PRELIMINARY REPORT

WEEPAH LEAD SILVER DEPOSITS

THREE METALS MINING PROPERTY.

Esmeralda County, Nevada

By:
JACK G. DICK,
Mining Consultant
PRELIMINARY REPORT
on the
WEEPAH LEAD COPPER PROPERTY
THREE METALS MINE.

JACK G. DICK,
10 April, 1965

INTRODUCTION:
The mineral deposits described in this report is located in the Lone Mountain Mining District, Esmeralda County, Nevada.

LOCATION AND ACCESSIBILITY:
The property is located about 3 miles southeast of the WEEPAH Gold Mine. There is a well maintained road as far as the WEEPAH mine; thence west on an old mine road for 2½ miles to an old mine camp; thence south 1½ mile, only accessible to four wheel drive vehicle at the present time. (See Encl. #1).

TOPOGRAPHY AND CLIMATE:
This property is about 5,000 feet in elevation, and lays in a small canyon that runs east and west; paralleling the Great Salt Marsh.
The climate is generally excellent for year around mining; and very little snow lies in this area; and then only for a day or two.
WATER:

The nearest water is the Hot Springs on the Northeast corner of the Salt Marsh. This is about 5 miles from the property. Any well drilled near the Salt Marsh can produce sufficient water for drilling and milling. Drinking water would have to be hauled in from a distance of 18 miles.

GEOLGY AND MINERALIZATION:

Locally the geology consists of Granodiorite and Pre-Cambrian lime; with intrusions of A phophry (unclassified); but undoubtedly of highly altered monzonite.

The known mineralization occurs in the lime. The indications are that there are two types of ore deposits:

1. A preplacement ore zone, and,
2. A secondary enrichment ore zone.

This is basically a large Lime Replacement ore deposit. This is clearly shown in the 40 foot incline shaft near the center of mineralization; as the lime has been completely replaced by silica and minerals. The underground matter has been shattered and altered; with evidence of dissemination as the ores at this depth are only pods and stringers that have been trapped in the unaltered silica; however, there are sufficient numbers of these to carry the entire ground mass as a good grade of milling rock.
On the surface the alteration came through along weekend zones in the structure, giving the appearance of vein type deposits—and of course this is untrue. It was in these zone that mining was done near the surface. High grade lead and copper ores were mined and carried out by mule-pack.

The first thing to disprove the general appearance of vein type structures is the areas of unaltered lime. By looking at the base which shows partly digested lime from magma solutions; then only a few feet in depth comes complete replacement.

Because of the intrusions of propyry around the edge of the zone it is quite possible that the lime is only the hood of a stock. If this opinion is true; then the potential of a disseminated propyry copper deposit is even greater.

But in any event, there will be a secondary enrichment zone because of the dissemination, and the fact that what copper ores that are left near the surface are of a very high grade; also, the main copper mineralization is Cuprite. Further evidence is a section of the ore zone which is covered with an iron gossen with copper sulphides still intact. Also at a depth most all the copper ores are oxidized, and show clearevidence of leaching. In most areas of high alteration, the copper has completely leached out in its downward migration. It is apparent that most of the silver ores were taken with the copper.
So the secondary enrichment zone will be of a high grade copper-silver ore.

The mineralized zone as shown by surface indications is about 800 feet long and 700 feet wide.

S A M P L I N G

1. Base Lead (Select)
 Silver 8 oz
 Cu .30
 Pb .51
 Value per ton $147.00

2. Base Copper (Select)
 Silver 18 oz
 Cu 30
 Value per ton 199.84

3. Channel cut underground,
 10 foot depth
 Silver 1.5 oz
 Pb 10.30 %
 Value per ton 37.23

4. Channel cut 40 feet in depth
 Silver 2.50 oz
 Pb 18.40 %
 Cu .30 %
 Value per ton 51.52

5. Channel cut 40 feet in depth
 Silver .87 oz
 Pb .05 %
 Cu 4.40 %
 Value per ton 15.22

* No 4. Sample was cut taking all replacement material, and representing about 20 feet.

No. 5. Sample was cut, avoiding any ores that could be seen. This was to determine the poorest ground mass to see if it was of millgrade.

Further surface sampling should be done; and a program of Geo-Chem could be run to determine the boundaries of the ore deposits.
RECOMMENDED DEVELOPMENT:

About 3 miles of new road will have to be built; and some drilling and shooting may be necessary.

A large cut made across the entire zone. All of this will require drilling and shooting. This cut will also aid in the evaluation of the property; as it will be necessary to make drill stations, and the cut can be used for both.

For the first phase a minimum of three (3) drill holes should be made; one (1) core, and (2) air. The depth is undetermined; but should be at least 600 feet for each one.

The possibility of large tonnages of good grade milling ores that could be taken from an open pit operation is conceivable, due to the type of structure and type of mineralization.

Without drilling, an estimate of ore tonnage is difficult to make; however, if the ore goes to a depth of 600 feet there would be in excess of 15 million tons. And this is very possible; and is why phase Number 2 will require a great deal of drilling in order to better block the ore zone. (See Encl. No. 2.)

SUMMARY:

This is an extremely good Geological bet. Very seldom is there found the evidence so clearly defined to emulate a large ore zone, such as is shown on this property.
The amount of money needed to develop this property would be low in comparison to most deposits of this kind. Also, there could be sufficient high grade ores uncovered during the dozer work that could pay the entire cost of development.

I highly recommend this property.

JACK G. DICK,
Mining Consultant.