DISTRICT: Rosebud

DST. NO: 4010

COUNTY: Pershing

TITLE: Rosebud Drill Hole File - Hole No D-186-98

AUTHOR: K. Allen, B. Morris, S. King

DATE OF DOC(S): 1998

MULI-DIST?: No

Additional Dist. Nos:

QUAD NAME: Sulphur 7.5'

R.M.D. NAME: Rosebud Mine, Hecla Mining Co, Rosebud Project Rosebud Mining Co, LLC

COMMODITY: gold, silver

NOTES: drill logs, assay, geology, photographs, receipts, total depth 196', hand written notes down hole camera images

Keep docs at about 250 pages if no oversized maps attached (for every 1 oversized page (+11x17) with text reduce the amount of pages by ~25)

Revised: 1/22/08
<table>
<thead>
<tr>
<th>TH.</th>
<th>LITHOLOGY</th>
<th>FT</th>
<th>GRAPHIC LOG</th>
<th>STRUCTURE</th>
<th>ALTERATION AND MINERALIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 50</td>
<td>Felsic Porphy</td>
<td>5</td>
<td></td>
<td>5-7.5' 2.3' wide</td>
<td>D-22.5 Mod sulf or</td>
</tr>
<tr>
<td></td>
<td>Lt Gry Fy equi, angular</td>
<td>10</td>
<td></td>
<td>Gry silica healed breccia</td>
<td>Pyrite vug, sulf soaked</td>
</tr>
<tr>
<td></td>
<td>MtX W.1.5m dia Wh</td>
<td>15</td>
<td></td>
<td>Vac, mod silic. shears</td>
<td>Patches, blebs, Wh healed,</td>
</tr>
<tr>
<td></td>
<td>magmatic adkbel - epidote</td>
<td>20</td>
<td></td>
<td></td>
<td>w/wh clay replacement</td>
</tr>
<tr>
<td></td>
<td>phases.</td>
<td>25</td>
<td></td>
<td></td>
<td>Str argil of feld spocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.5-43.5</td>
<td>Gry silica</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>healed, Fx & Cr mill</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>breccia, big</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>str py sulf blded breccia</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>FROM</th>
<th>TD</th>
<th>W</th>
<th>Au</th>
<th>Ag</th>
<th>Au2</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>18.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.5</td>
<td>28.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>38.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.5</td>
<td>49.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.5</td>
<td>54.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LITHOLOGY

123.5 - 128.5' Dozer Rhyolite
- Lt gray gr. f.g. equigranular thry, metabreciated glassy feld.
- Inclined columnar - cathedral raggi edge blankets supported by Lt gray gr. f.g. fels.

133.5 - 199.0' Felsic Porphyry
- Whitish columnar - cathedral raggi edge blankets.
- Sample - Lt gray gr. f.g. felsic matrix.

GRAPHIC LOG

STRUCTURE

123.5' Contact
- Visible to distinguishable if it is a flat or deflected.

FAULT CONTACT

133.5' Widely
- Well healed, shear bands along contact.

ALTERATION AND MINERALIZATION

FROM / TO / W / Au / Ag / Au2

123.5 - 128.5' Moderately altered, weakly silicified.
- Width: 123.5 - 128.5' width.

133.5 - 143.5' Weakly silicified, weak alteration.
- Width: 133.5 - 143.5' width.

143.5 - 149.5' Moderately altered, weakly silicified, with slight clay lining.
- Width: 143.5 - 149.5' width.

149.5 - 151.5' Weakly altered, weakly silicified.
- Width: 149.5 - 151.5' width.

151.5 - 154.0' Weakly altered, weakly silicified.
- Width: 151.5 - 154.0' width.

154.0 - 166.0' Moderate alteration, weak structural.
- Width: 154.0 - 166.0' width.

166.0 - 172.0' Weakly altered, weakly silicified.
- Width: 166.0 - 172.0' width.

172.0 - 174.0' Moderate alteration, weakly silicified.
- Width: 172.0 - 174.0' width.

ANALYTICAL DATA
<table>
<thead>
<tr>
<th>FT</th>
<th>GRAPHIC LOG</th>
<th>STRUCTURE</th>
<th>ALTERATION AND MINERALIZATION</th>
<th>ANALYTICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>195°</td>
<td>190'-199' Mod. strat. argill+</td>
<td>194.0, 196.5</td>
</tr>
<tr>
<td>199'</td>
<td></td>
<td>196°</td>
<td>Mod. argil, Mod.</td>
<td></td>
</tr>
<tr>
<td>196°</td>
<td></td>
<td>197°</td>
<td>soft volatiles, clays</td>
<td></td>
</tr>
<tr>
<td>197°</td>
<td></td>
<td>198°</td>
<td>WR-Mod. sulfides</td>
<td></td>
</tr>
<tr>
<td>198°</td>
<td></td>
<td></td>
<td>199°</td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGY

T.D. 199'

Felsic Porphyry (Bud Marker Bed like)

Reduced
<table>
<thead>
<tr>
<th>Depth</th>
<th>Rock Core</th>
<th>Total Core</th>
<th>Recovery %</th>
<th>Rock Strength</th>
<th>Fracture Data</th>
<th>Diam. Core Depth</th>
<th>Post Load Core Graph</th>
<th>Fracture Density</th>
<th>Fracture Angle to Core</th>
<th>Rock Weathered</th>
<th>Incl.</th>
<th>Comments</th>
<th>Depth</th>
<th>Depth</th>
<th>Sample Height</th>
<th>Displacement</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>96</td>
<td>96</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>98</td>
<td>98</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14.5</td>
<td>91</td>
<td>91</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>23.5</td>
<td>94</td>
<td>94</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>23.5</td>
<td>28.5</td>
<td>98</td>
<td>98</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>33.5</td>
<td>96</td>
<td>96</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>33.5</td>
<td>100</td>
<td>100</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>39.5</td>
<td>33.5</td>
<td>96</td>
<td>96</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>43.5</td>
<td>43.5</td>
<td>90</td>
<td>90</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>48.5</td>
<td>54.0</td>
<td>96</td>
<td>96</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>HOLE #</td>
<td>0-186-78</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>3-5-78</td>
<td></td>
</tr>
<tr>
<td>LOGGED BY</td>
<td>BWM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>% RECOVERY</th>
<th>TOTAL CORE</th>
<th>% RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>59</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>59</td>
<td>63.5</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>63.5</td>
<td>68.5</td>
<td>98</td>
<td>84</td>
</tr>
<tr>
<td>68.5</td>
<td>73.5</td>
<td>96</td>
<td>75</td>
</tr>
<tr>
<td>73.5</td>
<td>79.5</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>79.5</td>
<td>83.5</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>93.5</td>
<td>88.5</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>93.5</td>
<td>93.5</td>
<td>94</td>
<td>91</td>
</tr>
<tr>
<td>98.5</td>
<td>98.5</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>98.5</td>
<td>103.5</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>103.5</td>
<td>106.5</td>
<td>94</td>
<td>98</td>
</tr>
<tr>
<td>Hole #</td>
<td>Date</td>
<td>Length</td>
<td>Material</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>D-186-94</td>
<td>3-6-94</td>
<td>72</td>
<td>92</td>
</tr>
<tr>
<td>118.5</td>
<td>118.5</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>118.5</td>
<td>123.5</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>123.5</td>
<td>128.5</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>128.5</td>
<td>133.5</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>133.5</td>
<td>138.5</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>138.5</td>
<td>143.5</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>143.5</td>
<td>148.5</td>
<td>98</td>
<td>96</td>
</tr>
<tr>
<td>148.5</td>
<td>151.5</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>151.5</td>
<td>159</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>159</td>
<td>159</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>HOLE</td>
<td>159</td>
<td>164</td>
<td>96</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>169</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>169</td>
<td>171</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>179</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>179</td>
<td>184</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>194</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>194</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>194</td>
<td>199</td>
<td>92</td>
</tr>
</tbody>
</table>
INVOICE

INVOICE TO:
THE ROSEBUD MINING CO., LLC
HECLA MINING COMPANY, OPERATOR
P.O. BOX 2610
WINNEMUCCA NV 89446

THE ROSEBUD MINING CO., LLC
HECLA MINING COMPANY, OPERATOR
P.O. BOX 2610
WINNEMUCCA NV 89446

CUSTOMER P.O. D-196-98 PROJECT DEVELOPMENT

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>SAMPLES RECEIVED</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>43</td>
<td>DRYING</td>
<td>1.00</td>
<td>43.00</td>
</tr>
<tr>
<td>43</td>
<td>JAW CRUSHING CHARGE</td>
<td>1.30</td>
<td>55.90</td>
</tr>
<tr>
<td>43</td>
<td>COARSE MILLING CHARGE</td>
<td>4.50</td>
<td>193.50</td>
</tr>
<tr>
<td>43</td>
<td>SPLITTING CHARGE</td>
<td>2.40</td>
<td>103.20</td>
</tr>
<tr>
<td>43</td>
<td>RING MILLING CHARGE</td>
<td>2.00</td>
<td>86.00</td>
</tr>
<tr>
<td>44</td>
<td>Au (1 A.T. FIRE ASSAY)</td>
<td>8.00</td>
<td>352.00</td>
</tr>
<tr>
<td>6</td>
<td>Au ANALYSES/GRAVIMETRIC</td>
<td>8.75</td>
<td>52.50</td>
</tr>
<tr>
<td>44</td>
<td>HYDROCHLORIC/NITRIC DIGESTION</td>
<td>2.00</td>
<td>88.00</td>
</tr>
<tr>
<td>44</td>
<td>Ag ANALYSES</td>
<td>1.00</td>
<td>44.00</td>
</tr>
</tbody>
</table>

NET INVOICE: $1,018.10
LESS DISCOUNT: $203.62
FREIGHT: $0.00

INVOICE TOTAL: $814.48
HECLA MINING COMPANY

COPIES TO : KURT ALLEN

CLIENT REFERENCE No: D-196-98
No. SAMPLES : 44
MAIN SAMPLE TYPE : DRILL CORE

RECEIVED : 9 MAR 1998
REPORTED : 16 MAR 1998

NEVADA LEGISLATIVE DISCLAIMER :-
The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project.

<table>
<thead>
<tr>
<th>ANALYSIS</th>
<th>ANALYTICAL METHOD</th>
<th>QUALITY PARAMETER</th>
<th>UNIT</th>
<th>DETECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au(OZ)</td>
<td>FA30</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>Au(RZ)</td>
<td>FA30</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>AuGRAV</td>
<td>GRAV</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>Ag(OZ)</td>
<td>D210</td>
<td>10%</td>
<td>OPT</td>
<td>0.02</td>
</tr>
<tr>
<td>SAMPLES</td>
<td>Au(OZ) FA30 OPT</td>
<td>Au(RZ) FA30 OPT</td>
<td>AuGRAV GRAV OPT</td>
<td>Ag(OZ) D210 OPT</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>D-186-98 0-5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 5-9</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 9-14</td>
<td>0.041</td>
<td>0.035</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>D-186-98 14.0-18.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>D-186-98 18.5-23.5</td>
<td>0.031</td>
<td></td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>D-186-98 23.5-28.5</td>
<td>0.006</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 28.5-33.5</td>
<td>0.016</td>
<td>0.013</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 33.5-38.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 38.5-43.5</td>
<td>0.025</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 43.5-48.5</td>
<td>0.018</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 48.5-54.0</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 54-59</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 59.0-63.5</td>
<td>0.031</td>
<td>0.033</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>D-186-98 63.5-68.5</td>
<td>0.019</td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>D-186-98 68.5-73.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 73.5-78.5</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 78.5-83.5</td>
<td>0.052</td>
<td>0.064</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 83.5-89.5</td>
<td>0.986</td>
<td>0.991</td>
<td></td>
<td>1.39</td>
</tr>
<tr>
<td>D-186-98 89.5-93.5</td>
<td>0.167</td>
<td>0.139</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 93.5-98.5</td>
<td>0.059</td>
<td>0.072</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 98.5-103.5</td>
<td>0.064</td>
<td>0.078</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>D-186-98 103.5-108.5</td>
<td>0.026</td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 108.5-113.5</td>
<td>0.039</td>
<td>0.049</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 113.5-118.5</td>
<td>0.049</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 118.5-123.5</td>
<td>0.050</td>
<td>0.041</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>SAMPLES</td>
<td>Au(OZ) FA30 OPT</td>
<td>Au(OZ) FA30 OPT</td>
<td>AuGRAV OPT</td>
<td>Ag(OZ) D210 OPT</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>D-186-98 123.5-128.5</td>
<td>0.032</td>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>D-186-98 128.5-133.5</td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>D-186-98 133.5-138.5</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 138.5-143.5</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 143.5-148.5</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>D-186-98 148.5-151.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>D-186-98 151.5-154.0</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 154-159</td>
<td>0.004</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 159-164</td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 164-169</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>D-186-98 169-174</td>
<td>0.009 0.016</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>D-186-98 174-179</td>
<td>0.003</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 179-184</td>
<td>0.004</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 184-186</td>
<td>0.002</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 186-189</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 189.0-191.5</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>D-186-98 191.5-194.0</td>
<td>0.029</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 194-199</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>27764</td>
<td>0.508</td>
<td></td>
<td></td>
<td>3.12</td>
</tr>
</tbody>
</table>
HECLA MINING COMPANY

COPIES TO : KURT ALLEN

CLIENT REFERENCE No: D-196-98
No. SAMPLES : 44
MAIN SAMPLE TYPE : DRILL CORE

RECEIVED : 9 MAR 1998
REPORTED : 16 MAR 1998

NEVADA LEGISLATIVE DISCLAIMER :
The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project.

<table>
<thead>
<tr>
<th>ANALYSIS</th>
<th>ANALYTICAL METHOD</th>
<th>QUALITY PARAMETER</th>
<th>UNIT</th>
<th>DETECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au(OZ)</td>
<td>FA30</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>Au(RZ)</td>
<td>FA30</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>AuGRAV</td>
<td>GRAV</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>Ag(OZ)</td>
<td>D210</td>
<td>10%</td>
<td>OPT</td>
<td>0.02</td>
</tr>
</tbody>
</table>

SIGNATORY : Susan King M.S.
<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>Au(OZ) FA30 OPT</th>
<th>Au(RZ) FA30 OPT</th>
<th>AuGRAV GRAV OPT</th>
<th>Ag(OZ) D210 OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-186-98 0-5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 5-9</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 9-14</td>
<td>0.041</td>
<td>0.035</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>D-186-98 14.0-18.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>D-186-98 18.5-23.5</td>
<td>0.031</td>
<td></td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>D-186-98 23.5-28.5</td>
<td>0.006</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 28.5-33.5</td>
<td>0.016</td>
<td>0.013</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 33.5-38.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 38.5-43.5</td>
<td>0.025</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 43.5-48.5</td>
<td>0.018</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 48.5-54.0</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 54-59</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 59.0-63.5</td>
<td>0.031</td>
<td>0.033</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>D-186-98 63.5-68.5</td>
<td>0.019</td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>D-186-98 68.5-73.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 73.5-78.5</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 78.5-83.5</td>
<td>0.052</td>
<td>0.064</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 83.5-89.5</td>
<td>0.986</td>
<td>0.991</td>
<td></td>
<td>1.39</td>
</tr>
<tr>
<td>D-186-98 89.5-93.5</td>
<td>0.167</td>
<td>0.139</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 93.5-98.5</td>
<td>0.059</td>
<td>0.072</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 98.5-103.5</td>
<td>0.064</td>
<td>0.078</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>D-186-98 103.5-108.5</td>
<td>0.026</td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 108.5-113.5</td>
<td>0.039</td>
<td>0.049</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 113.5-118.5</td>
<td>0.049</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 118.5-123.5</td>
<td>0.050</td>
<td>0.041</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>SAMPLES</td>
<td>Au(OZ) FA30 OPT</td>
<td>Au(RZ) FA30 OPT</td>
<td>AuGRAV GRAV OPT</td>
<td>Ag(OZ) D210 OPT</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>D-186-98 123.5-128.5</td>
<td>0.032</td>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>D-186-98 128.5-133.5</td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>D-186-98 133.5-138.5</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 138.5-143.5</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 143.5-148.5</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>D-186-98 148.5-151.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>D-186-98 151.5-154.0</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 154-159</td>
<td>0.004</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 159-164</td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 164-169</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>D-186-98 169-174</td>
<td>0.009</td>
<td>0.016</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>D-186-98 174-179</td>
<td>0.003</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 179-184</td>
<td>0.004</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 184-186</td>
<td>0.002</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 186-189</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 189.0-191.5</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>D-186-98 191.5-194.0</td>
<td>0.029</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 194-199</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>27764</td>
<td>0.508</td>
<td></td>
<td></td>
<td>3.12</td>
</tr>
</tbody>
</table>
HECLA MINING COMPANY

COPIES TO: KURT ALLEN

CLIENT REFERENCE NO: D-196-98

RECEIVED: 9 MAR 1998

No. SAMPLES: 44

REPORTED: 16 MAR 1998

MAIN SAMPLE TYPE: DRILL CORE

NEVADA LEGISLATIVE DISCLAIMER: -
The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project.

<table>
<thead>
<tr>
<th>ANALYSIS</th>
<th>ANALYTICAL METHOD</th>
<th>QUALITY PARAMETER</th>
<th>UNIT</th>
<th>DETECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au(OZ)</td>
<td>FA30</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>Au(RZ)</td>
<td>FA30</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>AuGRAV</td>
<td>GRAV</td>
<td>15%</td>
<td>OPT</td>
<td>0.001</td>
</tr>
<tr>
<td>Ag(OZ)</td>
<td>D210</td>
<td>10%</td>
<td>OPT</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Provisional Report SP048265

Client: Hecla Mining Company
Project: Rosebud Development
Reference: D-196-98
Reported: 16 Mar 1998

<table>
<thead>
<tr>
<th>Samples</th>
<th>Au (OZ)</th>
<th>Au (RZ)</th>
<th>AuGRAV</th>
<th>Ag (OZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-186-98 0-5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 5-9</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 9-14</td>
<td>0.041</td>
<td>0.035</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>D-186-98 14.0-18.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>D-186-98 18.5-23.5</td>
<td>0.031</td>
<td></td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>D-186-98 23.5-28.5</td>
<td>0.006</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 28.5-33.5</td>
<td>0.016</td>
<td>0.013</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 33.5-38.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 38.5-43.5</td>
<td>0.025</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 43.5-48.5</td>
<td>0.018</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 48.5-54.0</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 54-59</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>D-186-98 59.0-63.5</td>
<td>0.031</td>
<td>0.033</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>D-186-98 63.5-68.5</td>
<td>0.019</td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>D-186-98 68.5-73.5</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 73.5-78.5</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>D-186-98 78.5-83.5</td>
<td>0.052</td>
<td>0.064</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>D-186-98 83.5-89.5</td>
<td>0.986</td>
<td>0.991</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>D-186-98 89.5-93.5</td>
<td>0.167</td>
<td>0.139</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>D-186-98 93.5-98.5</td>
<td>0.059</td>
<td>0.072</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>D-186-98 98.5-103.5</td>
<td>0.064</td>
<td>0.078</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>D-186-98 103.5-108.5</td>
<td>0.026</td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>D-186-98 108.5-113.5</td>
<td>0.039</td>
<td>0.049</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>D-186-98 113.5-118.5</td>
<td>0.049</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 118.5-123.5</td>
<td>0.050</td>
<td>0.041</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>SAMPLES</td>
<td>Au(OZ)</td>
<td>Au(RZ)</td>
<td>AuGRAV</td>
<td>Ag(OZ)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>D-186-98 123.5-128.5</td>
<td>0.032</td>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>D-186-98 128.5-133.5</td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>D-186-98 133.5-138.5</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 138.5-143.5</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 143.5-148.5</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>D-186-98 148.5-151.5</td>
<td>0.005</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>D-186-98 151.5-154.0</td>
<td>0.002</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 154-159</td>
<td>0.004</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 159-164</td>
<td>0.003</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>D-186-98 164-169</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>D-186-98 169-174</td>
<td>0.009</td>
<td>0.016</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>D-186-98 174-179</td>
<td>0.003</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 179-184</td>
<td>0.004</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 184-186</td>
<td>0.002</td>
<td></td>
<td></td>
<td><0.02</td>
</tr>
<tr>
<td>D-186-98 186-189</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>D-186-98 189.0-191.5</td>
<td>0.009</td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>D-186-98 191.5-194.0</td>
<td>0.029</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>D-186-98 194-199</td>
<td>0.014</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>27764</td>
<td>0.508</td>
<td></td>
<td></td>
<td>3.12</td>
</tr>
<tr>
<td>Hole #</td>
<td>Depth</td>
<td>Bearing</td>
<td>Dip</td>
<td>True Bearing</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-----</td>
<td>--------------</td>
</tr>
<tr>
<td>D-186-98</td>
<td>Collar</td>
<td>S 68E 130.5°</td>
<td>N 52.3W</td>
<td>-40.5°</td>
</tr>
<tr>
<td>99'</td>
<td></td>
<td>S 69E 131.0°</td>
<td>N 53.3W</td>
<td>-41.0°</td>
</tr>
<tr>
<td>199'</td>
<td></td>
<td>S 69E 130.5°</td>
<td>N 52.3W</td>
<td>-40.5°</td>
</tr>
</tbody>
</table>