - 40 "		0.002	0.27	
40 - 45		0.010	0.21	
45 - 50		0.012	0.17	
50 - 55 " "		0.010	0.24	
55 - 60		0.008	0.26	
60 - 65 " "		0.018	1.08	
65 - 70		0.002	0.24	
70 - 75 "	•	0.002	0.21	
75 - 80		0.002	0.29	
80 - 85 "	1	0.008	0.32	
85 - 90		0.002	0.27	
90 - 95 "	1	0.006	0.42	
95 - 100 Quartz Rich Zone	e	0.028	3.66	
100 - 105 " "		0.018	0.65	
105 - 110 Rhyolite - sili	cious with moderate	0.010	0.43	
110 - 115 limos	nitic staining	0.014	0.58	
115 - 120 "	"	0.010	0.98	
120 - 125 Rhyolite - slig	ntly altered	0.002	0.76	
125 - 130 (with	moderate limonitic	0.002	0.66	
130 - 135 stair	ı	0.002	0.50	
	ole 135'			

	DESCRIPTION	Assa	Assay	
Footage		Au oz/ton	Ag oz/ton	
0 - 5	Rhyolite - Kaolinized, silicious	0.002	0.21	
5 - 10	with heavy limonitic	0.002	0.39	
10 - 15	staining	0.002	0.22	
15 - 20	n n	0.002	0.31	
20 - 25		0.002	0.19	
25 - 30	п	0.002	0.30	
30 - 35		0.006	4.61	
35 - 40	" Silicious Zone	0.050) 0.066) 0.058	16.26) 21.02) 18.6	
40 - 45	Andesite, silicious - may be	0.038	4.48	
45 - 50	a dike	0.044	0.86	
50 - 55	и и и ,	0.012	1.04	
55 - 60	Rhyolite - moderate limonitic	0.014	0.79	
60 - 65	stain	0.014	0.82	
65 - 70	" silicious 65 - 75'	0.016	0.53	
70 - 75	11	0.006	0.41	
75 - 80	End of Hole 75'			
80 - 85				
85 - 90				
90 - 95				
95 - 100				
100 - 105				
105 - 110				
110 - 115				
115 - 120				
120 - 125				
125 - 130	(
130 - 135				
135 - 140				

	Ass	Assay	
Footage DESCRIPTION	Au oz/ton	Ag oz/tor	
0 - 5 Rhyolite - heavy Kaolin	0.002	0.21	
5 - 10	0.002	0.21	
10 - 15 " " "	0.002	0.22	
15 - 20	0.002	0.26	
20 - 25 " " " "	0.002	0.25	
25 - 30	0.002	0.23	
30 - 35 " " "	0.002	0.27	
35 - 40 heavy iron stain	0.002	0.90	
40 - 45 35 - 45'	0.006	4.87	
45 - 50 Quartz Rich Zone	0.034	1.27	
50 - 55 " "	0.068	3.23	
55 - 60 Rhyolite - silicious with	0.008	1.43	
60 - 65 moderate to heavy	0.014	1.14	
65 - 70 limonitic staining	0.008	0.83	
70 - 75 " " "	0.012	0.58	
75 - 80	0.008	1.25	
80 - 85 " " "	.0.006	0.83	
85 - 90	0.004	0.68	
90 - 95 " " "	0.002	0.61	
95 - 100	0.002	0.83	
100 - 105 Andesite, silicious	0.002	0.50	
105 - 110 " "	0.006	0.58	
110 - 115 End of Hole 110'			
15 - 120			
20 - 125			
.25 - 130 (
.30 - 135			
.35 - 140			

			Assay	
Footage	DESCRIPTION	Au oz/ton	Ag oz/ton	
0 - 5	Rhyolite - silicious	0.004	0.43	
5 - 1	0 '' '' .	0.002	0.36	
10 - 1	5 " heavy limonitic stain	0.008	0.46	
15 - 2	0 10 - 35'	0.002	0.47	
20 - 2	heavy Kaolin 35 - 40	0.002	0.49	
25 - 3	0	0.002	0.74	
30 - 3	5 "	0.018	4.82	
35 - 4	slightly altered 40 - 75	0.002	1.61	
40 - 4	with heavy limonitic staining	0.042	3.67	
45 - 5	0	0.088	5.09	
50 - 5	5 "	.0.010	2.38	
55 - 6		0.028	3.83	
60 - 6	5 "	0.016	0.97	
65 - 7		0.002	1.66	
70 - 7	5 "	0.010	3.01	
75 - 8	Andesite	0.002	2.66	
80 - 8		0.006	1.33	
85 - 9)	0.004	1.02	
90 - 9		0.006	0.97	
95 - 9	11	0.004	1.06	
100 - 10	End of Hole 97'			
105 - 11	.0			
110 - 11	.5			
115 - 12	0			
120 - 12	5			
125 - 13	0 (
130 - 13				
135 - 14	0			

Appendix D

Map		Scale
U.S.G.S.	Bulletin 83 Plate 5	as shown
Plan No. 3	Claim Map	1" = 300
Plan No. 4	South Assay Plan	1" = 20'
Plan No. 5	Section 4+20N	1" = 20'
Plan No. 6	Section 0+70N	1" = 20'
Plan No. 7	Section 0+25S	1" = 20'
Plan No. 8	Section 0+90S	1" = 20'
Plan No. 9	Section 1+60S	1" = 20'
Plan No. 10	Section 2+65S	1" = 20'
Plan No. 11	Section 3+40S	1" = 20'
Plan No. 12	Section 4+40S	1" = 20'
Plan No. 13	Section 5+05S	1" = 20'
Plan No. 14	Section 5+70S	1" = 20'
Plan No. 15	Section 6+55S	1" = 20'
Plan No. 16	Section 7+65S	1" = 20'
Plan No. 17	Section 8+55S	1" = 20'
Plan No. 18	Section 9+35S	1" = 20'