UNIVERSITY OF NEVADA

MACKAY SCHOOL OF MINES RENO, NEVADA 89507

Nevada Bureau of Mines

April 18, 1968

Mr. Roger Hope
U. S. Geological Survey
Southwestern Branch
Geologic Division
345 Middlefield Road
Menlo Park, California 94025

Dear Mr. Hope:

I have finished my field work in my thesis area and plan to graduate this June. However, I am presently employed by the Nevada Bureau of Mines and would be available to get together with you sometime this summer. Perhaps I could write you later to arrange a time in the field which would be convenient for both of us. I am very much interested in seeing more of the geology surrounding my mapping area.

I have enclosed a copy of my map, the cross sections, and xerox copies of the described sections. The column accompanying the map has the two volcanic units in reverse order, but is otherwise correct. I feel reasonably certain of the pattern of the stratigraphic units I have mapped, but less certain regarding the nature of contacts which I believe to be faults. Hopefully, a more regional approach, such as your study, may resolve some of these problems.

Thicknesses for the Devonian and Tertiary sediments are given in the enclosed sections; the Diamond Peak(?) is at least 3,500 feet and the rocks called Phosphoria by Steele (Ph.D. thesis 1959, Univ. Wash., p. 176) are as much as 5,000 feet thick. The Tertiary volcanic units are each less than 100 feet thick.

I have been corresponding with Ben Peterson and Douglas Gardner from the University of Oregon (Eugene) and understand that they have been mapping just north of my thesis area (Antelope Peak, etc.). If you are not aware of their work, this may be of interest to you.

If I can be of any further assistance, please write or come in person at any time. If you pass through Reno and have some free time I will be happy to talk with you.

Sincerely yours,

Larry J. Garside

Lary Samue

Economic Geologist

LJG:hm

Stratigraphic Section of Tertiary Sediments

Measured 1 1/2 miles north of Sulphur Hot Spring

Fault contact with Diamond Peak(?) Formation

Thickness in Feet			
Unit	To Base	Unit No.	
50	5252	24	Red and tan weathering coarse grained sand-
			stone with angular and sub-angular grains of
			quartz and red chert.
55	5202	23	Reddish weathering conglomerate containing
			sub-angular to sub-rounded pebbles of
			Diamond Peak(?) conglomeritic quartzite and
			red or yellow chert. The matrix is red
			weathering, buff, medium-grained sand, and
			the pebbles range from sand-size to 2 1/2 in.
			in diameter. In some exposures, red con-
			glomeritic sandstone interbeds up to 5 in.
		te fee	thick are seen. This unit is siliceously
		akî A	cemented and often is so dense that pebbles
			will break across rather than around. The
			weathered rock surface is quite rough due to
			projecting pebbles.
35	5147	22	Fine- to very fine-grained, buff to cream
			colored, platy weathering sandstone. The
			unit is slightly calcareous and may be cemented
			with both calcite and silica. It is not so
			well cemented as the sandstones in unit 23,

Thickness in Feet
Unit
Unit To Base No.

35 5147 22

and can be broken easily. The sand grains are approximately 50 percent quartz, with the rest being mostly red and yellow chert.

A small proportion of the rock is probably in the silt-size range.

615 5112 21

Conglomerate like unit 23 but containing pebbles of a light grey or white finegrained quartzite as well as fragments of Diamond Peak(?) Formation and fine-grained chert. At 250 feet above the base of this unit it becomes much coarser, with subrounded cobbles up to 10 in by 6 in. not uncommon. In this portion pebbles and cobbles of the following are seen: light tan rhyolite with phenocrysts of biotite and feldspar, altered green rhyolite(?) with plagioclase laths, grey quartzite, Diamond Peak(?) conglomeritic quartzite, dark reddishyellow chert, and a light tan rhyolite with large quartz phenocrysts. This cobble portion continues for 200 feet and then the unit becomes less coarse, with the pebbles ranging up to 4 in. in diameter. The matrix and sand interbeds are also similar to unit 23.

Thickness	in Feet		
Unit	To Base	Unit No.	
405	4497	20	Covered interval, probably a continuation of
			the fine-grained sandstone unit below.
585	4092	19	Sandstone, similar to unit 22. This unit
			contains some conglomerate stringers 3 ft. to
			6 ft. thick which resemble unit 21.
15	3507	18	Conglomerate, similar to unit 23.
70	3492	17	Fine-grained, white, siliceously cemented
		a _/\	sandstone. This interval has an irregular,
			"knobby" weathered surface due to variations
			in cementation. Thin interbeds of red chert
			grains, and quartz sandstone form several
			covered intervals.
420	3422	16	Coarse-grained, dark red to maroon, manganese-
			and iron oxide-stained sandstone. Laminations
			of about 1/4 in. are due to variations in
			color and grain size. Much of the unit forms
* *			a covered slope, with a few more resistant
			units cropping out. The sand grains are sub-
			angular quartz and red chert. In a small
			dimension stone prospect pit it can be seen
			that the unit breaks easily into flaggy 3 to
		*	4 in. thick pieces.
371	3 002	15	Deep red to orange stained conglomerate with
			coarse sandstone layers (similar to unit 16)
			up to 3 in. thick. The matrix is coarse sand,

Thickness	in Feet		
Unit	To Base	Unit No.	
371	3002	15	and pebbles up to 1 1/4 in. are common with
			2 to 3 in. pebbles present near the upper
			contact. The pebbles are from the following
			rocks: Diamond Peak(?) quartzite, white vein
			quartz, very fine-grained, light grey quartzite,
			and rhyolite with biotite and plagioclase pheno-
	il a Xi		crysts like that found as cobbles in unit 21.
			Within one half mile this unit becomes quite
			green colored, but retains the same composition.
40	2631	14	Red and white mottled medium to coarse-grained
			sandstone. The red coloration is due to a
		E	combination of iron oxide and approximately
			40 percent red chert grains within the rock.
	913		In certain portions this rock is quite silici-
			fied and stained with manganese oxide.
105	2591	13	Conglomerate, similar to unit 15.
380	2486	12	Reddish stained, buff, medium-grained, tuff-
			aceous sandstone with a siliceous cement.
			The grains are sub-angular quartz grains.
			The lower 15 feet are well bedded and form a
			ledge, while the rest forms a more gentle
			slope.
500	2106	11	Covered interval, probably a poorly cemented
			sandstone somewhat resembling unit 12.

Thickness	in Feet	Unit	
Unit	To Base	No.	
128	1606	10	Conglomerate, similar to unit 15. Twenty feet
			from the top this unit becomes a coarse cobble
			conglomerate. Sub-rounded to sub-angular
			cobbles, especially of Diamond Peak(?) quartz-
			ite, up to 6 in. in diameter are not uncommon.
76	1478	9	Sandstone, similar to unit 14.
12	1402	8	Very silicified conglomerate, probably similar
			in composition to unit 13.
268	1390	7	Sandstone similar to unit 14.
329	1122	6	Covered interval. From float present the
		A. S	unit is believed to be a fine-grained, poorly
			cemented white sandstone.
368	793	5	Conglomerate, similar to unit 13.
278	425	4	Covered area, probably sandstone or pebbly
			sandstone.
104	147	3	Red and orange weathering, greenish white,
			fine-grained quartz sandstone composed of
			sub-angular grains.
5	43	2	Conglomerate, similar to unit 13. This unit
			also contains some angular lithic fragments
			that resemble the sandstone directly below.
38	38	1	Red stained, light grey to white, porcelaneous,
			fine-grained sandstone.

Boundary fault.

QUATERNARY DEPOSITS

The Quaternary deposits of the thesis area were divided into Quaternary Alluvium and older alluvium. The older alluvium consists of poorly sorted gravels, sands, and soils which are being incised by present drainage systems. The deposits of these streams and the younger soil cover are the Quaternary Alluvium.

Alluvial deposits are rather widespread in the area, but they were mapped only where the underlying rocks did not crop out. In areas where the underlying formations were known but alluvium covered most of the exposures, actual outcrops were shown on the map by fine dotted lines and an increased color intensity.

Bishop Canyon Section of Devonian

Apparently conformable covered contact with the Diamond Peak(?) Formation.

Thickness	in	Feet	
INTERNICOS	7.11	ICCL	
			Unit
Unit	To	Base	No.

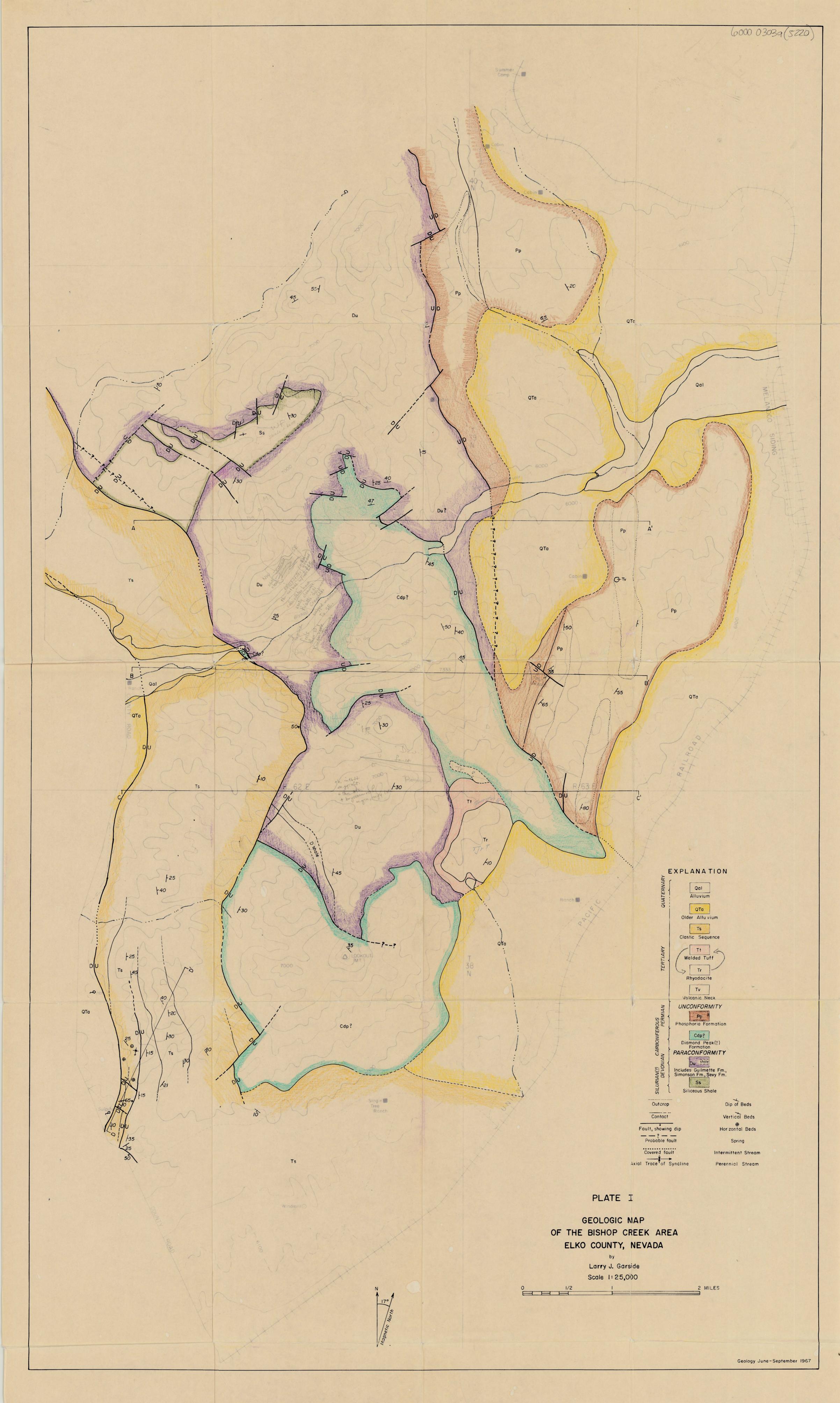
3851

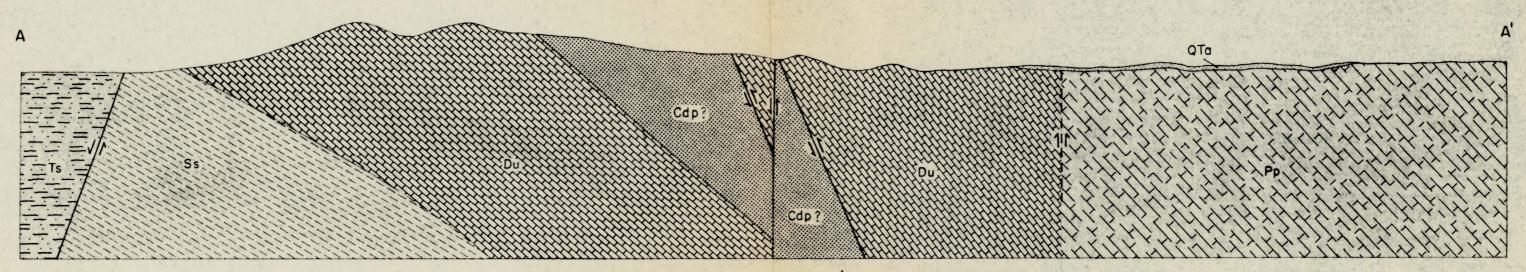
1088

Grey, light purple, or olive weathering black or very dark grey limestone. This unit has 2 to 3 in. beds which alternate with beds 1 foot or thicker. The upper 60 feet is almost exclusively heavy bedded; below this, thick- and thin-bedded intervals are nearly equal. The thinly bedded intervals are black, somewhat sheared and broken calcilutites or calcisiltites. The bottom surfaces of some of these calcilutite beds sometimes exhibit sole markings which are apparently load casts. The thicker units are medium to coarse calcarenites with 5 to 20 percent sub-rounded clear quartz or black chert grains. Some beds may approach calcareous sandstone, with the resistant sand grains distinctively protruding from weathered surfaces. The entire unit is somewhat veined with white calcite.

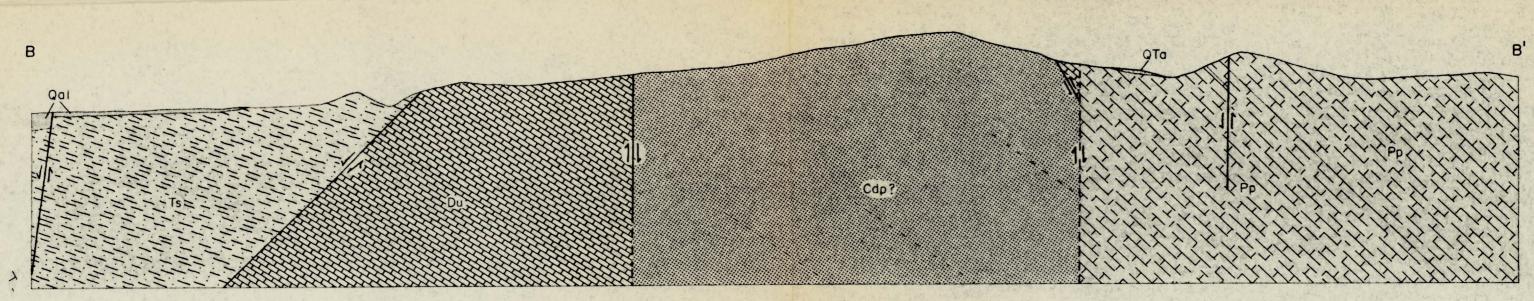
1011 2763 5

Dark grey, massive calcilutite or calcisiltite which contains several 3 foot intervals
of thinly laminated calcilutite about 560
feet from the base. A few completely recrystallized Favosites sp. are seen approximately

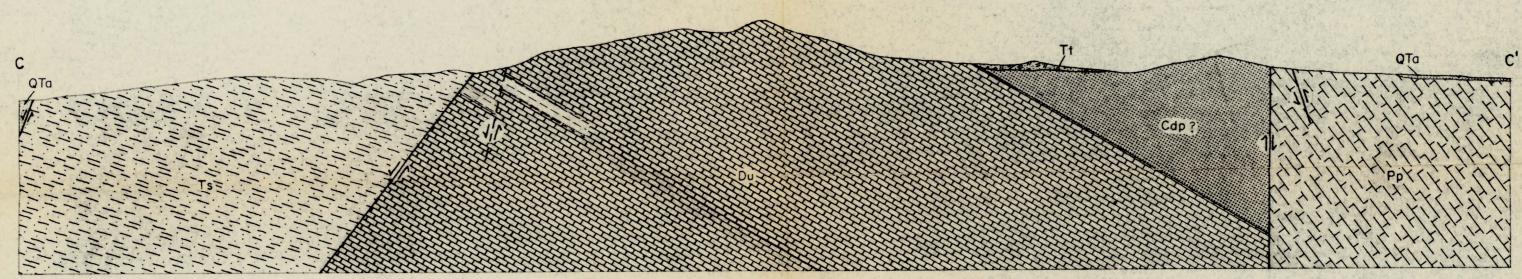

Thickness	in Feet	** *.	
Unit	To Base	Unit No.	
1011	2763	5	400 feet from the base. The entire unit has
			an extremely rough weathered surface, pro-
			duced by small, sharp protrusions of rock.
			Randomly orientated 1/8 to 1/2 in. white
			calcite veins occur every few inches through-
	3.00		out the unit.
66	1752	4	Very dark grey and black weathering, black,
			dense calcilutite which is thin-bedded in 2
			to 3 in. beds with 6 to 12 in. beds inter-
			spersed. Some white calcite veins are pre-
			sent, many being parallel to bedding.
86	1686	3	Similar to unit 5, but containing also several
			beds of "spagetti rock." (Cladopora sp.)
253	1600	2	Thin, irregular bedded calcilutite similar
			to unit 4, but containing numerous thin fossil-
			iferous beds. At approximately 175 feet from
	*		the bottom, specimens of Atrypa sp., Cladopora
			sp. (Coenites), and numerous broken brachio-
×.			pods and chrinoid fragments were collected.
			Stringocephalus sp. may be present in these
			fragments but no identification can be made.
1347	1347	1	Very massive, dense, light grey weathering,
			ledge-forming, dolomitic, dark grey limestone.
			The rock has a medium-crystalline, sugary, re-
			crystallized texture, and is heavy bedded, with


Thickness in Feet
Unit
Unit To Base No.

1347 1347 1


every 10 to 15 feet. Commonly, thin laminations (less than 1/8 in.) are found directly above distinctive bedding surfaces in the lower part of this unit. Weathered rock surfaces present a black, broken appearance.

Boundary fault.



SECTION A - A'

SECTION B-B'

SECTION C-C'

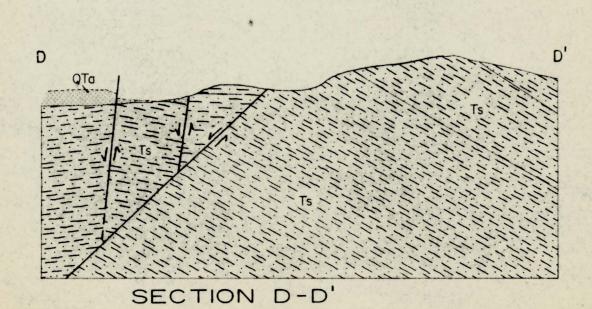
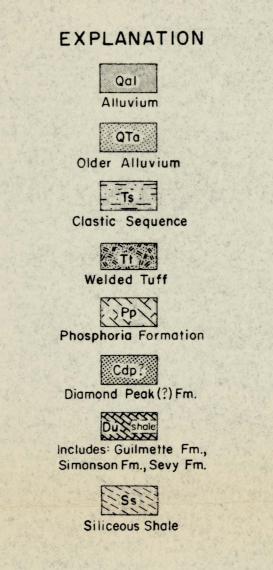
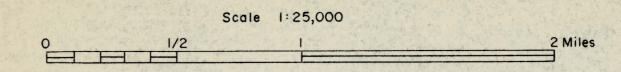




PLATE II

CROSS SECTIONS
OF THE BISHOP CREEK AREA
ELKO COUNTY, NEVADA

