3680 0001

GETCHELL MINE, INC.
RED HOUSE, NEVADA

SUMMARY Of

METALLURGICAL DATA

1936 то 1946

F. W. McQuiston, Jr. March 5, 1946

TABLE OF CONTENTS

U. S. MUREAU of MINES - Leaver, Wolf, Jackson Reasting-Cyanidation	ARRES SE SENTENTS	
Reservant Cyanidation -1936-10 to 1939-1 1-15 Flotation-Cyanidation -1976-10 to 1937-10 16-19 Missellaneous -1977-21 20-21 Mineralogical Data -1977-21 22-23 Cyanidation-Flotation Concentrates -1937-3 to 1937-7 25-26 Cyanidation-Cyanidation -1937-3 to 1937-7 25-26 Flotation-Cyanidation -1937-3 to 1937-7 25-26 Flotation-Cyanidation -1937-6 to 1939-1 28-30 GETOMELL MIME Mark Hoodward Mills Crow Misse, Rise Resert-Calcine Flotation -1938-5 to 1945-6 31-48 Resert-Calcine Flotation -1938-7 to 1942-6 49-51 Missellaneous -1938-8 53 Chice O're Cyanidation -1938-1942 54-55 Chice O're Cyanidation -1938-1942 54-55 Chice O're Cyanidation -1940-6 50 AMERICAN GYANAMID COMPANY Merritt, Hedley, Mark and Staff Misseralogical Data -1939-3 to 1944-4 59-62 CAMADA DEPARTMENT of MIMES Parsons MINERAL SEPARTHON COMPORATION Millians Flotation-Cyanidation -1940-6 60 MINERAL SEPARTHON COMPORATION Mequiston Carridation -1940-1 60 71-76 Flotation-Cyanidation -1945-1 60 71-76 CETCHELL HIME Silver Reserving-Cyanidation -1945-1 1945-12 78-85 Reserving-Cyanidation -1945-1 1945-11 105-111 DENVER EQUIPMENT COMPANY Flotation-Cravity Concentration -1945-5 1945-11 104-111 Rosst-Calcine Flotation -1945-1 1945-11 104-111 Rosst-Calcine Flotation -1945-5 1945-5 112-115 Rosst-Calcine Flotation -1945-5 1945	U. S. BUREAU of MINES - Ingres Wald	Page No.
	Boasting County Holl, Jackson	district the second second
	2000 to 1936-10 to 1936-10	1-15
### Mineralogical Data 1936-11		
Cyanidation-Plotation Concentrates - 1936-11 22-23		
### DORR COMPANY — Darby Rossing—Cyanidation —	Mineralogical Data	
### DORR COMPANY - Darby Roasting-Cyanidation	Cyanidation-Flotation Congentrates - 1037-2/L	
Roasting-Cyanidation	and the second s	24
### MERRILL COMPANY - Bylar Roasting-Cyanidation	INLE DONR COMPANY - Darby	
THE MERRILL COMPANY - Ryler Rossting-Cyanidation	Roasting-Cyanidation	
### MERRILL COMPANY - Byler Roasting-Cyamidation	Flotation-Cranidation 1937-7	25-26
GETCHELL MINE - Wark, Woodward, Mills, Crow, Wise, Etc. Reasting-dysmidation 1938-5 to 1945-6 31-48 Reasting-dysmidation	, , , , , , , , , , , , , , , , , , ,	27
Rossting-Cyamidation	THE MERRILL COMPANY - Bylar	
GETCHELL MINE - Wark, Woodward, Mills, Crow, Wise, Etc. Reasting-dysmidation 1938-5 to 1945-6 31-48 Reast-Calcine Flotation 1938-7 to 1942 49-51 Mineralogical Data 1938-6 52 Cxide Ore dysmidation	Roasting-Cranidation	
Reast-Calcine Flotation		28-30
Reast-Calcine Flotation	GETCHELL MINE - Wark, Woodward MIT	
Mineralogical Data 1938-7 to 1942 49-51 Mineralogical Data	Ponetine Crowded to	
Mineralogical Data 1938-7 to 1942 49-51 Mineralogical Data	Board-deled 1938-5 to 1945-6	32-48
Hiscellaneous Oxide Ore Cyanidation1938-6 Oxide Stripping-Cyanidation1940-6 AMERICAN GTANANID COMPANY - Merritt, Hedley, Wark and Staff Mineralogical Data1939-3 Flotation-Cyanidation1943-10 to 1944-4 Flotation-Cyanidation1940-6 CANADA DEPAREMENT of MIMES - Parsons Himeralogical Data1940-6 CANADA DEPAREMENT of MIMES - Parsons Himeralogical Data1940-6 MERMONT THISTING COMPORATION - Millians Flotation-Cyanidation1940-6 MERMONT THISTING LABORATORY - Mequisten, Curry, Brown Oxide Stripping-Cyanidation1943-9 to 1945-12 Granidation-Cyanidation1943-9 to 1945-12 Granidation-Flotation Concentrates -1944-10 Thistell Hime - Silver Flotation-Cyanidation1945-11 Reast-Calcine Flotation1945-11 Reasting-Cyanidation1945-11 DENVER EQUIPMENT COMPANY Flotation-Gravity Concentration	TOTAL PARTIES PARTIES OF THE PARTIES	
AMERICAN GYANAMID COMPANY - Merritt, Hedley, Wark and Staff Mineralegical Data 1939-3 Fletation-Cyanidation 1939-3 to 1944-4 Reasting-Cyanidation 1943-10 to 1944-10 GANADA DEPARTMENT of MINES - Parsons Mineralegical Data 1940-6 MINERAL SEPARATION CORPORATION - Williams Flotation-Cyanidation	MADOUR LOCAL LOCAL LOCAL TO THE PARTY OF THE	69
AMERICAN GYANAMID COMPANY - Merritt, Hedley, Wark and Staff Mineralegical Data 1939-3 Fletation-Cyanidation 1939-3 to 1944-4 Reasting-Cyanidation 1943-10 to 1944-10 GANADA DEPARTMENT of MINES - Parsons Mineralegical Data 1940-6 MINERAL SEPARATION CORPORATION - Williams Flotation-Cyanidation	alsoellaneous 1936-6	53
AMERICAN GYANAMID COMPANY - Merritt, Hedley, Wark and Staff Mineralegical Data 1939-3 Fletation-Cyanidation 1939-3 to 1944-4 Reasting-Cyanidation 1943-10 to 1944-10 GANADA DEPARTMENT of MINES - Parsons Mineralegical Data 1940-6 MINERAL SEPARATION CORPORATION - Williams Flotation-Cyanidation	uside ore dyanidation	51-KK
AMERICAN CYANAMID COMPANY - Merritt, Hedley, Mark and Staff Mineralogical Data 1939-3 Flotation-Cyanidation 1939-3 to 1944-4 Reasting-Cyanidation 1943-10 to 1944-10 63-66 CAMADA DEPAREMENT of MINES - Parsons Mineralogical Data	Oride Stripping-Cyanidation 1960-6	29777
Flotation—Gyanidation	* * * * *	>0
Flotation-Cyanidation	AMERICAN CYAHAMID COMPANY - Merritt, Hedley, Wark and Staff	
Reasting-Cyanidation		***
CANADA DEPARTMENT of MINES - Parsons Mineralogical Data	FASTALLON-CVANIdation -	57-58
CANADA DEPARTMENT of MIMES - Parsons Mineralogical Data	Roasting-Gyanidation	
MINERAL SEPARATION COMPORATION - Williams Flotation-Gyanidation		63-66
MINERAL SEPARATION COMPORATION - Williams Flotation-Gyanidation	CANADA DEPARTMENT of MINES - PRINCIPA	
MINIERAL SEPARATION CORPORATION - Williams Flotation-Gyanidation	Mineralegical Data management	
MEMMONT TESTING LABORATORY - McQuiston, Curry, Brown Oxide Stripping-Cyanidation 1941-9 Flotation-Cyanidation 1943-9 to 1945-12 Cyanidation-Flotation Concentrates 1944-10 GETCHELL MINE - Silver Flotation-Cyanidation 1945-11 Reasting-Cyanidation	1940-6	67
MEMMONT TESTING LABORATORY - McQuiston, Curry, Brown Oxide Stripping-Cyanidation 1941-9 Flotation-Cyanidation 1943-9 to 1945-12 Cyanidation-Flotation Concentrates 1944-10 GETCHELL MINE - Silver Flotation-Cyanidation 1945-11 Reasting-Cyanidation	MINERAL SEPARATION CORPORATION - WILLS	
NEWMONT TESTING LABORATORY - McQuiston, Carry, Brown Oxide Stripping-Cyanidation 1941-9 Flotation-Cyanidation 1945-12 Cyanidation-Flotation Concentrates	Flotati samonadati an	
MEMMONT TRISTING LABORATORY - MeQuiston, Curry, Brown Oxide Stripping-Cyanidation		6.0
Flotation-Cyanidation	MEMONT TRATTME LANCEAUTON - Machine	
Cyanidation—Flotation Concentrates — -1943—9 to 1945—12 71—76 (Flotation—Cyanidation —	Orden Company, Carry, Brown	
Cyanidation-Flotation Concentrates1943-9 to 1945-12 71-76 TOTALL NIME - Silver Flotation-Cyanidation	outes Stripping-Granidation1941-9	69-70
GETCHELL MINE - Silver Flotation-Cyanidation	Protetion-Cyamidation	
GETCHELL MINE - Silver Flotation-Cyanidation	Cyanidation-Flotation Concentrates1944-10	1 mm
Plotation-Cyanidation		
Roasting-Cyanidation		
Roasting-Cyanidation	Flotation-Cyanidation	70.00
UNIVERSITY of ARIZONA - Chapman, McQuiston Flotation-Charcoal-Gyanidation 1943-3 to 1946-1 91-102 DENVER EQUIPMENT COMPANY Flotation-Gravity Consentration	TOTAL VALUE PARTIES PA	(0-0)
UNIVERSITY of ARIZONA - Chapman, McQuiston Flotation-Charcoal-Cyanidation	Rossing-Cyanidation	400
DENVER EQUIPMENT COMPANY Flotation-Gravity Consentration		57-40
DENVER EQUIPMENT COMPANY Flotation-Gravity Consentration	UNIVERSITY of ARTZONA - Chapman, McCuiston	
DENVER EQUIPMENT COMPANY Flotation-Gravity Consentration	Fletation-Charcoal-Cyanidation	
Flotation-Gravity Consentration 1944-8 103 GETCHELL MINE - Wigton, Davis, etc., Reasting-Cyanidation 1945-5 to 1945-11 104-111 Roast-Calcine Flotation		91-102
Flotation-Gravity Consentration 1944-8 103 GETCHELL MINE - Wigton, Davis, etc., Reasting-Cyanidation 1945-5 to 1945-11 104-111 Roast-Calcine Flotation	DENVER EQUIPMENT COMPANY	
GETCHELL MINE - Wigton, Davis, etc. Reasting-Cyanidation	Flotation-Gravity Concentration	
Reasting-Cyanidation 1945-5 to 1945-11 104-111 Reast-Calcine Flotation		1.03
Reasting-Cyanidation 1945-5 to 1945-11 104-111 Reast-Calcine Flotation	GETCHELL MINE - Wigton, Davis, etc.	
Cyani dati em 2 et ati em 2 -1945-1 to 1945-3 112-113	Roastings(vanidation	
Cyani dati em 2 et ati em 2 -1945-1 to 1945-3 112-113	Roast-Calcina Flatation 1945-5 to 1945-11	104-111
american Cyanamid Company Started in 1958 new cyanide tests with a new grante solution waste product which has selective action in presence of arrence 7,51/2 5 crues of tests in disable recovery between 7,51/2 50 90 and	Cranidation 1945-1 to 1945-3	112-113
with a new grante solution waste product which has selective action in presume of arrence 751/2 Services of tests in disable recovery between 7,51, 50 90 and	Concentrates1945-5 to 1945-9	114
selections action in presence of arrence 7,51, 80 90 and	american yanemy - Started in 1958 new Expand	tests
of tests in decated recovery between 7,51, 80 % and	with a new grande solution waste product	which ha
These mencall recovery welling 7.512 80 90 and	The action in presence of agreence - 1/2	Etseries "
	y was an ancare recovery welver 7.512	50 90 au

1936-10 (2)
ROASTING - GYANIDATION
U. S. BUREAU of MINES - Leaver, Woolf, Jackson

Purpose of Investigation:
To determine the effects of rossting.

Procedure and Results:
The following products were roasted 60 minutes at 520°C.

Test	Roasting Conditions Roasting Fletation tailings Direct Roasting of ore		Mesh Sise 20 20 20	rinal Grind 100 20 100	Assays Heads -22 -22 -23	Pails ON ANA	81.8 60.2 68.5
------	--	--	--------------------------------	------------------------------------	--------------------------------------	-----------------	----------------------

Refractory gold is either looked up as an insoluble complex formed by roasting or is an alteration product of sulfides. If gold is encased in silica liberation will be difficult.

1,50

Purpose of Investigation:
A follow up on previous tests with a higher temperature roast.

Procedure and Results:
Rosets were made for 90 minutes.

Test FO. 90. 90. 10. 10b.	Cyanidation of Calcine	51me 20 20 20 20	Temp. *C \$60 660 800	Final Grind 20 100 20 100	Assays Heads -22 -227 -228 -24	02 AU/t 7a11= .075 .065 .077 .054	55.7 65.7 66.0 68.4
11.	Arsenic Minerals Floated without grinding with grinding without grinding	20	620	20	.233	.075	67.3
11e.		20	620	100	.225	.062	72.4
12a.		35	620	200	.234	.065	72.2
12b.		35	620	100	.227	.055	75.7

Grinding the calcine to minus 100 mesh improves gold extraction.

Reasting the ore followed by fine grinding and eyanidation gives a 70% extraction.

1936-10 (2)
ROASTING - GYANIDATION
C. 3. BURGAU of MINES - Leaver, Woolf, Jackson

Purpose of Investigation:
To determine the effects of reasting.

Procedure and Mesults:

the following products were reasted 60 minutes at 520°C.

Test				Mesh	Final	Assays	OM AN	ton
No.			Conditions	3150	Grind	Keads	Talls	A Xt.
40	Roasting flot	ation	Tallings	TUO	100	222	.04	al.at.
5.	Direct Rossti	ig of	ore	20	20	22	.09	60.2
50.	PP 10	31	65	20	100	.23	.07	68.5

Refractory gold is either locked up as an insoluble complex formed by roasting or is an alteration product of sulfides. If gold is encesed in silica liberation will be difficult.

17,6=11

Purpose of Investigation:

A follow up on previous tests with a higher temperature resat.

Procedure and Results:

Roasts were made for 90 minutes.

Test					Temp.	Final	Assays	OR AN	ton
No.	diata	casting C	se Principal commence of children's department of the Belleville Street Commence of the Commen	A 8 6	° C	Grind	Heads	malls	Shate
90	Cyanidati	on of cale	sine	-20	560	30	.22	.075	55.9
9b.	9年	NJ 1	9	20	660	100	.227	. 165	68.7
10.	28	q f	4	20	800	20	.228	.077	66.0
lOb.	鬱	99 7	+	20	300	100	.24	.054	68.4
	A	reenic Eis	merale Floats	ed ms					
11.	26	without	t grinding	20	620	20	•233	.075	67.8
lle.	17	with gr	rinding	20	620	100	.225	.062	72.4
128.	10	without	grinding	35	620	200	.234	.065	72.2
126.	19	with gr	rinding	35	620	100	.227	.055	75.7

Chambook Sevi e

Grinding the calcine to minus 100 mesh improves gold extraction.

Rossting the ore followed by fine grinding and eyanidation gives a 70% extraction.

1937-2
ROASTING - CYANIDATION
U. S. BURSAU of MINES - Leaver, Woolf, Jackson

Purpose of Investigation:
To determine the effect of grinding the roaster feed before roasting.

Presedure and Results:

Tost			Time	Temp.	Final	Assays Os Au/ton
100 ·	Grind to 200 Mesh	Sise 200			Grind 200	
2la	Grind to 200 Mesh	200		650	200	.23 .06 73.9

Final symmetry:

Final symmetry:

amount of gold as the residue from reasting followed by symmetries.

いからう

Purpose of Davestigation:
Reasting under oxidizing conditions.

		Reasting C	encil Liona			Recalt	L
Test.		Time	Temp.	Final	Assays	OB AU	7tom
No.	3129	Min.	°G	Grind	Honds	Paile	Thinks .
2	10	60	1,50	200	.835	0375	52.7
3	10	75	670	200	-675	.125	4.18
5	20	60	470	200	-34	.lh	58.5
6	10	60	550	200	-35	.00	77.0
7	1.0	60	670	200	-35	.08	77.2
8	10	60	800	200	-37	.075	79.6

Ores should be reasted to a minimum temperature of 600°C, however a temperature of 700° is probably best.

VH25

Purpose of Investigation:
To determine the best size at which to reast.

1937-3-2

ROASTING-CYANIDATION

U. S. MUREAU of MIN'S - Leaver, Woolf, Jackson

Procedure and Results:

40000000000000000000000000000000000000	(1997年) 1995年 - 1995年	Ro	aating Conditions		*	Result	趣
Test		Time	Marie of Original Anna Anna Anna Anna Anna Anna Anna A	Final	Assays	WEST TO THE PROPERTY OF THE PR	Stine
NO.	Sime	Min.	°C	Grind	Heads	The second second	Lixt.
1	70	90	710	200	.74	.13	82.5
2	8	90	710	200	.63	.13	80.8
3	6	90	710	200	.68	.14	79.6
4	À 98	90	710		.68	.125	81.8

Summary:

The results of these laboratory reasting and eyanidation tests show that feed as coarse as in any be reasted satisfactorily as feed ground to 10 mesh.

Final cyanide residues from direct symmidation of flotation tails contains about the same amount of gold as the symmide residues from the symmidation of salsines.

1937-6

Purpose of Investigation:

A 600 pound charge was reasted in a Herreshelf furnace for five hours. Each hour of reast was kept separate.

Procedure and Results:

The in feed was roasted 5 hours with the roasting temperature increased slowly to a high end temperature.

Test.		Assays	0%	hu/tom
HO .	14	eade	Tail	s Abat.
10		.54	a hah	78.8
11		.56	·ll	
12		. 57	.12	79.1
13		.59	a l.l.	81.3
14		.60	.11	5 81.0

Surmary:

A continuous reast gives the same results as long time reacting.

Purpose of Investigation:

To determine the best size of rouster feed.

1937-4-2
ROASTING-CYANIDATION
U. S. BUREAU of MIN'S - Leaver, Woolf, Jackson

Procedure:

The following sizes were reasted 100 minutes at 700°C. The calcine was ground to minus 200 mech and cyanided for AB hours with a 1.0 lb. NacH solution.

Results:

Tost	Roaster	Food	Assays	Os An/	ton
No.	3120		lieads	Tails	Taxt.
15	1/4"		.56	.12	78.5
16	1/2"		.54	.125	76.9
17	3/4"		.61	.15	75.4
18	210		.60	.155	74.0

Test results show rapidly increasing amounts of gold in the dyanide residues as the size of the reaster feed increases from minus 1/2" to minus 1" in size. The results with minus 1/4" and minus 1/2" reaster feed are about the same so it would prebably be economically advantageous to use minus 1/2" material for reaster feed.

Purpose of Investigation:
To determine the effects of pretreating the calcines prior to eyanidation.

Precedure and Results:

edication commission, or	The ere was roasted 90 minutes at 700	PC+			-	
		Rossting Co			Result	
Tost			Final	Assay	rs "Os Ai	
No.	Pretreatment of Caleines	Size	Grind	Heads	Tails	bank .
Ja	Mason 10%; Nacl 25% AS Hrs. Agitation	20	100	.69	.095	86.2
36	Acid Brine	20	Mocio	.67	.095	85.9
40	H2SOL 2% 48 Hr. Leach	20	100	.69	.10	85.5
44	12301 xx 40 1/2 200000	20	Nane	-68	-055	91.9
	Hacl 5% mixed in feed for roast	1/4=	200	.612	-16	73.8
A	Calcine treated with chloring gas	8	80	.685	.152	77.8
B		10	200	.665	.06	96.0
23	H2504 27 24 Hr. Leach	10	100	.655	.075	83.5
24	gg ev /t 52 99.	10	65	.616	.145	76.4
25	19 79 98 89 97	1/4"	200	.662	.055	91.6
26	" plus Fe2SO4 2% 24 Hr. Leach		65	.666	.065	90.2
27	et 25 19 80 19 80 67 19	1/4"				85.1
28	NO 29 50 50 50 FT 50 50	1/4"	35	-64	.095	and the second second
33	" one hour leach	10	80	.64	.105	83.6
34	4 7 24 8 11	10	80	-64	.075	83.3
35	w 5% 1 w "	70	100	.63	.075	86.1
36	w # 24 4 #	10	700	-66	.06	90.9
29	NaHCO3 5% boiled loom calcine	10	1.00	.61	.115	81.2
30	HCl 1% boiled 100m calcine	10	100	.62	.10	83.9
70	(continued on ne	sxt page)				

1937-4-2
ROASTING-CYAMIDATION
U. S. EUREAU of MINES - Leaver, Woolf, Jackson

Procedure and Resulte: (Continued)

	,	Roasting Conditions	Results	
Test		Final	Assays Os Au ton	
No.	Pretreatment of Calcines	Size Grind	Heads Talls Sirt	0
37	NeON for eyanide protective alk.	10 100	.605 .10 83.5	
37a	" 10 Macm/ton sel.	10 100	.59 .095 83.9	
38	Mag CO3 for cyanide protective alk.	10 100	.61 .12 80.3	
38a	" 10 Wacm/ton sol.	10 100	.62 ,11 82,3	
39	CAO for cyanide protective alk.	10 100	.605 .13 78.5	
39a	97 69 99 77 77 99	10 100	.62 .12 80.7	
41	Roasted with 1% Ca(COH),	1/4" 100	.635 .115 81.8	
42	n n 25 n	1/4* 100	.59 .11 81.3	
43	m m 5% 30	1/4 100	.565 .095 83.2	
bala	Roasted with 1% 100m coal	1/4" 100	.525 .105 80.0	
45	n n 28 0 n	1/4" 100	.535 .10 80.4	
46	N N 5% 11 11	1/4" 100	.555 .095 82.9	
47	Low temperature roast 330°C - 60 mi	n. 20 100	.521 .20 61.5	

The cause of some of the gold to be refractory to cyanidation may be:

1. Coated with some substance impervious to cyanidation. 2. Associated with some substance present in the calcine so the gold is not free to dissolve. 3. A coating is formed on some of the gold during cyanidation by reaction of some constituent of the calcine with substances present in the symmide solution.

1957-5

Purpose of Investigation:
To determine the effects of protrecting the calcines prior to symmidation.

Procedure and Regulte:

	the ore was roamted yo arribres at lon-					
	R	oasting	Conditions	ACCORDING TO	estine	
Tost	-	and a second	Final	Assays	Oz Au/1	
No.	Protroatment of Calcines	3120	Grind	Heads	Tails	32.0
No.	NacH 60 lbs/ton in cyanidation	1/41	100	.575	.10	82.0
49	NoSOL 5% 96 hr. leach at 20m	1/4"	20	.615	.055	91.0
49	Acid residue ground		150	.64	.05	92.2
490	H2804 5% 48 hr. leach at 1/4"	1/44	Mone	.645	.065	89.9
496	Acid residue ground	1/4"	150	.635	.055	91.3
50a	H2SOL 5% 96 hr. Leach at 1/4"	1/4"	None	.63	-06	90.5
50b	Acid residue ground	1/4"	150	.61	.065	39.3
	(tests continued on next	page)				

1937-5
ROASTING-CYANIDATION
U. 3. NURLAU of RINES - Leaver, Modify Jackson

Precedure and Results: (sontinued)

	A STATE OF THE PROPERTY OF THE						
Test		Rossting	Condition	1.0	Results		
Mo.	Pretreatment of Galcines	Size	Final	Assays	Os Al	w/ton	
36	Agitation by pump to introduce air	GEORGE CONTRACTOR	Grind	Heads	Tails	TEXE.	
57	Ne202 3 lbs/ton in cyanidation	1/40	LOC	-575	.07	37.8	
65	Appeted in Col In Cyenidation	1/4"	200	.575	.105	61.7	
67	Aerated in Sub-A cell 48 hrs.	1/4n	200	.575	.13	77.5	
55	Pump direulation - MacN con. high	1/4"	100	.575	.115	80.0	
59	Cyanidation 48 hrs. in 2 lb NaCH sol.	1/4"	20	-59	.14		
60	野 张 禄 教 72 好 好	1/4"	48	.60		76.2	
61	\$9 ES 98 AS FS EE 54	1/4"	200	-60	-12	80.0	
	99 90 92 92 14 99 18	1/4"	200		.115	80.8	
73	Pump eirculation; AS hr. cyanidation	1/4"	100	-60	.105	82.5	
74	ng bas in cyanidation	1/4"		.60	.13	78.4	
75	Mercuric cyanide	1/4"	100	•593	.13	78.0	
73	H2SOA 3% leached 5 days at 1/4s		100	.613	.13	78.6	
78a	Acid residue eyenided 48 hrs.	1/4"					
780	" " with HgCH		20	.62	.07	88.6	
78c	14 11 10 No. 15/0/23		20	-613	.07	88.6	
78d	THE ME WAS A STREET		48	-576	.075	87.0	
780	with HgCH		4.3	.578	.07	88.2	
781			100	.593	.073	87 d	
78g			100	.592	.075	87.4	
55	Metallic mercury used		100	.604	.075	87.6	
"	Roasted at 350°C; non-magnetic portion	1		4000	0017	01.0	
	reroasted at 700°C; cyanided	20	150	-515	.125	75.7	
4	The ore was reasted 155 minutes at 300	PC.					
63	Cyanidation 72 hrs. 2 lb NaCK sol.	20	M	1			
63a	" 48 hrs. " "	20	None	.623	.195	66.6	
64a	" 72 hrs. " " "		100		185	68.5	
646	" AS hrs. " " "	1/2"	20	.586	.145	73.3	
640	7 48 hrs. H 4 H	1/2"	65		-14	74.2	
AND THE	40 145 8 0 11 11 17 17 17 17 17 17 17 17 17 17 17	1/2"	100		.14	75.2	
					-		

(1) The addition of an excess of associa to the pulp during cyanidation does not materially improve the extraction.

⁽²⁾ Treatment of the calcins with H2SO, prior to eyanidation increases the extraction about 10%. That is, the average extraction by symidation of acid-treated salcine is about 90%. Acid treatment may be applied to calcine as coarse as 1/4 inch by percolation and the acid treated residue may be symided as coarse as 20 mesh. The lower limit of acid strength which is effective has not been determined.

⁽³⁾ Low temperature roasting, removal of asgnetic portion and reroasting of non-magnetic portion to about 700°C. did not produce a calcine as emenable to symmetric as the straight 700°C roast.

1937-5

ROLL TIRG-CYANIDATION

U. 3. BUREAU of MIRES - Leaver, Woolf, Jackson

Summary: (Continued)

(4) Extreme exidation of pulp during symidation, accomplished by means of a centrifugal pump, by flotation machine, or by a chemical exidizer, gave erratic results and it indicated that such procedure will not be beneficial. These tests were made on calcined sulfide ore.

(5) Direct symmidation of calcined sulfide ore ground to different sizes showed that the calcine should be ground to at least 43 mesh for best economic results. These results were checked by a mixing assay test on a composite sample

of cyanide residue.

(6) A high-temperature (300°C) long period (2 hours and 35 minutes) roast on sulfied ere produces a calcine less amenable to direct symplection than the ealeine from the usual (700°C, 1 hour and 30 minute) reast.

(7) The use of mercury either as a cyanide or as metallic mercury is of no

benefit in the eyanidation of acid treated calcines.

(8) Sulfuric acid solutions from calcine treatment shows areenic and iron to be the main elements in the acid wash. There were also present detectable amounts of calcium, alumnium, molybdomum, vanadium and magnesium. Copper, lead, silicon and nickle were also present.

From this determination it appears as if iron and arsenic might be the

troublesoms coating removed from the gold by the said wash.

SISTER

Purpose of Investigation:

To determine if the sulfuric acid strength could be brought back to 3% strength and reused.

Procedure:

Decanted acid solutions from test 78 were brought to a 3% strength and a series of tests run at different mean calcine grinds.

Results:

The extraction was 12% lower than extractions with fresh acids. Weak acid solutions cannot be reused for leaching unless some method of purifying the soid can be devised.

Purpose of Investigation:

To determine gold extractions of a calcine produced from a rotary furnace.

1937-7

ROASTING-CYANIDATION

U. S. HURRAU OF MINES - Leaver, Woolf, Jackson

Procedure and Results:

Tost	Rossting Conditions	Results			
No.	Sise of Orind	Assays Os Au/tom			
37A 82b	1/2" 1000 55	10 135 Trails 10 10 10 10 10 10 10 10 10 10 10 10 10			
826	1/2# 1250 65	.585 .12 79.5			
	1/2" 1500 65	.58 .12 74.2			

These results again show that 1250°F or 700°C is the best temperature for roasting.

Purpose of Investigation: To determine the effects of pretreatment on a 1250°F calcine.

Procedure and Results:

(Donas A	Roost	ing in a retary furnace was made on a 1/2"	oaleine	at 1250°	F.	
Tost			Final	-	Rosults	l
No.	** **	Pretreatment of Calcines	Grind	Heads	Talls	
esa,	145 207	2% Agitation at 1/2" 22 hrs.	Origed 20	-592	falls ours	子。
85	- 19	" some; grind in lime water	200	.567	-055	90.2
88	66	" Agitation at 20 mesh	20	-604	.075	87.5
89	196	" same; grind in lime water	200	-595	-06	89.8
86		agitation at 1/2"	20	.589	.11	81.2
87	MP.	" same; grind in lime water	200	-620	.09	35.3
90	64	" at 20m	20	.580	.11	80.5
91	49	" same; grind in lime water	200	-562	.085	
92	4	" at loom	100	-573	.13	84.7
93	軸	" at 200m	200	-573	.10	80.5
94	Grind	in NaCN Solution	200	.547		82.4
			Marie M.	a Jak	-093	82.2

Calcines at 1/2" maximum size gives as good regults by ecid treatment followed by finer grinding for symmidation as are obtained if the calcine is crushed to 20 mesh before acid treatment. Grinding of the acid treated residue to minus 200 mesh for symmidation increases the extraction approximately 3% over that obtained by cyanidation of the acid treated residue at 20 mesh.

Purpose of Investigation:

to determine the effect of quenching hot ealeines.

1937-7
ROASTING-CYANIDATION
U. S. BURBAU of MINES - Leaver, Moolf, Jackson

Procedure and Results:

1/2" ere was roasted 85 minutes at 700°C. The hot calcines were quenched in the following solutions at 1/2".

Test					Regult	\$
			Final	Assays	Os All	7ton
765	Notice.	Pretroctment of Calcines	Crind 20	Heads	78118	The Water
		la lil agitation for 22 hrs.	20	.51	.10	30.4
96c	19	日 日 中 日 日 中	200	•537	.10	81.3
97a	Hater	agitation	20	.556	.125	77.5
97c	传	ground in lime	200	.568	.115	79.9
982	H2501	1% agitation for 16 hrs.	30	-553	.11	79.8
980	\$8 P	特 持 姓 姓 世	200	.545	.11	79.7
995	Water	agitation " " "	20	.495	.12	75.3
990	25	" ground in lime	200	.500	.105	79.0
1000	H-304	1% no agitation	20	.530	.115	78.5
100e		" " ground in lime	200	.523	.105	80.0

Same Py

Quemehing of the calsine, in general, increases slightly the extraction of the gold and that quenching in 1% M2301 is somewhat more effective than quenching in water. Extractions from quenchings are not nearly so good as if calcine is leached for four days with 2% M2301 or agitated 24 hours with 2% M2501 solution.

for four days with 2% H2SO, or agitated 24 hours with 2% H2SO, solution.

Treatment of the calcine at either 20 mesh or at 1/2" with a 2% H2SO, solution fellowed by washing and treatment with cyanide at 20 mesh gives an extraction of 87%. The same acid treatment followed by cyanidation after grinding to 200 mesh gives an extraction of 90%.

It is definitely established that preliminary treatment either with water or asid is more effective if applied to coarse calcine.

15/5/5

Purpose of Investigation:

To determine effects of pretreating a calcine roasted at 1000°F.

Procedure and Resulte:

After crushing to 1/2" the ere was rested at 1000°F in a retary furnace. The calcines were ground to minus 150 mech for cyanidation. Pretreatment at 1/2".

Test								ASSAYE	ON AM	ton			
No.		Pretre	stment o	f Calos	ings			Heads	Tails	WENG.			
No.	Water	agitation	a et LOs	C for A	Lla here.	Dil.	1:1	901	Pails	78.5			
109	有 學	a	27 27			Dil.		. 571	.115	79.8			
		(10	esta con	Linued	on aext			439	as o except				

1937-9
ROASTING-CYANIDATION
U. S. EMREAU of MIMES - Leaver, Woolf, Jackson

Procedure and Results: (continued)

												Electrical Alberta Bartis	
Test											Assayo	OS 201/	ten
		Pr	etrestac	mb of	Cal	eine	0				Foncia	yeals	Militare.
110	HoSOL		ALEWICA					hra.	Dil.	1:1	-61	107	10.0
111	19	14	98	動	19	12		群	粮	2:1	.27	.065	88.6
112	n	24	69	帧	47.	解	100	*	4	1:1	×55	.04	92.7
113	8	23	年	99.	29	Ħ	饠	\$15	69	2:1	.595	.045	92.04
IIA			at 150m	in 2	110. 1	Ca/TE	LS	de prote	200	401	.5779	.205	61.6
lika			ation at						10	lel	•573	11	80.8
		William G						-		75		.10	80.9
like	解	46	韓	牌	96	Sal.	-		黻	211	0,524	has the same	
1140	RgSCL	10%	辫 鲷	透	授	29	帶		100	1:1	.545	*085	Bhob
1145	28 mb	動	報 報	1/8	48	28	49		持	2:1	~554	.065	68.2
2344	賴	25	39 10	按	8)	90	99		99	2:1	.522	.06	36.5
1144	9	賴	18 N	19	29	野	報		98	2:1	.59	206	69.6
MATERIAL PROPERTY.											W 1		

Demoles

The results show that the enicine produced in a retary families at maximum temperatures of 1800°F is especially amenable to eyemidation after adid treatment. Direct eyemidation or eyemidation after treatment with warm water does not give as high entraction of the gold as was obtained by the same method of treatment on the calcine produced in a retary furnace at a maximum temperature of lagoof.

Tosts show definitely that preliminary treatment with 2% Bg30, solution is effective in raising the extraction to about 90%. Also preliminary treatment with warm water is effective in raising the extraction to about 85%. Both sold and water treatments are more effective if applied to relatively coarse calcines and may be applied to the calcine as it comes from the furnase without further granding.

Sulfarie acid, which had been used for leaching calcines, was allowed to stend two days during which a valuations bulky white percipitate formed. The percipitate contained chiefly iron and arcenic and some lead, silica, molybdomum and aluminum, and traces of antinony were found. The solution became saturated with arcenic so that it was not offective when used a second time.

Purpose of Investigation:

1/10 deberript if an emidizing ress gave a calcine more manuable to examidation.

Proposition out Tosuits:

1/1" ere was given an exidising reast for 90 minutes at 600°C. The calsing was ground to minus 150 mesh for symmidation.

1937-9
ROASTING-CLANIDATION
U. S. EUREAU of WIEES - Leaver, Koelf, Jackson

Procedure and Results: (continued)

Test										AMERICA	Ca Au	
115			rotro	etes	ent o	f Ga	laines			Heads	fails	sizet.
	Cyenia	deal :	In 5 1	Da I	Nach	sol.	for 48 hrs.			322	T.	75.3
2156	Water	agi	tetion	at.	40°C	for	18 hrs.	Dil.	3.3		100	
1154	29		41	64	19	10	10			-533	ala	73.7
1151	M230A	145	**	23	Eg	29	28	Dil.		-527	.14	73.5
115%	41	- Maria	10	270	96			Dil.		-543	24	74.2
1153	107	Sund				鳄	28	Ml.		.552	.135	75.7
		2%	聲	财	26	212	46	Dil.	Lal	-535	.245	73.1
1151	19		樊	62	驗	119	ret.	Bil.	2:1	-535	-12	77.6
										THE REAL PROPERTY.	Street, Square,	20 E 10 CO

The ealcine from 115 roasted in an externally fixed rotary furnace. The temperature was reised to 630°C before adding any gases; thereafter, for 90 minutes a mixture of air and 50°C was passed through in contact with the charge. The temperature varied from \$46°C to 610°C. Calcine was ground to minus 150 mech for dyenidation.

116d	Cyania Water H2SCA	led ly ly ly ly	in 2 l tation	概念 財 財	MACN I	for a a a	f 02 24 8 8	r 48 hre.	Dil. Dil. Dil.	2:1 1:1 2:1 1:1	-535 -549 -534 -550 -522 -538	.095 .095 .09 .125 .105	82.3 82.5 83.2 77.3 79.9 81.3
And Agent	F#	46,76	re	465	PT.	2.0	44	17	Dil.	2:1	.590	«Q65	88.2

STIMBLE TO 1

A T

To date work shows that reasting for 1g hours to a saximum temperature of approximately 700°0 under exidizing conditions with fairly close control of the temperature during the first hour of the reast consistently produces a calcine that will allow an extraction of 80% by direct symmidation, or approximately 90% after preliminary treatment with sulfuric acid.

4/1/20

Purpose of Investigation:
To determine if a 1500°F resat would give a good extraction after preliminary treatment.

1937-10
ROAD PIRG-CYARIDATION
U. 3. BURLAU of MIRES - Leaver, Roolf, Jackson

Procedure and Results:

1/2" ore was reacted 90 minutes at 1500°F. The calcine was ground to minus 150 mesh for cyanidation. Protrestment of calcine was at 1/2" size.

						经期间私办						
Test				Asseys	OS AN	/tem						
No.		1	Pretrea	Noeds	Twils	SAME.						
No.	water	A.C	Cation	at	140°C	for	24	Ers.	P41. 1:1	.529	210	77.55
1175	12		物	29	28	57	29	89	D11. 2:1	-565	-13	78.7
1174	H2804	1%	44	40	中華	14	28	55	mil. 1:1	.563	.12	79.7
1175	*	49	49	84	96	100	14	财	Dil- 2:1	-647	-12	80.7
117h	1/2	27	100	32	63	響	58	†3	Dal. Lil	.547	125	78.0
1175	89	19	29	额	99	쮚	财	糖	Dil. 2:1	-539	80.	85.1

PARTITION 8

These results show the calcine from the 1500°F reast in the retary-type furnace is not as amenable to preliminary treatment as calcine from the 1000°F to 1250°F reasts.

Purpose of Daysetigation:

Permer tests on a 1250°P calcine showed that preliminary treatment with warm water followed by cycnidation gave an extraction of about 85%. Since this is the only calcine that has been materially benefited by preliminary water treatment tests 119-119a were made to check these previous results. Treatment at the Getabell Mime is to be as follows:

Calaine ground in water; thickened; partially washed. Soda eah to thickened pulp; agitated; dematered; symmission.

Procedure and Results:

1/2" ore resisted at 1250°F. The calcine was pretreated at 1/2". The calcine was ground to minus 200 mesh for symmidation.

			Foam's	·
Tent		ABGRY	OS AN	Loca
11ÿ 120	Water agilation at AOOC for 24 hre. Dil. 2:1	Neads -553	7011A	SERVE.
1.20	Water grind; wash; Soda Ash 2% col. agitation 20 hrs. at 40°0; filtered; c; amidation.	.547	.065	Shak
	These results show that Seds is no more effective than a water mash. They show mater is effective on			
121	a 1250°F Calcins. 1/4° ore reasted at 600°C and pretreated. Grind for eyamidation was minus 200 mesh.			
Lalb Lale Lale	Water saltation at AQ°C for 21 hgs. SSOL 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-63 -63 -629	.12 .065 .04	79.4 93.7 93.6

ROASTING-CYANIDATION

U. S. RUREAU of MINES - Leaver, Woolf, Jackson

Summary:

These results show a water treatment is not effective, but sulfuric acid in a 2% solution is very effective.

Purpose of Investigation;

To determine effect of roasting in an atmosphere of sulfur diskide.

Procedure and Results:

1/4" ore was reseted in an atmosphere of sulfer dioxide. 1/3 502 and 2/3 air passed through the furnace during the roast. Roasting time was 90 minutes at a temperature of 650°C. The calcine assayed 0.95% 3 and 0.101 SOL. The calcines were ground to minus 200 mech.

Test No. 124 1244 1247 1241 1241	Water H2SO4	24 14 24 24	Pretrea Beslon "	A C	nt of	Cal Tor	21	ASS.	at n	101 . 10	2:1 1:1 2:1 1:1 2:1	Assay Heads -59 -60 -66 -675 -69	7ails -10 -08 -065 -06	*/ton **250.0 **33.0 **6.7 **90.1 **91.1	
											and discorp	•07	.055	92.0	

MAID.

Purpose of Davestigation: To roast in presence of excess SO2.

Procedure and Results:

A salcine was re-roasted in the presence of SO2 for one hour at 600°C wader exidising conditions in a smalle furnace. The feed was 1/4". Pretreatment of the calcine was at 40°C for 24 hours at a 2:1 dilution. Calcines were then ground to minus 200 mesh and agitated 24 hours.

		the second of th
Test He. 1256 1256 1266 1264 1266 1276 1276	Pretroatment of Galeines H2SO, 18 Water (Single SO ₂ Roast) Trena 5% H2SO, 2% H2SO, 2% H2SO, 2%	Results Assays Os Au/ton Beads Tails XExt. -645 .065 89.9 -625 .05 92.0 -705 .05 92.8 -535 .08 85.6 -485 .09 85.5 -535 .045 91.6 -53 .06 88.7 -46 .05 89.1 -50 .04 92.0

Summary:

The results of these two series of tests, 126 and 127, show first that roasting in the presence of excess sulfur dioxide followed by a partial oxidizing roast produces a calcine, which, after treatment with warm water, can be cyanided with an extraction of about 85% of the gold with relatively low cyanide loss. Secondly, the results show that if the calcine from the sulfating roast is further roasted to obtain more complete exidation, the extraction by cyanidation after preliminary warm water treatment is close to 90% of the gold. Use of a trona solution for preliminary treatment of the calcine appears to be of no particular benefit ever the warm water treatment. Treatment of the calcine with sulfuric acid solution still produces a residue more amenable to cyanidation than that produced from the water treatment. However, the difference in extraction is not very much in the case of this calcine and the additional lime and cyanide consumption for an acid treated residue will offset in part the small increase in gold extraction.

In general, the results of this type of treatment on the Getchell ore, that is reasting in an excess of sulfur dioxide to obtain sulfating conditions followed by reasting under exidising conditions, indicate that if this method can be worked out in a commercial menner it will mean approximately 10% increase in the gold extrasted from the sulfide ere. That is, a warm water wash for a calcine of this type prepares it for an extraction of about 90% of the gold by symidation, whereas in the straight exidising type of roast it is necessary to acid treat the calcine in order to preduce a residue from which 90% of the gold can be extracted

by eyamidation.

1996

Perpose of Investigation:
To further determine benefits from re-reasting.

Procedure and Results:

A 1/4" feed was given an oxidizing roast for 120 minutes at 600°C. Loss of weight was 5.8%. This calcine was re-roasted for 180 minutes at 650°C with equal parts of air and SO₂. (Oxidizing preceeds sulfating.) The calcine after treatment was ground to minus 200 mesh and agitated with a 2.0 lb. NaCN solution for 48 hours. Pretreatment was for 24 hours at 2:1 dilution.

			Result	
Test		Assay		
No.	Pretreatment of Calcines	Hends	Tails	85.3
No. 1286	Direct cyanidation	.547	-08	
1284	Weter agitation wash	•53	.07	86.8
1281	H2SO4 28	-53	.05	90.4
	Rossting conditions were reversed as the			
	exciding reset was first; this was followed by a			
	sulfating roast.			
1290	Direct cyanidation	.495	.065	86.48
1290	water agitation wash	.53	.065	84-9
1291	N2 SOL 25	- 546	·O45	91.1
1.29h	Water	.505	-09	61.2
1.291	H2504 25	-55	.05	90.9

1938-1

ROASTING-CYANIDATION

U. S. BURHAU of MINES - Leaver, Woolf, Jackson

Summary:

The gold extraction is not as high as the tests with a sulfating roast followed by an exidizing roast. Sulfating has the merit of producing a calcine less refractory to direct symmetries.

Calcine symmidation residue sizing test. \ ecaposite sample of residues from roast symmidation test on a 0.61 curse head.

Results:

	Weight	Assays	Distribution
Freducts	16	Oss. Au/ton	Moold
Heada	100,00	-114	and 100 ° 00
Plus 200 mesh	11.12	.095	9.29
200/300	16.93	.100	14.87
Finus 300 mesh	72.95	.120	75.84

SWEELERY:

The results of this test shows some concentration of gold in the minus 300 mash size. It also shows a grind as fine as 200 mesh is not necessary. It indicates that the gold in the residue is coated or allayed to retord or prevent its dissolution in symmide.

Purpose of Investigation:

To determine how betchell Plant calcines responded to pretrestment in the laboratory.

Procedure:

Ore for all tests reasted at minus one inch in the plant kilms.

(1) calcine crushed to minus 1/2" then egitated 24 hours at 2:1 with a 2% M2SO, solution. Filtered, washed, ground to minus 65 mesh in cyanide solution, agitated at 3:1 for 24 hours.

(2) Same as A except water used as a wash prior to eyanidation.

(3) Calcine as delivered from kdln, crushed and ground in eyanide solution, without any preliminary treatment.

Results:

Toot		Assays	
No.	Heads	Tails	SEX .
1	.203	8,40.	76.4
2	.202	.061	69.6
3	.20	.067	66.5

1936-10-11 FLOTATION-CYANIDATION U. S. BUREAU of MINES - Leaver, Woolf, Jackson

Purpose of Investigation: A follow up on preliminary flotation sork done in 1935 on ore from the transition some.

Procedure:		Timo	
No. Fletation Practice	Crini	MAR.	Reason to
2 Plost arsenie but no gold; syanide tails	- 80 80	8 5	CA 2-5
3 Cyanide flotation tails & Float only areenis; cyanide tails	100	5	CA 2-51/15
6 Sulfide float; cyanide tails 7 Ploat arsenic; cyanide tails	200	17	CA
8 Sulfide float; symmide tails	200	17	2-5 CA
ll Arsenie fleat; cyamide tails 12 Arsenie float; cyamide tails	35	5	GA

Results:			AS	eays Os Au/ton		
7881		Plotati	.on		Cynnida	itlen
NO o	Heads	Cone .	Pails	Alag.	-03	63.2
2	.22 .22	.68	.21	7.5	.105	52.7
3	.22	.43	.21	8.5	.11	47.9
4	.22	.27	.22	6.6	.08 .05	63.8
6	.212	.58	.19 .205	33.3 9.35	.087	59.3
8	.229	.63	.165	37.8	.042	75.2
11	.228	.34	.224	5.1	.062	72.8
12	.223	.25	.222	5.1	4477	\$ O

Summary: I. Some 40 to 50% of gold is refractory to direct eyenidation even when ground to minus 200 mesh.

2. Virtually all of the realgar and orpinent can be removed by flotation, in a minus 20 mesh feed without removing more than 5% of the total gold.

3. Straight flotation with a minus 200 mesh grind recovers 40% of the gold

in a low grade consentrate.

4. Flotation recovers a gold refractory to cyanidation. An overall recovery of 85% can be made by flotation and direct cyanidation of the flotation tailing.

5. Flotation of arsenie; roasting; sysmidation yields a net extraction

(dedusting gold in arsenic soncentrate) of 70%.

1937-2

FLOTATION-CYANIDATION

U. S. BUREAU of MINES - Leaver, Woolf, Jackson

Procedure	
《图》为的。由中 种为"企业》	ij.
digigly-excelled hygotiched patentian warness	
William was all	

Test				
15	flotation Practice	Grind	Time	Reagents
15	To raise sulfide concentrate grade	Crind	I ga	Land State and S
15d	Cyanidation of flotation tailings from \$15		481	1.5/WACH
150	Flotation tails sysnided with Bromo-MacN		961	
17d	10 17 17		431	1.5/WaCN
17e	99 59 59		961	
19	Sulfide flotation; cyamide tails	200	18r	2-5
19a	Plotation tails cyanided with Bromo-NaCN		481	
20	Sulfide flotation; cyanide tails	300	18"	2-5 Na2CO3

1			Assays	Os Au/ton		
	Motat	i cara			Cyanid	ation
Heads	Cont s	Tails	Mes.		Talla	a Mile o
-224	1.04	.165	effertiller-v-kennet bill stillib		600	64.9
		.17			.045	74.3
		.17				72.0
		.17				72.0
.231	.65	.155	43.2			64.3
_						68.4
.219	.42	.155	44.0		.05	71.3
	324 .231	Heads Come. 1.04	Heads Come. Tails -224 1.04 .165 -17 -17 -17 -17 -155 -155 -155	Heads Cape. Tells Tree. 1.04 .163 .17 .17 .17 .17 .17 .17 .17 .1	Heads Cons. Talls Tree. 1.04 - 1.05 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.	Heads Come. Tells ARec. Talls Oct. 155 .05 .05 .17 .05 .05 .05 .17 .05 .05 .05 .155 .155 .05 .05

1957-3-1 and 2

Purpose of Investigation:

To sompare flatation results of different ore semples.

Procedure:

A sulfide float was made after a 200 mesh grind. Flotation time was 17 minutes with 2-5 as the promoter reagent. Flotation tallings were cyanided with a 2.0 lb. NaCN Solution.

Results	3	993 4 4.4		aye Os Au/ton		
fest		Plotati	LON		Cyanida	PER PROPERTY AND ADDRESS OF THE PARTY OF THE
No.	Heads	Cone.	Inile	17.00.	Palls	SERS
I	.649	2.08	-40	48.3	.135	68.9
A	.366	.94	.24	46.2	.125	50.0
5	.602	1.62	· hl	42.8	.13	69.1
6	.592	1.52	.41	42.2	.14	66.7
7	.611	1.62	.39	A7.6	.13	69.3
8	.590	1.60	.38	46.7	.15	64.9

1937-3-1 and 2
PLOTATION-CYANIDATION
U. S. NURLAU of MINES - Leaver, Moolf, Jackson

Different ore samples have consistently given different results. The final residue from direct cyanidation of the flotation tails is about the same as the residue from cyanidation of the calcine.

1937-1

Purpose of Investigation:
To investigate pretreatment of the ore prior to flotation.

19 Wash the o	Pretreatment re; float slis			tion		51me 1/4" 1/2" 100 100	Time Min. 10 10 10	Reagests 2-5; #31 2-5; #31 2-5; #31 2-5; #31
Results: Test Slime No. 5 Et. 17.2 20 13.9 21 22	Gold 2010t. 23.3 22.6	Heads -32 -50 -30 -56	Flotat: Come. 1.98 2.15 2.30 1.56	Tails -59 .61 .285	9.0 9.0 9.0 49.3 56.9		Cyanid fails	58.0 68.0

The results are the same as without acid treatment.

1937-10

Perpose of Investigation:

To try the flotation scheme that was so successful on a similar ore at Mercur,
Utah.

1937-10
PLOTATION-GYANIDATION
U. S. BURHAU of MIMES - Leaver, Woolf, Jackson

Procedure:

Part of the manthate was edded to the grinding circuit, the pulp conditioned with sopper sulfate followed by sods ash addition to a pH of 3.0.

Test No. 122: 2-6 was used in a 200 mesh grind. Flotation was for 18 minutes at 22% solids. The flotation tailing was symmided for AS hours with a 2.0 lb.

NaCH solution.

Results:

Assays Os Au/ton

Heads Conc. Tails TRec.

175 ST.9

We improvement over other results.

1937-2
WISCELLAMEOUS-CYANIDATION, BIRECT
U. S. Bureau of Mines - Leaver, Woolf, Jackson

Purpose of Investigation:

To determine if grinding the ore to minus 300 meen would aid extraction.

Procedure: Tests #13-14

The ore was ground to minus 300 mesh and cyanided 96 hours at 4:1 dilution with a 1.0 Lb. NacW solution. Cyanide consumption was over 4.0 lbe. per ton and lime consumption approximately 16.0 pounds.

Results:

A C.2302 head gave a 0.09 residue for a 60.0% extraction.

Purpose of Investigation:

To determine effect of pretreating the ore prior to equidation.

Procedure and Results:

A minus 20 mesh ore was cyanided for 48 hours at a 4:1 dilution with a 2.0 lb.

Tost			Results	B
70.	Pretreatment	Assay	S OS AN	/ton
	Direct cyanidation-solution very foul	Heads	Tails	EExt.
10	vired dyshidation-solution war for 1	•53	.27	48.3
1 E	Nobel Zk - 6 days said trantment	-515	.27	47.6
(10	Same Bold treatment followed by 100 mash and	-525	.27	47.6
72	HNO3 in place sulfuric acid treatment no benefit	•55	.275	50.0
		No	ot effec	tive

Purpose of Investigation: #76a

To eyemide the ore directly; float the areenic and regrind and resymmide.

Procedure:

The ore was cyanided at 20 mesh at a dilution of 3:1. Solutions were very foul with a cyanide consumption of 10 lbs. NaCH. The cyanide residue was floated at 20 mesh to remove the arsenic minerals. The floated to tailings were ground to minus 100 mesh and refloated to resover the gold, activating with Na2CO3 and CaSO4.

Results

Assays Os Au/ton Heads Tails SExt.

Re-epsnidation

This method of treatment is definitely out because of high evanide consumption and low gold recovery.

1937-2 MISCELLANGUES-GRAVITY CONCENTRATION U. S. BUREAU of MINES - Leaver, Woolf, Jackson

Purpose and Procedure of Investigation:

To determine if some of the gold could be concentrated by gravity. A cyanide residue from a 200 mesh grind was carefully panned. One small thin piece of gold was seen under the microscope.

Rosults:

Heads Fan Cone. Tails KRec.

0.13 0.876 0.12 1.8

These results indicate there is little chance of effecting any concentration of the gold in the cyanide residue.

Purpose of Investigation:

To obtain information on how the insoluble portion of the gold is associated with the other constituents of the ore. Roasting tends to liberate some of the gold, but also tends to lock up gold as an insoluble complex in such a manner that it remains insoluble in cyanide.

Microscopic Examination:

Portions of ore crushed to minus 20 mesh, as well as coarser sizes, were examined in various ways under a microscope. This included examination of concontrated portions, before and after treatment with acid.

The following minerals were identified: Realgar, orpiment, pyrite and areenopyrite. There is a possibility that pyrrhotite and marcasite are present in very small assounts, but the identification of these two minerals is not definite. We free gold was detected in any part of the microscopic examination, which indicates that the gold is extremely, finely divided, and possibly disseminated through all the minerals.

To determine how much of the gold is held in the miliceous portion of the ore, a number of aqua regia dissolution tests were made. The treatment with aqua regia, as applied in the following tasts, is drastic enough to disselve all of the constituents of the ors except silics and earbon. Therefore, the residue from the treatment with aqua regia would contain only that portion of the gold enessed in the silica and in may cartonaccous material. Aqua Regia Test No. 1

This test was made on original ore ground to 90% minus 100 mesh. The residue from this test assayed 0.0175 ounce gold per ton from a 0.220 head.

Aqua Regia Test No. 2

On a cyanide tailing from which realgar and orpiment had been removed by flatation. Residue assay 0.0125 oz. Au/ton. Aqua Regis Test No. 3

Fletation-symmidation residue after aqua regia treatment assayed .0075 oz.

An/ton.

Aqua Regia Test No. 4

Weads had been floated to remove realgar and orpiment, then roasted and the calcine treated by cyanidation. Head ascay 0.04 - Aqua regia tailing 0.01.

Chemical	MEL.	al;	T'S.	is	0.	e	the ore:	
sic	esto	400	400 Miles	(10)a-	-cittle	esta-	71.05%	
Fo	400	dip	de	ADJON	stin	dips	4.68	
36	400	900	MER	visite	saltr	00	Mil	
AM	460	-Biller	400	High	eds.	4/06	0.6302	Mu/top
Al ₂ O ₃		4/0	ess	- Aller	eliga	dns	9.28	, , , , , , , ,
ంద్ ే	4700	AGIA	90	680	regan	900-	2.14	
真趣	400	1000	CTOP .	492	War.	quip	2.36	
3	2000	mp	rith	mytte	400	400	2.71	
Unace		ust	00	1 1	or	4	7.33	
Total						3	00.00	

1936-11 MINERALOGICAL DATA T. S. BURKAN of MINES - Head

THERET?

In general, the results of the aqua regia tests show that if all of the gald not incased in siliseous material or sarbonaseous matter could be recovered them a fairly high extraction would be made. Also, a lower aqua regia residue is obtained on material, previously treated by flotation and eyamidation them is obtained on original feed. This indicates that some of the small amount of gold recovered in the flotation compentrate is apparently not dissolved by the aqua regia treatment. Test No. A above shows further that the reasting treatment has leaked up some of the gold in a manner such that it is not soluble in sysmide but is soluble in agus regia.

The net results of the microscopic examination and of the aqua regia tests, from the prostical standpoint, show that less than 10% of the gold is locked in the milies or in any other way so that it resists dissolution with aqua regia. It appears then that if the gold could be released from the sulfides or their alteration products by extremely fine grinding, or by reasting in such a way as to liberate the gold without forming insoluble gold complemes, an extraction of about 90% should be economically attainable. The following tests have been made, keeping in mind the results and tentative conclusions of the aqua regia tests.

5. BUREAU of MINES - Hoad, Oldright, Zimmerley

Purpose of Investigation:

To emmulae a residue obtained from a 710°C reast of a 10 much feed. The calcine was leached with sulfuric acid for 24 hours; washed; ground to mimus 100 mesh and eyenided. Reads 0.66 es. Tails 0.06 es.

In summing up the results of microscopic examination of the Getchell ore and tailings, the facts seem to be as follows:

(1) The greater portion of the gold occurs as metallic particles that are coated or obscured to the extent that they are not recognizable in a passed concontrate. The majority of these particles, however, are soluble in sysmide since but five free gold particles were observed in a tailing panned from the residue after 46 hours syanidation. It is evident that these particles, which were termished to a dark supper seler, are refractory to evanide under the conditions of the treatment given.

(2) Since no additional gold was found after dissolving exide iron particles with HCl + SmCl2, it appears that gold bearing pyrite particles, after reasting

may yield their gold to evenide.

(3) Since additional gald particles were found in the consentrate panned from the tailings after the pyrite had been reasted and treated with HCL + SmCl.20 it is known that it is necessary to roast completely all the pyrite in the Setchell ore to insure that cyanide comes into contact with the gold particles

(4) The finding of free gold particles in the syamids residue indicates that some gold has actually been liberated by the mechanism of reasting and also evidences the fact that the contact of gold particles with eyamide solution does not insure their dissolution.

1937-2-4
CYANIDATION-PLOTATION CONCENTRATES
U. S. BURGAU of MINES - Leaver, Woolf, Jackson

Purpose of Investigation:
To roast and evanide flotation products.

Procedure and Results:

206	Product Treated Plotation elegner talling Plotation elegner Concentrate Plotation Rougher Concentrate 1937-4 Flotation Concentrate	Reastin 200 200 200 200 200	Time Min. 90 120 90 90	1tions 1eap. 620 770 670 720	Assa Heads -27 .806 -47 1.98	Results ys Os Al Tells -05 -10 -08 -32	1/ton 51.3 87.6 32.4 83.8

This recovery seems to be the maximum by flotation, cyanidation of flotation tailing, and reasting cyanidation of flotation concentrates.

The concentrate calcine is as refractory as the ore.

1937-3 ROASTING-CTARECATION THE DEAT CLETARY - Darty

furpose of Investigation:
To develop a method of recovering the gold from Setchell sulfide ores.

The all tests the resider charge was rabbled every five minutes. The ealeine was ground to minus 200 mesh and quanided for 72 hours at a 2:1 dilution with 3 lb. Nach solution.

		Rosati	n/ Condi	tions		Read Pr	illa a
Test			Plan	Temp.	ABBAY	B UR AU	V ton
NO.	Fretreatment	5188	Mine	*0	Heads	Tails	Strate 0
25	NaOH 5 lbe. I ton during Arladin		60	100	.349	0075	78.5
26	SARO	10	120	700	.349	.07	80.0
27	Sarse	10	120	400	.349	.08	77.2
29	Same	10	60	600	-355	.073	77.7
30	Samo	10	120	600	.355	.U78	77.7
4.9	Camp	35	60	900	-366	.155	57.7
50	Mon-exidising rest	35	60	650	.355	.12	66.2
51	Sape	35	60	400	.346	.078	77.5
52	WaOll in grind follow by washing	35	60	600	.353	.088	75.1
53	Same	35	60	600	.353	.08	77.4
54	HoSOL 10 lbs. p.t.o washed	35	60	400	.345	.08	76.9
60	Strong NaCN 7 lbs. p.t.o.	35	60	600	.353	.03	77.4

On direct eyenidation of the ore the exides give 87% extraction whereas the sulfides give 15.8%. Resating at 400°C to 600°C followed by water wash and cyanidation for 72 hours gave on 0.08 bunce tailing. Resating increased extraction about 60% plus.

1937-7

Furpose of Investigation:
To make a good extraorion by rossting without special treatment.

Procedure and Results: Rame technique as in previous tests. issays On Au/ton Time Twinp Test 00 Tails L.Xt. 3120 Mine Heads Conditions No. 300 .15 .20 78 Low temperature roast .065 64.0 .13 100 60 Roasted at 400°C;flosted-cyan. 10 82 5.6 BL .17 No roast; pre line treatment 83 87.4 540 .335 .045 10 180 Slow temperature rise 86 16.7 .18 .15 No roast - Bromo NaCR

1937-7

NO TING-CYANIDATION

THE DORR CRIPANY - Darty

Screen analysis of colcine residue.

	At.	Os. Auton	Z .u. Dist.
Flus 200	3.7	.113	9.9
200/325	20.0	.09	27.2
325/43 microns	8.0	.105	12.7
-Aj mierons	66.3	-05	50.2

STUMBEY:

There is very little increased extraction to be gained by finer grinding. It appears that some other means is necessary to unlock the gold to make it available for symmidation. Rossting does this to a large extent but not completely. The best reasting results were obtained from a slowly increasing results to 540°C in two hours.

1937-3
PLOTATION-GYANIDATION
THE FORE COMPANY - Derby, Realings .

Purpose of Investigation:
To determine amenability to flotation. Flotation heads assayed 0.19 ounces of Au/tom.

Procedure and Results:

Tost No.		Conditions	" make and		Cone.	Assay	Result	Cardia.
2 3	General	Flotation	100 200 200	Reagents H ₂ 30,-25 Ne ₂ 00 ₂ -25 NeOH-0830,-25	8.34 8.46 25.2	65 -47	Tails •145 •16 •12	29.0 20.0 57.0

1981-7

85	Sulfide Flatation Tails #84 roasted	100	Na2003-25	.275	.19	3.6
	60 min. 600°C; eyamided Sulfide flotation				.05	74-4
					.17	12.8

Summary:

A good areanic recovery was made but a very poor gold recovery.

1937-6
RD WARRIEL DAM ANY - Syler

Purpose of Investigation:

To determine the gold extraction on calcines at different temperature rocats.

Trocedure and Results:

The minus 100 mech calcines were consided at a 2:1 dilution with a 1.0 lb.

Test					Hesults	
105		Tonep.	wit.	ABBB) #	Oz Au	ton.
1000		• 7	Time	Heras	Tails	Sixto
1	Cyanidation of calci	nes 1000	Til	.572	.115	31.17
2	e# 14 ey	1000	42	.574	.10	62.76
3	92 £0 40	1200	13	.564	.093	3).40
<u>*</u>	48 16 16	1200	ينه	.559	-09	83.93
5	18 19 19	1500	18	-542	.12	78.73
6	16 19 16	1500	42	.551	.11	30.83
7	ne ee ve	1000	18	.581	.115	81.17
3	P) 14 60	1000	13	.575	.115	81.17
12	98 M tv	1200	18	-532	.07	87.5
13	10m reroust - 1% No		18	.531	.11	79.63

199767

Furpose of Investigation:

To determine the effects of pretreatment of the calcines.

Procedure and Results:

After a roast at 1500°F the calcines were ground dry to minus 100 mean and eyenided at a 2:1 dilution for 18 hours with a 1.0 lb. NaCH solution.

Who m &			Result	of the
Test		Assay 8	Cz. Au,	ton
No.	Fretreatment of Calcines	iteacio	Tuils	· JE
14	water agitation with air fo. 30 minutes	.56	-033	35.2
15	" 10 lbs. E0 for 30 minutes	-556	.093	33.4
16	MegCOg 5f agitation at 200°; for 30 minutes	-553	.07	37.5
17	" 25 " " 107°F for 5 hours	.551	.085	84.3
18	mater sgitation-hot for 3 1/2 hours	.537	.096	83.0
19	Aqua Regia-boiled for 1 hour	.56	olida	93.0
21	Na ₂ CO ₃ 5% heated 190°F for 4 hours	-562	.085	84.8
22	Flotation of calcine with fine Oil	•50		
	Cyanidation of flotation tailing		-557	3.27
23 24	No. 14 No. 16	•53 •52	.10	32.0
25	A00m grind & hrs. preseration	.558	.09	83.8
26	Same but preseration in lines water	•555		T. C.
27	400m 24 hr. agitation in set. 802 solution		-09	83.8
28	H. SO could be seen and seen of some sources on	•55	.125	77.3
ato an	H ₂ 5Q ₁ 20 //ton - 4 hrs. agitation at 120° y	. 544	.055	90.2

1937-7 POASTING-TY WITH PION THE METHOLDS OF SAY - Tyler

TO THE SECOND SE	
「競のあす 塩 「味」「おどす」	284
Ave retreatment of discines	File to
and most writer torround of the st	And Mills with the
211 diution with a 2.0 lb. NaCN solution and	
10.0 lbs. cao	
29 2 hour cyanidation .535 .105	do r
30 A n n	80.5
47 CO	80.5
ν λο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	81.3
33 Acres provide towards manufactured to the contract of the c	78.0
.56 .52	96 .4
Test Teap. Final Hrs. 7	1
	easp.
r. orind Time	·F.
34 m ₂ SO ₁ 22 ma ₂ OO ₂ = 40 lbs. 1 ton 18 hrs. 1500 200 = 7	130
35 " 13 2 3 8 8 7 7 8 8 1 1500 200 18	120
36 " 2% " " " " " " " 1000 200 "	180
37 " 13 " " " " " " 1000 pon 1	1.80
38 Direct symidation for 20 hours 1000 200	en and
37 Mag 70g 20% F. T.C. Granided with Mag CO. 20% 1000 100	120
AD H The animal or with the war with	
4 3/ 1ba 4 7 1 4 No. CM	150
47 Hands 2000 100	2001
Resultes	
All Distriction of Control of Con	
Results	

		Result	8
Tost	从数据以	B OB AU	7tom
No.	Meads	Talls	int.
34	-552	-08	85.3
35	-546	.09	83.5
36	-54	.078	85.6
37	-54	.07	87.2
38	-543	-US	_85.5
39	.556	.06	69.2
40	.568	-045	42.1
4.2.	.569	.08	86.0

190109

Purpose of Investigation:
To find out if there was a difference in extraction between air coaled and quenched calcines.

1937-9

ROASTING-GYANIOATION
THE MERRILL O ETANT - Reler

Procedure and Results:

The calcines were taken directly from the kiln and quenched in a 10 lb. Trona solution. The calcines were ground to 85% minus 100 mesh and symmided with a 3.0 lb. Na.M solution for 19 hours.

Year was the Mit apprendicts that The Th themstee	Contra Co	
Jen.	Ronst Assays Os AM/ton	
No. Pretreatment ground: granided	"Y Heads Tails Kint	0
A5 menched; ground; ayanided	1000 .69 .065 90.5	
46 tir cooled; " "	1000 .54 .055 89.9	
47 useshed; " "	1250 .56 .055 90.1	
48 Air cooled; " "	1250 .585 .06 89.8	

17.65

Purpose of Investigation:

To pretreat Gotabell Plant reasted calcines and determine which treatment gives the best gold extraction.

Prosedure and Results:

The calcines were ground to minus 200 mesh, after being pretreated, and cyanided with a 2 lb. MaCN solution. Results

rest		Assayi	B OB AW	LOW
No.	Protrontment	Heads	Tails	ALX .
52	Water leach - 112 F for 20 hrs.	.221	.04	Sizat.
53	water leach with milk of lims 20 hrs.	-235	.05	78.7
54	Trona leach 10# 1 ton for 20 hrs.	.23	.05	78.3
55	Water leach - cold " " "	.22	.07	68-2
56	H2SQ 2% leach at 1:1 for 18 hrs.	.226	-08	64.6

וביונו

Purpose of Investigation:

A getchell Plant kiln comparite sample gave the following results.

					ABBOYS	Cora
Rosults				& Ht.	On Ass tens	Dist. I
Hesh	enalysis	Plus	6	52.5	0.22	11.5
	analysis	Mirros	6	47.5	0.39	
						18.5

#1 - Wiln discharge ground to 90% minus 200 mesh and cyanided 24 hours.

#2 - Kiln discharge re-roasted one hour at 1050°F (ground to 90% minus 200 mesh and eyenided 24 hours).

Plus 6 mesh	12 Text.	89.2
Minus 6 mesh	79.6	87.7

1938-5 ROASTING-CYANIDATION GETCHELL MINE - Work, Goodward

Purpose of Investigation: #1

To determine if the Plant Rosst was more effective on finer sises than on coarse sises.

Freedure:

Several daily kilm discharge samples were divided into plus 3/8" and minus 3/8 sizes. Each portion was ground to simus 200 mesh and symmided 48 hours.

Results:

And the second second	43/Au 0/4			
Heads Tails Extractions	+3/8" -3/8" •165 •18 •05 •04.5 69.7 75.0	-3/8" -3/8" -155 -135 -055 -085 67.8 37.0	+3/8n -3/8n -120 -130 -05 -055 58-3 57-7	+3/8" -3/8" -145 -15 -055 -06 64-2 60-0

Procedure: #2

Each sample was separated into +65 mesh and -65 mesh material; ground to minus 200 mesh and eyenided.

Results:

Heads Tails Extraction &	-65 Mosh -06 50.0	-65 Nesh -15 -045 69.9	•65 Nesh •10 •05 50•0	-65 lieeh -09 -07
--------------------------------	-------------------------	---------------------------------	--------------------------------	-------------------------

Reckly composite samples were separated into +65 mesh and -65 mesh; ground to 90% minus 200 mesh; washed 24 hours and dyanided 40 hours.

Rosulte:

qualification and well-compared and	168 10		
Reads Tails Extraction	.24 .19 .07 .135 n270.5 28.9	-65 -65 -31 -30 -10 -135 67-9 55-0	•65 -65 •23 .185 •07 .005 69.5 54.0

Furpose of Investigation: #4

Screen sising/of Flant tailing: of different an

Results;			423,	different	a acrop 1 wa
Moch	1	W	Assay		ABBAY
A	70	98.	Os/tom	x we.	Os/ton

5180 65 65/100 100/200 200/325 -325 Total	2.0 8.0 63.0 21.0 6.0	02/tom	3.0 8.0 57.0 39.0 3.0	0s/ton -17 -10 -06 -07 -10 -978	2.0 8.0 51.0 35.0 4.0	Assay Os/ton .07 .06 .06 .09 .11	3.0 9.0 41.0 36.0	Assay Ok/ton .07 .07 .08 .09
---	-----------------------------------	--------	-----------------------------------	---	-----------------------------------	--	----------------------------	---

1938-7
BOASTING-CYANIDATION
GETCHELL MINE - Nork, Woodward

Perpose of Investigation:

To determine the effect of calcine pretreated ahead of eyanication.

Procedure and Results:

A ten day composite sample of Kiln discharge was ground to minus 200 mesh; diluted to 4:1 and boiled on not plate for one hour, filtered and washed. The sample was split into four portions and treated as follows:

Test	Three de marches and		LESAY	Beeults s Os/Au/	Ma.
3	Pretreatment Cyanided direct AS brs. with M2SO _h agitation with 2% sol. Sodium triphosphate ahead of Trona leach 24 hours " "	shead of evanidation	1232 171 208 177	7011s -07 -04 -07	70.0 76.6 66.4 60.5

Procedure:

After a minus 100 mesh grind a kila discharge was treated with a 10% solution of H2SOA; a second sample with 5% H2OH solution, then spanided for AS hours.

Apsults:

and the second s	Preatment	Treatment.
	H_90 Ne(H	HoSO, NaCH
Heads	273	.15
Talls	.115 .11	.08 .005
Extraction &	26.6 26.6	39.5

1939-

Purpose of Davestigation:
Kiln discharge roasting tests, fellowed by symmidation.

Frosedure and Results:

Test											SOUTH LE		
			Marin al A	. 4						Assay a	On A	Vien	
KO.	2000	9	Condi							Meads	Teils	ALKA .	
4.	Acertes	å	nour i	12	1000 L	not d	irect	J Ir	om plant	JU	.055	dies.	
2	Cooled	DV	er aigi	161	roaste	l l h	our at	100	0° 7	.151	.055	63.5	
3	Coeledi	E	o roas	b						155	.055	66.2	
4	Rossted	3	hours	at	1000° P						.185		
5	16	84	29	65	177	with	1//1	KGL		:672	-14	74.8	
6.	99	nd)	80	核	13		14/1		Lock		2 1 10		
4-19						34 T P. 3	47/1	- Will	AUG	.677	.165	75.5	

1942

ROASTING-UYJRI CION

GRITCHELL WINE - The Getchell Mine tests which are reported without giving the name of the Metallurgist, were not signed, and may have been made by L. Mills; T. Drow; C. Wark, Dr., C. Wark, Jr.; J. Woodward or others.

Purpose of Investigation:

To compare the effect of gold recovery on a calcine which has been ground shead of reasting and on grinding a calcine after reasting.

Procedure:

a monthly composite of kiln feed samples was crushed to various sizes and roasted in charges 1/2" deep for two hours at 700°C. Pulps were cyanided for 72 hours.

Results:

Treatment Total SUA Asasys Os Au/ton Freroast Postroast Test Lixt. Heavis Tails Grind Grand × 3 No. .28 65 .231 . Ob T .233 79 7 10 55 .42 .32 .078 .37 .261 .06 85 1 65 .28 4 56 88 .296 .066 L 200 .40 .30 85 325 .40 .28 .268 .039 4 7 .078 79 55 .42 .32 .283 10 63 .06.2 8 10 200 -43 .30 .277 .11 0 .075 74 65 .96 .267 35 1 4 65 .37 .28 .281 .06 2 65 .291 .065 87 .38 .32 1 35 3 .07 .295 .075 65 .82 74 0 4 65 . 76 -11 .267 .075 .028 17 .09 .245 020 L 100 325 80 100 100 .50 .63 .23 .073

THERE I'V

roaster feed finer than 1/4" definituly lowers gold recovery unless the calcine is ground finer than 200 mesh. An extremely fine grind on a 1/4" calcine side gold recovery.

1940-4 ROASTING-CYANIDATION GETCHELL MINE - Wark, Woodward

To snalyse different sizes of kiln discharge.

Procedure:

Film discharge samples for 20 days were composited into 9 periods. Mad pellets were separated from each size. Part of the general composite was crushed to minus 4 mesh and re-rossted for four hours at 650°F. Each sample was ground to minus 65 mesh; washed and thickened duplicating plant practice, and then eyamided for 48 hours.

5-Hoad Tail 6-Hoad Tails 7-Hoads Tails	de de le de le de le de le de le de de de de de de de de de de de de de	Plus 1, 24,05 .26 .07 .20 .06 .355 .005 .24 .069 satmant .235 .071 .20 .06 .26 .08 .21 .09	16.03 .23 .075 .18 .07 .97 .11 .27 .092 .002 .23 .002 .227 .07 .26 .08 .21 .095	-3/8-13 33-07 -36 -679 -21 -08 -315 -095 -24 -077 trona sol. -22 -082 -227 -07 -26 -11 -20 -08	16.00	1.25 17 .32 11 .11 14 .23 18 .08 11 .27 11 .10 10 .335 11 10 .335 11 10 agitation 12 .10 17 .363 -15	.22 .08 .328 .09 .24 .07	Esroast <u>Composite</u> .27 .045 .22 .05 .326 .075 .24 .057 .22 .05 .25 .05 .255 .05	
Summa 277	Tails	.071	•250 •082	-245 -084	.279	.297 .10	-263 -079	.253 .051	
1 2 3 4 5 6 7 6	70	.0	above assays: 68.0 61.0 71.0 73.0 72.0 69.0 69.0 55.0	71.0 62.0 70.0 68.0 70.0 60.0 58.0 60.0	59.0 67.0 65.0 64.0 67.0 53.0 54.0 59.0	66.0 65.0 63.0 67.0 66.0 59.0	7 7 7 7 8 7	0.0 2.0 7.0 6.0 0.0 1.0 5.0	

1940-4 ROAS TING-CYANIDATION GETCHELL RIME - Mark, Woodward

Summary: (continued)

The total sulfur in the composite sample averaged approximately 1.0%, the sulfate sulfur approximately 0.1%. After re-reacting the average sulfar was 0.4% with the sulfate sulfur 0.3%.

These results show that the reast is incomplete, especially on the finer portions of the ore. In practice we have found that if more heat is applied the ore faces and sticks to the kiln lining.

Pasien starts from 1500° to 1600°F which is 400° to 500° above the rock temperature.

1940-6

Purpose of Investigation:

Resume of salfur and aressis elimination in ten day period composite samples for six months.

Resume!

10 day	Total	Sulfur		Total	Arconic			Plant	Bottle	Extra	otion
Periods	Feed	Disan.	5	Food	Disch.	L	Hende	Talls	Rails	Plant	Bottle
- Committee Control of	Alternative ret	-untransferrance-	Authorities (See See	of the latest species	affinitive dissipation (games	mean station from	and the second second	and the same of th	editores d'idució	- oddinamination	All of the Brook Brooks
1	2.60	1.11	57.3	1.67	.19	88.5	.202	.05	.053	75.3	73.8
2	2.08	-94	54.4	1.53	.24	Shok	.215	.048	.05	77.7	76.8
3	2.02	.96	\$2.5	1.00	.20	80.0	.395		.06		84.48
Å	2.24	.97	56.7	2.19	.26	86.2	.204		.055		73.1
5.	1.75	.91	48.0	1.02	.22	78.4	.222		.056		74.8
Á	1.50	.69	54.0	.93	.15	83.9	-239		-D64		73.2
7	1.67	.70	53.9	1.03	.16	84.4	.216	.05	.052	76.8	75.9
8	2.03	1.06	47.8	.85	.10	83.2	.231	.063	.066	72.8	71.5
9	1.70	1.01	40.6	.73	.14	80.8	.289	.082	.001	70.6	
										The state of the s	72.0
10	1.40	.85	49.3	.56	.21	62.5	-256	.068	.065	73.4	74.6
11	2.06	1.31	36.4	.76	.19	75.0	·244	.078	.074	68.0	69.7
12	1.97	1.21	38.6	.77	.27	64.9	-246	.071	.068	71.1	72.3
13	1.98	1.14	42.4	.83	.19	76.6	.173	.055	-054	683	68.8
14	2.48	1.58	36.3	1.07	.30	72.9	.293	.074	-985	74.8	71.1
15	2.67	1.65	38.2	-68	.18	73.5	.338	.117	.133	65.4	60.7
16	3.52	1.93	45.8	1.21	.21	82.6	.473	.132	.136	72.1	71.2
17	2.74	2.55	47.1	1.01	.17	83.1	-237	.096	.096	67.5	66.6
			17.2		-	80.0	440.00	,-		-, -,	
			and the same			And other Arts about					

1940-6 (2) ROASTING-CYANIDATION GRIC GLL WINE

Purpose of Investigation:

To determine the effects of rosating a Getchell calcine at different sizes for different lengths of time.

Procedure:

The sample was a composite of calcines produced over a two months periods

Resulte:						
	Roasting Co	nditions			Result	in the second
House	Mean		Final	Assay		WHITE .
Time	Simo	Town	Orind	Heads	Tails	Cart.
0	4	1300	65	.257	378	77.0
2	4	1300	65	.230	.06	79.0
2	l _b	1300	200	-266	.036	86-5
2	4	1300	325	.268	.039	85.5
4	<i>l</i> ₄	1300	65	-261	.035	86.5
6	4	1300	65	.265	-045	83.0
2	10	1300	65	-275	.07	74-5
2	10	1,300	200	.275	-06	78.0
- 4	100	1300	100	.277	.07	75.0
6	100	1600	325	-265	.22	17.0

Comelmaions:

- 1. Re-reasting improves the extraction if the temperature is not carried too high. A temperature higher than 1300°F fuses the ore and "looks up" the gold.
 - 2. Finer grinding after roasting improves the results.
 - 3. Grinding finer than 4 mesh before reasting lewers the extraction.
 - As A re-reasting period of more than two hours seems to be of little benefits

1940-8 ROAS TINO-CYANIDATION GETCHELL HINE

Purpose of Investigation: /1

To determine effect of ore size of roaster feed on syanidation results.

Precedure:

Composites of six days of kiln feed samples were split into two portions. One was reasted direct, the other crushed to minus & mesh and reasted. Reasting was as follows: Cold to 600° in 105 min.; 600° to 800° in 45 min.; 600° to 1050° in 45 min.; 1050° to 1300° in 45 minutes. The calcines were coaled, quemented, ground to minus 65 mesh and washed by decentation. Cyanidation was for 48 hours.

Resulte:	Total Sulfur				
6-Day	Raw Ore	Calcina	Heads	Tails	Extraction
Periods	origbit	Orig W	OrigM	OPIS W	07-7-7-17
1	2.0% 2.0%	. A.S A.S.	.3/4 .2/4	.03 .07	86.0 74.0
2	2.1% 2.1%	-67h -476	.31 .296	.06 .06	41.0 so.o
3	2.05% 2.05%	·55% . Lax	.222 .255	.05 .06	76.5 77.5

Precedure: #2

A two week composite sample of kiln feed was separated into the sixes given below. Each size was reseted 0 to 850° in 105 minutes; 850° to 1200° in 45 min. at 1200° in 30 minutes. After grinding to minus 65 mesh the calcines were washed and symmided.

Freduct		sulfur	Asseys	Assay	28 O28 A	u/ton
Composite	A W	2 - 36 %	Calcine .60%	Heads -285	Tails	56x4.
+1/2" -4	20.9 23.0	2.91	.79 .66	.305 .362	.105	65.0
-4 +10	23.2	2.96	-53	.275	.103	63.0
-20 +100	23.4	2.90 3.13	-61 -49	.261 .258	-06 -07	72.0
-100	5.7	2.62	.65	-250	.07	72.0

Supposty:

One would expect the extraction to increase as the sulfide sulfar was eliminated as the gold occurs in the sulfide particles, and these particles have to be 'spened up' before the gold can be dissolved by eyenide. This seems to be true with the coarser material but not with the finer material. The sulfide sulfur samest be the only factor influencing the solubility of the gold as in the -20 +100, and -100 mesh products the sulfide sulfurs is completely eliminated, but the eyanide residues are still high in gdd.

1940-8 BOASTING-CYANIDATION GETCHELL MINK

Procedure: #3

A two weeks composite sample of kiln feed was separated into sizes and each size reseted 500° to 1300° in 135 minutes and held at 1300° F 30 minutes. After grinding to minus 65 mesh, the pulp was washed and cyanided.

gesults:

Product Composite 1/2" AN 10% 20% +100 -100	% %t. 100.C 25.1 27.6 21.4 12.1 10.4 3.4	Oulfur 2.61 2.41 2.45 2.73 2.64 2.97 3.18	Sulfur Calcine .20% .29 .28 .34 .35 .46 .75	Assay Hends -24 -269 -272 -248 -249 -28 -314	Result. Cs At Tuils .06 .08 .08 .08 .08 .08	**************************************
Test #4 Composite 1/2" 4M 10M 20M +100 -100	42.8 20.4 11.2 12.2 9.2 4.2	3.08 2.67 2.76 3.28 3.67 3.71	.37 .71 .48 .38 .34 .38	.173 .153 .195 .198 .213 .194	.06 .07 .09 .075 .08 .05	

Same samples as Test #2-#3-#4; however, after rossting, the samples were ground to minus 65 mesh in hot trons solution (50#/T at 170°F) before symmetries.

Tosts	2A	3A	l. A
Composite +1/2" +1/4" +10 +20 +100 -100	Tails foxt. .07 72.4 .08 71.1 .07 76.8 .07 71.0 .10 63.8 .07 72.3 .08 68.3	Tails 70xc. .00 76.3 .07 73.7 .06 75.5 .06 75.0 .06 75.0 .07 74.3 .08 74.7	Tells %5xt. .06

SHEEPLEY!

The results of these tests show:

l. That finer crushing of the kiln feed would be little aid in increasing extraction.

^{2.} Over-all recovery would be increased alightly (2% to 3%) by the use of trong pretreatment in the place of the current water wash.

1940-6 ROASTING-GYANIDATION GETC BLL. MINE

Summary: (continued)

3. The recovery of gold does not follow the sulfur elimination curve, which means there are other factors influencing the solubility of the gold in the calline.

4. The Trens pretreetment has a pronounced effect on the +10 mesh material and of little benefit on the -10 mesh material. The truns attacks the sulfur in the calcine.

Purpose of Investigation: #5

To determine the efficiency of a water wash on calcines versus a sulfurio acid wash.

Procedure and Results:

The calcines were ground to minus 65 mesh, washed in water and cyanided 48 hours. The sulfuric acid wash was at a 2:1 dilution - 2% H2SO, solution. Agitation time was 24 hours; after washing the pulp was cyanided 48 hours.

Test	ROAST	ING CON	DITIONS		WATER	TREADAL	AT	Hasol 3	MEATHEN!	T
No.	500°F to	Time	Mold at	Time	Heads	Tails	ERRE.	Hoads	Tails	Cart.
97	12.00	Lin	Lieu	Fine	.231	.00	74.0	25	-05	73.6
98	1700	60	1200	130	.268	.055	79.5	.254	.05	60.4
99	1400	160	1200	60	.248	.05	79.9	.249	.045	82.9
100	7700	60	1200	180	.255	.06	76.6	.247	.055	77.7
101	1400	180	1400	60	.245	.065	73.5	.255	.06	76.5

AMARINA PV

I. An average of the results of all the tests shows the sulfurie acid treatment gives a slightly higher extraction than the water treatment. For sulfurie 78.0% and for water 76.7%.

2. The ore needs to be heated to about 1100°F before effective reasting begins and the temperature must be raised to at least 1400°F for a short time to obtain optimum recovery. Apparently this higher temperature should not be held for a very long time or the recovery will begin to dealine. This may be due to sintering or the formation of insoluble arsenic compounds.

3. The arsenic assays of the calcine or the symmide residues sunnot be tied in with the recovery. They hardly vary from roast to roast.

Purpose of Investigation: #6

To try and determine effects of water, sulfurie acid and trong washes on calcines made at different reasts.

Procedare:

The calcines were (1) ground to minus 55 mesh in water; settled 12 hours and washed by decantation. (2) Ground to minus 65 mesh and digested for 6 hours in het trems, 50%/7 solution. (3) Ground to minus 65 mesh and agitated 24 hours in F25Q solution. Cyamide treatment was 48 hours.

1940-8 ROASTING-GYANIDATION GETCHELL WINE

Rossting

Remalts:

500° to 1200°F 60"; 1200° to 1400°F 50"; hold 1400° 130".

#106 0 to 600°F 30°; 600° to 1200°F 80°; 1300° to 1400°F 80°; 1450° to 1300°F 50 minutes.

/107 0 to 500°F 30°; 500° to 1100°F 80°; 1100° to 1400°F 80°; 1400° to 1250°F 50 minutes.

And the Control of th			
105 106	MATER Assays Os Au/ten Heads Tails NextA0 .03 80.0	TRONA TREATMENT Assays Os Au/ton Heads Talls Ext387 -065 83.2	H ₂ SO _k TREATMENT Assays Or Au/ton Honds Tails That -395 -065 83.2

64.4

83.6

-06

ds Tails Saxt. . 395 .065 53.2 .405 .06 35.2 .055 86.3 .405 .369 .06 35.5 -365 .05 85.5

INDE

107

Purpess of Investigation:

. 366

To determine if agration of the calcine after grinding would be of aid in the cymidetion of the ore.

Procedure:

The tests were conducted in a large can using impeller agitation, and aerated by introducing compressed air directly under the impeller.

In the first set of tests the pulp was agitated 8 hours with varying accounts of lime. In the second series one pound p.to. lime was added with time of serution waried. In the third series no lime was used but the time varied. Oyanidation was for 48 hours.

Series #1 Varying amounts of lime added; time of aeration constant.

1941-11 ROASTING-CYANIDATION GETCHELL MINE

Results: (continued)

Lime constant - seration time varied.

Method of	Trest.	?	ercent 5	ulfur						
Time	#CAD	Hoa	ds	Solu	tion	Consue	ption	ASSAY S	OS AU	/ton
Aeration	Added	Total	Sulfice	Total	Sul.	NaCH	CaO	Heads	Talls	zaxt.
None	None	1.50	1.43	.58	10	1.90	3.51	.239	.085	64.4
8	1.0	1.44	1.38	.53	.07	1.50	5.18	.224	.083	62.8
1.6	1.0	1.43	1.36	.57	.08	1.01	4.94	.209	.073	62.2
24	1.0	1.50	1.43	.57	.08	1.08	5.04	-218	.077	65.0
32	1.0	1.50	1.43	.60	.09	1.00	5.00	.208	.073	63.7
				Serie	s #3					
			No lime	- 8	eration	Varied	.0			
None	None	1.62	1.53	.72	.21	2.49	5.95	.26	.082	69.3
0	None	1.79	1.70	.62	.11	2.08	6.12	.25	CBO	67.3
16	Hone	1.79	1.68	-63	.10	1.85	4.63	.245	.08	67.4
24	None	1.79	1.61	.62	.09	1.73	5.55	-243	.079	67.4
32	None	1.79	1.65	.61	.09	1.64	5.35	.239	-078	67.4

Summary:

The results show that seration:

- 1. Lowers the cyanide consumption
- 2. Lowers the avanide residues
- 3. Increase the loss of gold by dissolution in the water circuit, which more than counter-acts the gold gained by the lower symmide residue.
- 4. In all the tests a discrepancy exists between the calculated head for the pulps symmided without scration. This difference becomes greater with a lenger scration period and cannot be accounted for by the Au content in solution.

1941
ROASTING -CYANIDATION; PLANT PRACTICE
GETCHELL MINE - Wise

MILLING PRACTICE

In the sulfide ores the gold oscurs in microscopic sizes, both in the free state and locked up in minute pyrite and arsenopyrite particles. It has been established that the bulk of the free gold is costed with some substance, thought to be an insoluble iron compound. A roast is required prior to treatment in order to secure economic extraction by symmidation. Roasting accomplishes three things. The insoluble coating on the free gold is converted to a saluble state; the gold bearing fine sulfides are oxidized; and the bulk of the arsenic is climinated.

Calcined cyanide residues shows microm size gold included in 800 mech sulfides which, in turn, were included in 300 mesh gangue particles. An ultimate tailing cannot be reached until a dead roast is attained.

After reasting, a wash is required prior to cyanidation. Either hot water, a weak trona solution, or a weak sulfuric acid solution wash is suitable. The wash dissolves the coating from the free gold, removes soluble sulfates and sulfites, ferrous compounds and other symmides formed during reasting.

Crusher plant product goes to a 700 ton fine ore bin then to a 400 ton roaster feed bin. Roaster feed is 18% + 1/2 inch; 19% + 4 mesh; 63% -4 mesh. The kilm is a 7 1/2 x 260 feet with an inside diameter of 5 feet. It is set on a slepe of 3/8 inches per foot and turns 1-1/3 R.P.M. with ere flow of less than one feet per minute. Total time of rock in the kilm is 4 1/2 hours with a 1000°F temperature in the first 200 feet. From that point to the discharge it reaches 1300° to 1400°F. Heating at 1000°F is not sufficient for good gold extraction, and heating above 1400°F, for any length of time is detrimental to extraction. Kilm gases discharge from the feed end at 450°F. Average kilm operating data is:

Rock temperature discharge 1300°F
Sulfur in feed 2.91%
Sulfur in kiln discharge 1.22%
Sulfur elimination 58.1%
Arsenic in feed 2.01%
Arsenic in kiln discharge 0.32%
Arsenic elimination 84.1%
Oil consumption 6.55 gal. per ton.

Reasted ore discharged from the kiln at 1300°F is fed directly to the ball mill scoop box. The grinding unit consists of an 8 x 6 foot ball mill in closed circuit with an 8 x 30 foot multisome classifier. Ball mill discharge is 75% selids at a temperature of 190°F and classifier overflow is 33% solids at 140°F temperature. Grinding and classification are in fresh water, and it is in this unit that a hot water wash is attained.

The classifier overflow of 1.4% plus 65 mesh and 63.7% minus 200 mesh goes to a 55 x 25 foot, three compartment washing thickener. Overflow wash water, containes soluble sulfates, sulfites, iron compounds and small amounts of arsenic. Thickener underflow at 65 to 70% solids went to the slime treatment plant.

1941
ROASTING-CYANIDACION; PLANT PRACTICE
GETCHELL MINE - Wise

Milling Practice: (continued)

Under-flow is agitated in series in two 24×20 foot agitators at a dilution of 1.63:1 with quanties and lime. Overflow goes to a 30×18 foot, three compartment tray thickener. Thickener overflow goes to pregnant solution. Underflow at 55 to 60% solids is repulped with barren solution and agitated in three 16 \times 16 foot agitators in series.

Secondary agitator circuit overflows to a A5 x 16 foot thickener. Overflow

goes to mill solution and underflow goes to a 14 x 14 drum filter.

The arsenic content of the pulp entering symmids treatment is 0.29%, and in the residues is a 0.28%. The residual arsenic from roasting is not soluble and probably occurs as arsenopyrite. Sulfur entering is 1.29% and in the residues 1.25%. Soluble sulfur occurs as sulpho-cyanides.

1943-9 ROASTING-CYANIDATION GETCHELL MINE - WARK

Summery;

Numerous laborator; tests which sombine roasting the raw ore and treating the roasted product have been conducted, as well as small scale roasting tests, in a small sized rotary kiln. Laboratory tests almost invariably show that if a complete roast is made that the symmidation results are better than the plant results. Ores roasted in the small kiln also gave a product that treated better than plant roasted ore.

Most of the difference between plant reast and laboratory or experimental kiln reasts, is shown by the better sulfur and arsenic elimination. This difference is due to the fact that in the plant the exidation of sulfur and arsenic, which is visibly incomplete when the ore leaves the reaster, is immediately stopped by quenching before the grinding operation. In laboratory reasts, the time temperature gradient is kept as close to that of the operating kilms as possible, however, at the finish of reast, instead of quenching as in the plant, the reasted products have been permitted to coal slowly, usually overnight, before sampling for sulfur and arsenic. This could only result in further exidation if any sulfur and arsenic compounds remained in the ore at the end of the following symidation.

Transferring the not ore to a revelving sylinder would retain the ore, with constant stirring or rabbling long enough for the oxidizing reaction to be complete, or until the ore had cooled to a temperature where no further reaction would take place. Gooling should be retarded as much as possible by insulation of the sylinder and proper stirring insured by using "lifter brick" or heat recisting castings as lifters.

Present practice stops all sulfur and arsenic elimination as $SO_2(SO_3)$ and AS_2O_3 as soom as the ore leaves the kilns. Some, but not all, of these Sulfur and arsenic compounds are dissolved and removed during the grinding and washing operation and are sent to waste. Others find their way into the cyanide circuit and continue dissolving. This sauses foul solutions and interferes seriously with the recovery of gold as well as adding to chemical consumption.

From the foregoing, it can be concluded that as far as it goes our present roasting practice is sound but that changes should be made that would permit full advantage to be taken of the heat put into the ore for purposes of oxidizing the sulfur compounds before it is put under treatment by cyanidation.

None of the foregoing has taken into account the addition of chemicals to the grinding circuit for the removal, or dissolution of such compounds as antimony exides. This is another and a separate problem as is the question of filtration of pulps after washing in thickeners as at present.

1943-9 ROAS TINO-CYANIDATION GETC TILL MINE - Homphrey

Purpose of Investigation:

To determine the benefit of roasting the ere in the presence of coal dust and sulfur.

One set of samples was mixed with 20 lbe/ton of pulverised soal, and one with 20 lbs/ton of sulfur while roasting from 400°F to 1200°F for 2 1/2 hours, and then held at 1200°F for two hours.

The calcines were given a hot NaCH wash for thirt; minutes with a one pound

solution before eyamidation for 48 hours.

Results: Consumption

Coal.	WaCh 1.5 1.6	3-4 4-5	1.58 1.41	2.61 2.41	.38 .30	1.30	Neads -18 -16	(025 ,025
Sulfur Sulfur	2.5	5.6 6.0	1.58	2.61 2.41	.47	.69 .96	.17	. O4, . O4,

1945-6 GETCHELL MINE - George Crerar

when there is a reducing atmosphere in the roast, as when SO_2 is soming off freely, the As is held in the arreneous axide (λa_2O_3) and passes out with the gasses. When the SO_2 has been eliminated the residual As is exidised to the arrenic oxide (λs_2O_3) which combines readily with iron to form an arrenate which will not yield a gold content to any solvent. Anteneny reasts in exactly the same way.

1944-8
ROASTING-CYANIDATION
GRIGHELL MINE - MCQuiston

SUMMARY:

Extensive research investigations, and a natural metallurgical evolution after six years of milling operations, have brought out several possible flow sheet changes. It is believed that all this data can be incorporated into a redesigned, "streamlined" flow sheet which will give an estimated reduction in milling costs, plus increased gold extraction, of approximately \$1.50 per ton of ore.

Redesigning the reasting plant to insure complete sulfide sulfur elimination along with removing the collectal slines, will lower the overall symmetries costs appreciably. Metallurgical gain, by increased gold extraction, should be approximately 0.02 to 0.03 camees of gold per ten of ere.

The following is a susmery of various data and ideas relating to improvement in milling and to the metallurgy of the Getchell ores:

To insure a uniform mill feed the ore from the pit should be budded prior to milling. The areanic, entimeny, molybdonum, iron and other mineral constituents of the ore varies greatly in concentrations from different sections of the mine. These erratic occurrences of salts and minerals greatly effect metallurgical results, and bedding would do much towards leveling off milling results. Bedding could be accomplished by doing all the mining and truck hauling in the might weather-favorable months. Fractically all grasher plant "met ore problems" will be eliminated. It has been demonstrated on several occasions that the ere, after being stockpiled for a period of time, presented no difficult emaking problems.

Rebuilding the crushing plant, for a capacity of 250 TFH has been considered under the plant expansion program. It is believed a redesigned and rebuilt plant would give costs less than \$0.10 per ton of ore, as compared with the present costs of \$0.186.

There is much evidence indicating that washing the primary collected alimes from the ore will greatly aid reasting to obtain more complete sulfar climination from the ore. This fine material causes runs through the reaster, acts as insulation on the coarser particles and creates a severe dusting problem and gold loss. Removing this collectal material will lower thickening, agitation, filtering and chemical costs. Maching the ore should result in increased gold extraction and lower milling costs approximately \$0.50 per tom of ere. It also may possibly permit leaching of a coarse ground calcine; however, laboratory test work is jet to be done along this line.

Several years of plant and laboratory results definitely show that the reaster calcines contain an appreciable amount of sulfide sulfur. Humerous laboratory results from several different laboratories show conclusively that the best gold extraction by symmitation of the calcines is obtained after the

1944-8 RDASTING-CYANIDATION GETCHELL WINK - Meguiston

SUMMARY: (continued)

ore was reasted at 1200°F, and held at or near this temperature for a period of time. In plant practice the ore reaches a temperature of 1200°F and is them immediately quenched in water which stops all exidation of the sulfides. For the short period of time the ore is at 1200°F it is in a reducing atmosphere instead of an atmosphere favorable to exidation. It is only necessary to incorporate into the present plant practice a method of holding the salcines at a temperature sufficient to allow exidation of the sulfides to continue on to completion. The sulfide sulfur remaining in the calcines is not much less than 50% of the sulfide sulfur in the reacter feed. Considerable data shows when exidation, or reasting, is carried to completion the present gold recovery can be increased 0.02 to 0.03 cunees of gold per tem of ore.

The fallewing is an outline of possible flow sheets, estimates in reducing the present milling cost and increasing the gold extraction. The estimated milling cost, and increased gold extraction is given in dollars per ten of ere.

FLOW SHEET NO. 10

The present flow sheet of reasting all the ore followed by quantidation. Installation of subsequent reaster equipment to obtain complete elimination of the sulfide sulfur.

TOTAL INCREASED PROFIT - - - - - \$1.00

FLOW SHEET NO. 2:

Includes a washing plant with flotation of the alian pertion of the ere. The feed to the crushing plant then becomes 1800 TPD so as to maintain a reaster feed of 1500 TPD.

TOTAL INGREASED FROFIT - - - - \$1.50

FLOW SHEET NO. 3:

Plotation to include fine sands along with the primary slimes for one of two purposes: first, on a 1500 TFD erasher feed this plan might permit reasting and symidation of 1200 tems per day, in the present reasters, with only the additional installation of a new crushing plant and two exidisor tubes; second, if leaching is possible, flotation of the fine sands will produce an ideal leaching product. : flow sheet along this general plan has considerable merit as it involves a lew capital cost.

FLOW SHEET NO. 4:

All flotation, with reasting and dyamidation of the flotation concentrates. All flotation producing a small concentrate weight, symidation of the flotation tailings, reacting and dyamidation of the flotation concentrates.

FLOW SHEET NO. 5:

Following a four much wet grind, float the aromic, and antimony, from
the minus ten much product. Slimes to flotation and sands to roast and syanidation. The merit of this flow sheet is to remove the arsenis to aid roasting or
to remove the antimony if the content in the ore is high enough to cause symmide
trouble.

1945
PLANT RESULTS
ROASTING-CYANIDATION
GETCHELL MINE

EULFIDE ORK

(Gold Os. per Ton)

A CONTRACTOR	10000	Undissolved	Dissolved	Total	Andrew Control
1938	.198	.0600	.0035	.0635	67.9
1939	.267	.0606	.0031	.0637	76.1
1940	.254	.0652	.0054	.0706	72.2
1941	.211	.0630	.0046	.0676	67.9
1942	.210	.0597	.0050	.0647	69.2
1943	.203	.0652	.0037	.0689	66.1
1944	.198	.0666	.0035	.0701	64.4
1945	.177	.0619	.0033	.0652	63.0
		CHAMICAL CA (Founds per	ASUMPTO (
Year	Cyanide		ine (p.t.Sel)	Load	NaQH
1743	2.31	8.00	.0139	Load .83	The months.
1944	2.03	7.34	.047	1.73	1.80
1945	2.07	5.09	.052	2.55	1.74

1936-7
RGAST-CALCINE FLOTATION-CYANIDATION
GATCHELL MINE - WEETE, WOOdward

Purpose of Investigation:

To determine possibilities of salaine flotation preceding symmidation.

Procedure:

A composite sample of 10 days kiln discharge was ground to 90% minus 200 mesh, diluted A: and boiled 1 hour, filtered and washed. The pulp was fleated with #200-7301 and #15.

Flatation concentrate was symmissed AS hours at 3:1 with 1.0 HaCH solution. Flatation tailings were treated the same way. A second sample of flotation tailings were given a 24 hour wash with a 2% H_2SO_8 solution sheed of symmistics.

Bosults:

					Unroastod	
					Flat. Come.	Cy. Tailings
			Plot.	85678	Gyanidation	Assey Us Au/ton
	Product	& Ht.	Os Am/ton	SERt.	Assay Os Au/ton	Normal Hason
			.21		.1445	ديد ديد
-	Cane.	14.6	-445	31.0		
1	mile	85.4	-145	69.0	ملد	.05 .03
1	Entrastion				68.5	68.5 77.8

The concentrates consisted mostly of black carbonaseous material-some free sulfide and all of the oily soum found in the head sample.

1945

Purpose of Investigation:
To determine possibility of calcine flotation.

Procedure:

We data given: Sample for flotation was Plant washed thickener underflow.

1940-5
ROAST-CALCINE FLOTATION-CYARIDATION
GETCHELL MINE - Wark, Goodward

Results:

Date	Assay		Assay		Talls	Cyanidatio Assay		Consu	motion	
25 26 27 28 29 30 25 26 27 28 25 26 27 28	OR Au/ton -115 -375 -385 -36 -335 -39 Plotation -11 -143 -14 -132 -115 -12	9.78 9.31 12.50 11.32 11.95 10.6	0s Au/ton 1.33 1.06 1.17 .31 1.05 1.05 28 .36 .36 .38 .205 .255	31.0 26.6 36.3 27.7 35.0 29.3 Tailings: 22.5 29.2 26.2 25.0 21.7 12.6	08 Au/ton •32 •30 •295 •27 •275 •30	08 Au/ton .11 .125 .075 .08 .105 .10 .07 .085 .118 .105 .08	65.0 65.0 73.5 70.5 65.0 66.6	.80 .65 .55 .65 .50	2.60 2.30 2.30 2.35 2.60	

3/2521

Purpose of Investigation;

To determine gold extraction on the flotation concentrate obtained from floating calcines for two works July 21 to August 6, 1940.

Procedure:

The scaple of flotation concentrates was evanided before and after roasting. The roast was as follows: 0° - 600°F in 45 min.; 600°F - 300°F in 45 minutes; 300°F - 1050°F in 45 minutes;

Results of Cyanide Tests:

		Consumption	ASSAT OS	AN/ton	
Product	Grind	NACH SAO	geads	Talls	Sixt.
Raw	65	.90 2.10	.768	.24	69.0
Calcine	65	1.05 2.50	.841	.06	93.0
Rew	325	1.20 2.40	.782	-26	67.0
Calcine	325	1.05 2.20	.621	.05	94.0

Analysis of Concentrates:

Raw	Total Sulfur 8.5 .63	SO Sulfur	Sulfide Sulfur 6.4	.52 .20
		- Server	TO AUTOMIA	を主義と

1942 ROAST-CALCINE FLOTATION-CYANIDATION GETCHELL MINE

Parpose of Investigation:
To determine flotation results on plant calcing.

Procedure:

Flotation test made on wash thickener underflow and also on Plant tailings.

4 , 1 12 . . .

Results;

Test	Heads Os-Au	Building When Anger Transport Company	ARIOS D	AT.S	Talls Os-Au	Plant Tails	Pleated Tails On-Am	Cyan Es	ide B., P.Tails
1 2 3 4 5 6 7 8 9	.155 .175 .161 .170 .140 .135 .120 .155	5.62 9.5 7.9 7.7 5.3 4.5 4.7 6.3 9.2	.51 .46 .41 .58 .485 .44 .315 .44	18.5 25.1 20.1 25.9 19.3 14.6 12.3 18.0 28.4	.13 .145 .14 .135 .12 .12 .11 .135	.055 .06 .045 .06 .045 .045 .035	.03 .03 .045 .025 .03 .035 .035 .025	68.3 62.7 67.7 67.8 66.7 62.5 77.4 73.3	63.15 59.4 54.2 61.5 60.5 60.2 59.7 66.8 59.6

1938-6 MINERALOGICAL DATA GETCHELL MINE - Wark, Noodward

Purpose of Investigation:

To determine the solubility of the gold in Getchell residues.

Procedure:

In May and the first half of June all daily plant residue samples were treated with aqua regia.

Resulte;

Gyamidation Residues
Assays Oz Au/tem
Assays Oz Au/tem
Assays Oz Au/tem
Assays Oz Au/tem
O.0234
June
O.0275

Some aqua regia residues assayed as high as 0.0% ounces gold on an 0.06 plant residue, while others assayed 0.01 ounces on an 0.065 syamide residue.

1938-6
MISCELLANEOUS-GRAVITY CONCENTRATION
GETCHELL WINE - Hark, Woodward

A jig was operated on the ball mill discharge for several days with the following results:

	Bed	Assays Cm Am/tom Match Discharge	Talle
#1 #2 #3	.11	.17 .15 .13	.78 .73

1938-42 OXIDE ORE-CYANIDATION GETCHELL MINE

GENERAL HISTORY:

The very first laboratory test work done on Getchell Oxide ores showed a good gold extraction by direct symmetries, and practically no recovery by flotation. All preliminary tests, by numerous metallurgists, clearly indicated these ores were amenable, at a coarse grind, to a sand leaching-slime agitation conventional symmetries flow sheet.

The following flow sheet was in effect for approximately four and one half years. The ore was crushed to minus 3/4 inches and ground in eyanide solution at 70 per cent solids by two 7-ft. by 48-in. Hardings mills at an average rate of 600 tons per day. Rake classifiers, in closed circuit with the ball mills, everflowed minus 20 mesh material at 38 per cent solids to a bowl classifier for a 325 mesh sand-alims separation. From this separation 55 per cent of the ore was a sand product and 35 per cent a slime product.

Sand leaching was accomplished in four 46 by 16-ft. vets, each with a capacity of 1000 tens. A 246-hr. leaching cycle with a leaching rate of 4 in. per hour was maintained.

Misss 325 mesh slimes were thickened in a 45 by 16-ft., two compartment thickener. The thickener underflow at 30 per cent solids was agitated in a series of three 22 by 16-ft. agitators. After repulping to 12 per cent solids the pulp was washed in a secondary 45 by 16-ft., two compartment thickener. Thickener underflow was repulped and filtered on two 14 by 16-ft. drum filters.

A most unfavorable feature of the ore was the large thickener and filter areas required for settling and filtering the slime pertion of the ore. The slimes had an inherent tendency to form large gelatinous masses, locally termed 'islands'. This feature caused an endless amount of trouble in thickening resulting in high thickener maintaines and operation costs. Settling area for the alimes required between 10 and 20 sq. ft. per ton. Foor filtering characteristics resulted in a high gold soluble loss.

From 1938 to 1942 over 800,000 tons of oxide ore was milled. The following metallurgy was obtained:

	120							
		Os Au/tor	1	C	3lime s Au/ton	L	Os-Au	Ţ
	Heads	Talls	Kibit.	Heads	Tails	Ext.	Taile	Links .
1938	.19	.0276	25.6	.19	.034	31.8	.0298	34.3
1939	.20	.0323	84.1	.20	.0375	81.7	.0341	83.3
1940	.22	.0347	84.4	.22	.0397	82.2	.0365	83.6
1941	.22	.0324	85.3	.22	.0382	32.5	.0347	84.2
1942	.23	.0430	81.1	.24	.0427	82.2	.0427	82.1

Send and slime tailings were practically identical; however, the slimes had a dissolved gold less of approximately 0.0055 os. Au per ton which lowered the gold recovery on this portion of the ere.

Average chemical consumption was:

Lbs. Per ton 0.50 S.50 C.09 O.11

1938-42 OXIDE ORE-CYANIDATION GETCHELL MINE

EXPERIMENTAL DATA

Regrinding:

Manda

Tails

Test work conducted on oxide ores gave the fellowing information;

Perpose of Investigation:

To determine the gold extraction on reground leached sand tailings.

72 hours NaCH agitation gave the following results:

Original Sise

935 + 44m -44m/965 + 100m 995 - 100m 0.032 On Am 0.03 On Am 0.029 On Am .025 .03 .03 .024

Regrinding leach sand tails gave very little additional gold recovery.

MOASTING-CHANTIDATION

Purpose of Investigation:
To determine if reasting exide ore would increase the recovery and improve
the settling qualities of the exide alies.

Presedure:

Rew Ore: ground to 65 mesh in line water; settled; quanided for 24 hrs. at 2:1.

Reasted Ore: Reasted at an evenly increased temperature for four hours at
400°F to 1000°F. Coeled and treated as above.

Composite Results: of daily tests conducted for approximately two months.

	KWA CAS	Rosases
Reagent Comsumption MaCH	1.35	1000
Reagent Consumption CaO	10.31	TO-M
Hoods Assey Os Am/ten	0.232	0.232
Tails Assay Os Au/ten	0.028	0.019
9q. Ft. Settling Area required	15.1	4.2
Salfar sontent	0.142	0.111
Arsenic content	0.456	0.458
swammer mill tails obtained in the		

plent for April and May 1941 0.032

(Soluble gold loss raises this tailing over the above tailing)

The sulfur content of the calcine is practically all sulfate sulfur while in the raw ore it is mostly sulfide sulfur.

Reacting the exide ore will reduce the symmide consumption 0.33 lbm/tem of ore, and will increase the gold recovery by 0.0134 cumces. The settling area is reduced 79% and the final gravity of the thickener underflow would be raised.

1940-6
OXIDE STRIPPING-CYANIDATION
OBTCHELL MINE

PROPOSED TREATMENT OF OXIDE STRUPFINGS

The first work done to determine the possible feasibility of treating the stripping from the hanging wall of the Getchell vein was done by the Merrill Company of San Francisco in the early part of July, 1939. This work was done on a grab sample taken from the "Morth Pit" and showed a recoverable value of \$1.17 per ton. This, of course, was not a representative sample even of the stripping removed from this section, but did point out that the plan to treat this material should be investigated.

The stripping has been systematically sampled as the work progressed, and the present report sovers tests made on a composite sample of the material removed to date June 1, 1940, and represents what can be done on this material

of which approximately 1,500,000 tons are on the dumps.

The sample tested was screened to various sizes, and the sizings assayed to find out if a portion of it could be rejected. All of it carried enough value to prohibit this procedure unless following tests showed that no recovery could be made on rejectable portions. Tests were made on each size, as shown in the accompanying tabulation. Each of the sizes larger than 20 mesh was ground to pass this size screen and cyanided. Sizes smaller than 20 mesh were eyemided without grinding. Tests show a possible recovery of 95¢ per ton can be made with 6 hours agitation in 0.5% cyanide solution with no rejectable portions. Shorter time of agitation did not show as good results. Filtering tests show a satisfactory filtering rate. Settling characteristics are unimportant as the proposed flow sheet does not call for any thickening devices. The substitution of screens for hydrenlis classifiers such as the Dorr, would make it possible to avoid dilution of the pulp to a point where filtering would be interfered with.

T 1 53/120	WELL'ST A	THE SE SE	SO THE CORE T 1994	*
Land Bridge	LEWIS	1 Book I	RESULT	Š

Gold values in 8 Recovered by eyenidation of each sime.

- A A				A material man		comments a considerable of
Product		Assay	% Dist.	71 .00	of Agit	ation
Keeh	5 WE-	Os Au/ton	\$ Value	1/2 hour	1 hour	8 hours
44	6.5	.055	0.125	0.118	0.065	0.057
-4 +10	10.6	.065	.287	.106	ميد.	.149
-10 +20	7.9	.065	.168	.060	.067	125
-20 +100	15.7	.035	.129	-047	.083	.116
-100	59.3	.025	.476	-332	.377	.498
Total	100.0	.031	1.183	0.663	0.732	0.746

Cyamidation tests were made with NaCN strengths of 0.50 g/T and 0.25 g/T of lime at a 1:1 dilution.

The settling rate varied directly with the time of agitation. After eight hours agitation the square feet of settling area required for settling was very, very high.

1939-3 MINERALOGICAL DATA AMERICAN CYANAMID COMPANY - Mervitt, Forter

Purpose of Investigation:

Three samples: sulfide ore, sulfide ore after reasting, and quantitation residue were investigated to obtain:

1. Quantitative analysis.

2. Determination of the mode of occurrence of the gold.

3. Distribution of the gold in the symmidation residue.

Results:

Appays	Sulfide Ore	Calgins	Besides
AND CORY SAME	0.225	0.276	0.115
Total Pe S	1.23	2.36	
Perrous Pe	£ .19	1.55	
AB %	2.54	.16	
rotal 3 %	2.35	-79	
8 00 80A	.06	.16	

Microsopical,

The rock appeared to be a silicified tuff composed largely of fine-grained quarts which contained numerous lithic fragments of volcanic rocks. The following metallic constituents were identified:

SULPIDE CRE	CALCINE
Realgar	
Orpiment	
Araenepy rite	Arsenopyrite
Pyrite	Pyrite
Pyrrhotita	Pyrrhotite
Stibuito	
Sphalorite	Sphalerite
Galena	Galena
Chaleepy rite	Chaleopyrite
Chalcosite	Chalocate
Covollito	Covallite
Hometite	Hematite
Limonite	
Rlegtron	Electrum

Realgar was the most abundant mineral consituent. A minor amount of orpiment was present in appreciable quantities. The only gold values noted occurred as the geld-cilver alkey, electrum. Free grains of electrum were characterised by a coating of what appeared to be iron oxide.

Pyrite and arsenopyrite were both gold bearing. No gold was observed in the

realgar. The realgar only assayed 0.021 os Au/tem.

1939-3 MINERALOGICAL DATA AMERICAN CYANAMID COMPANY - Herritt, Porter

Microscopical: (continued)

Calcine

We realgar was observed. There were a few occurrences of finely disseminated sulfides, with the most abundant sulfide being a pyrrhetite-like, percus structure mineral. Considerable unroasted pyrite and arsenepyrite were present.

Residue

Assayed screen analysis showed the plus 65 and plus 100 much fractions assayed 0.328 es. hw/tom and 0.201 es. Aw/tom respectively and sarried 10.72% of the total gold. The minus 325 mesh fraction assayed 0.10 es. and carried 51.20% of the gold.

A superpanner test assayed 6.90 oz. Aw/ton and carried 28.82% of the Aw.

STUMBALLY:

The gold in the pyrite and assemplyrite is exceedingly fine grained. Part of the gold has impermeable coatings of iron or other material.

measting partially converts the pyrite and arcomopyrite to pyrrhetite. This product is also gold bearing and requires further oxidizing heat treuteent. The presence of free electrum in the cyanide residue suggests the presence of coated particles of electrum.

A flatation tailing, assaying 0.199 os. was evanided to give an 0.15 es. tailing. When treated with MMD, and resymmided a 0.005 os. tailing was obtained. This imdicates the gold is accodiated with the smalfides and not with the gangue. 1739-3 FLOTATION-GYANIDATION AMERICAN CYANAMID COMPANY - Modley

Purpose of Investigation:

79 determine the gold distribution in the ore, and its relationship to various minoruls.

Procedure:

On coarse material in the ore the realgar was floated first, followed by a sulfide float with the floatation tailings being syemide. The syamide residue was digested for one hour at 90°C with a 25% solution of HCl to remove seatings of 4s, lime, Fe and also dissolve pyrrhetite. Another portion of the residue was treated with a 25% solution of HNO, to remove the sulfides and iron exides. The said treated residues were resymmised.

Results:

William Control of the Control of th					
Products Reads As. Cume. Sul. Come. R. Tails Note: Cleaner Cy. tails	100.00 5.60 1.74 88.47 tailing not	Am Om/tom O.215 .24 1.16 .199 reported .15	X 8 2.55 24.14 12.68 .86	Distrib AN 8 100.00 6.06 9.30 61.67	100,00 52.94 6.63 29.30
Results: on f. Hends As. Come. Sul. Come. R. Tails	ine material 100.00 1.90 10.49 83.72	in ore .117 .20 .42 .063	1.23 18.31 8.60	100.00 3.42 41.03 45.30	100.00 28.25 41.88 19.64

The HCl leach and symmidation recovered 33.33% of the gold and removed 11.63% of the sulfur. The nitric said leach recovered 96.67% of the gold and removed 97.65% of the sulfur. The final recidus assayed 0.005 on Au/tem.

THE PARTY I

These tests indicate that the majority of the gold is associated with the sulfides and that the more complete the sulfide sulfur elimination the better the gold tailing will be.

There is no evidence of gold associated with gangue.

OBJECT of Test /3

To determine if there were sulfides remaining in a Getebell plant calcine residue which could be recovered by flotation.

Dotalls of Test:

A sulfide concentrate was floated and the tailing reground and reflected. Original sample was a -65 mesh grind. Final grind 65% minus 200 mesh.

1939-3
PLOTATION-CYANIDATION
AMERICAN CYANAMID COMPANY - Hedley

Results:

First sulfide concentrate assayed 0.31 oz. Au/ton and second concentrate 0.358 os. Au/ton. The combined weight was 10.35% and the recovery was 26.35% of the Am. Tailing assay 0.06 os. Au/ton on a 0.127 oz. Au/ton head assay.

Summary:

A more complete roast would give complete oxidation and probably a higher gold resovery.

1920010

Purpose of Investigation:
To attempt to make a satisfactor, recovery by flotation followed by syanidation.

2	Plost arsenic mineral then sulfides Pulp dispersed with NagOU2 and NagSiO Dispersed - floated same Ne 5	10	71me 5-7 6-5 5-5	760-	ager TO-X	
•	Separated affect the 2	10		98	PF	10

Results:

700	wt.		-159	. 9.61	/ton Comes/2 .49 12.86	R.7011	G. Tall	Cone#1 15.76	RECOVE Conc. 2 39.72	Plotation 55.48	Cyanide
5		•	.152	.10.15	.52 11.84	Cuts	.063	15.33	40.53	55.88	11.80
0			.lel	•23	10.22	.102	.079	17.97	33.02	50.99	11.05

Summary :

Flotation showed a recovery of 55.88% of the gold into a rougher concentrate assaying 0.39 os. Au/ton. Cyanidation of the flotation tailing recovered an additional 11.30% of the gold. Consumption was 1.37 lbs. NaCN and 12.5 lbs. CaO per ton.

The areenic flotation concentrate contained 86% of the As and 64% of the Sb.

1944-4 PLOTATION-CYANIDATION AMERICAN CYANAMID CONTANY - Hodley

Purpose of Investigation:

To test various flotation and symmidation procedures for the recovery of gold and arasmic, by floating first the arsenie, then separating the sands and slimes for separate treatment.

Procedure: Tests 40-41

Fellowing a 20 mesh grind the arsenic was floated then the tailings were classified into plus 200 mesh sends and minus 200 mesh alimes. The slimes were floated with the slime concentrate added to the sands for rossting. Rossting was started at 550°F and brought to 1200°F in three hours and held there for one hour. The salcine was relatively free of unrossted sulfides. The calcined sands were ground to 60% minus 200 mesh and cyanided. A portion of the slime concentrate and arsenic cleaner tailings were also rossted and sygnided. Slime flotation tailings were cyanided.

Resulter

oli di					
Product	1 m.	Assays Au Os/ton	As A	Distrib	AND PROPERTY OF STREET, STREET
Pood	100.00	- Anna Anna Anna Anna Anna Anna Anna Ann	200	AN	AB
As Cl. Come.		0.167	1.93	100.00	100.00
Carried &	4.07	.20	36.09	4.85	
As Cl. Tail	2.66	.21	1.78		74-34
R. Tail	93.27	.164	21 000 000	3.35	2.38
Sands	57.57	153	-49	91.80	23.28
Slimes	35.70		-57	52.72	16.60
Slime Cone.		.183	.37	39.08	6.68
Slimo Tail	3.53	-375	-93	19.15	CONTRACTOR OF THE PARTY OF THE
Davido Layr	27.17	.123	-20	_	4-01
			w16.0	19.93	2.67
Cyanide Residues	A Me.	Ann			
Calcined Rands	54.81	AM		Au	
Calcined Slime Cone.		-038		12.44	
Slime Tailing	1 0 000	-063		2.26	
Canada Larring	27.27	-085			
Composite Cy. Yes.	89.84	.053		13.77	
Total Gold Recovered				28.47	
				67.26	

Summery :

The recovery of gold by cyanidation was 63.33% giving a residue that assayed 0.053 os. Au/ton.

Yest 641 was a similar test and gave about the same results.

Purpose of Investigation:

To improve the results of Test 40 and 41.

Procedure: Test #42

After grinding the ore to minus 23 mesh and floating the arcenic minerals the tailings were separated into sands and slimes. The slimes were floated and the sand reground to minus 200 mesh before floating. The colloidal slimes from the sands were discarded and the sands eyanided. Slime and sand concentrates were roasted and syanided.

1944-4 FLOTATION-CYANIDATION AMERICAN GYANANIO OCASTANY - Hedley

Results	: Test	142

Product Feed As Cl. Conc. As Cl. Tail R. Tail	5 Nt. 100.00 4.83 3.12 92.05	Assays Os Au/ton .162 .28 .22 .154	1.98 32.57 .95	Distributi AM 100.00 8.32 4.25 87.43	AS 100.00 79.45 1.51 19.04
Sends Clines	56.51 36.54	.143 .166		50.68	Bi-dependent in approximation in
Slime Flot. Conc. Slime Flot. Tail Sand Flot. Conc. Sand Flot. Tail Colloidal 3lime	11.21 25.33 16.33 39.18	.35 .08 .41 .038	Mantagan desiran desir	36.75 24.23 12.52 41.49 9.19	hvedlagtorvingHoudestorvanege
from tail Residual Sand	7.68 31.50	.028		3-76 5-43	
Residues Sand Conc. Slime Conc. Sand Flot. Tail Composite Recovery	17.44 10.24 31.50	.07		11.18 4.46 4.50	

Summary:

The arsenic cleaner commentrate contained 79.45% of the arsenic and 8.32% of the gold. The slime flotation teiling assayed 0.08 ounces. Conditioning with sodium sulfide and copper sulfate was beneficial to gold flotation.

By the scheme of treatment followed in Test 42 the extraction of gold by eyanidation was 55.26% and with the credit which would be obtained for the gold in the arsenic concentrate the total recovery of gold would be 62.0%.

1943-10 ROASTING-CYANIDATION AMERICAN CYANALID COMPANY - Hedley

Purpose of Investigation:

To determine the effect of size of roaster feed on the final cyanide residue.

Procedure:

The depth of the charge was about one inch. Each charge was placed in the furnace at 550°F and brought up to 1200°F. The time of roast was 2 1/2 hours, after reaching 1200°F the furnace was maintained at the temperature for one hour. Rabbling was every 15 minutes.

The salcines were ground to 1.32% on 65 mesh and 56.66% minus 200 mesh.

Cyanidation was made at a dilution of 3:1 for 24 hours.

Results:

Feed 3.39% S .015 Cu

ANALYSIS OF CALCINES

Rise -J5	20	-1/4"	-1/2"	23	<u>Caleine</u>
Arsenie % .57 Antimony % .11 Potal S % .47 Sulfate S % .47	.11 .47	.46 .045 .50	.42 .074 .58	.43 .06 .62	.26 .03 1.54
Wt. Lose 8.54		8.00	8.32	8-67	1.39

In the American Cyanomid calcines much more sulfur was eleminated than in the Setchell roast; however, Setchell obtained better arsonic and antimony elimination.

Cyanidation Results:

			Consum	otion		Assays	Os Au/ton	
100	distriction .	71.830	Nack	CaO	Heada	Calcine	Tails	& Extraction
20	-35m -10m	24		1.7	.177	.193	.013	77.72
21	-1/4"	24	.11	1.1	.171	.738	.038	79.79
22	-1/2"	24 24	.51	3 -4	.178	.193	-045	76.79
23	-1"	24	•58	1.27	.159	.173	.038	78.03
No. of	edb.	~4	-93	3.57	.159	-175	.038	78.29

CAMPINETY:

The tests show that the coarser the feed to reasting the better elimination of As and Sb; however, the elimination of sulfur decreased.

Granidation of the calcines gave uniform extractions of gold regardless of the coarseness of feed to the roast.

The coarseness of the feed to roasting had an appreciable effect on eyanide and lime consumption.

1943-10-2 ROASTING-CYANIDATION AMERICAN CYANAMIP COMPANY - Hedley

Purpose of Investigation:

To determine whether there was any relationship between the sulfide sulfur remaining in the mill feed and the gold extracted by symmiation. Hoseting of different depth beds was used to investigate this.

Procedure:

The charge was brought to a temperature of 1200°F and held there for one hour. The charge was allowed to sool for an hour. The calcines were ground to minus 65 mesh and syanided for 24 hours.

706t 7 23 24 26 27 28 29 2	Min. to reach 1200° y Whroasted 150 30 30 150 30 30 30 Cetchell	60 60 60 60 60 60 60 70 70	Depth of Charge 1 1 1 5 5 5 beine	.43 .20 .44 .34 .41	.62 .84 .84 1.37 1.83 2.23	Analysis Sulfate	of Calcine Swifide 320 .33 .36 .80 1.59 2.10 1.39	8.7 7.0 7.5 8.7 5.7 6.0
Rerousted	150	60			.80	-57	.23	

Results:

		Ama	MAYS ON AN	1/ton	***	
*	Tost 7	Calcine	Residue	% Sxt.	Roagent <u>NaCN</u>	Canc.
	23	.155	.038	25.16 78.29	7.6	25.0
	24 26	.175	.03 <i>8</i> .048	78.28 75.88	1.57	8.63
	27	.183	.055	72.67	3-27 1-49	8.80
	29 (netch	911 92	.08	54.55	1.53	14.9
	2 Calci Reroast	ne •22 60	.076 .038	63. 81 82.73	.97	3.51

Relatively high extractions of gold were obtained when roasted in thin beds even when the ore was in the furnace only 60 minutes. Gold extraction decreased when roasted in thick beds.

Gold extraction is not related to arsenic elimination; however, sulfur elimination and gold extraction are related. The sulfur-gold relationship is probably the sulfur which is combined with pyrite.

Amount of sulfide sulfur which can be tolerated in the calcine is about 0.30%.

1943-10-2 ROASTING-CYANIDATION AMERICAN CYANAMID COMPANY - Hodley

STARBERTY:

I. Getchell will feed as received was rossted under various conditions to determine the effect of such conditions on the extraction of gold by symmidation.

- 2. Roasting the mill feed in beds 1" thick with eccasional rabbling eliminated much more sulfur than roasting in beds 5" thick at the same temperature. The elimination of aremic however was not greatly affected by these roasting conditions; in each test about 30% of the aremic was eliminated. Cyanidation of the calcines however indicated that there was a relationship between the sulfide sulfur in the calcine and gold extraction. Apparently for best extraction of gold no more than 0.30% sulfide sulfur should be present in the calcines. When the sulfide sulfur in the calcines was lower than 0.30%, 78% of the gold by obtained.
- 3. A sample of calcine submitted by Getchell Mine Inc., analyzed 1.39% sulfide sulfur. Gyanidation of this product dissolved only 63.81% of the gold leaving a residue assaying 0.076 om/ton gold. When this product was rousted and the sulfide sulfur thus reduced to 0.23% the extraction of gold was increased to 82.73% and the syanidation residue assayed 0.03% om/ton gold.

1944-10 ROADTING-CYANIDATION AMERICAN CYANAMID COMPANY - WARM

Purpose of Investigation:

To determine the relationship between the degree of grinding the calcine from the coarse fraction of the ore and extraction of gold by symmidation. This follows from the possible scheme of rossting the coarse fraction of the ore and flotation of the slime plus fine sand.

Procedure:

The ore was scrubbed on 35 mesh and separated into fines and coarse fractions. Reasting of the coarse fraction was made at 450°F to 1200°F in 240 minutes, and then maintained at 1200°F for 90 minutes.

Results: Cyanidation of Calcines from Coarse Ore Fractions

Product Product +20m +35m +35m +35m +35m +14m +14m -14m Sand -14m Sand	Grinding Name 4 10 20 65 100 100 150	Asses Jeads .128 .137 .189 .185 .164 .157 .235 .227	78 Os Aug Tails -O47 -O57 -O55 -O47 -O4 -O47 -O4	/ton 63.28 69.52 70.90 74.53 76.47 74.52 80.00 82.38	144 48 48 48 48 48 48	MaCm 1.31 1.20 1.30 .90 1.10 1.20 1.40 .60	Dtiom CaO 15.7 19.1 18.8 19.0 12.2 11.2 17.1
--	--	--	--	--	---	--	--

Although all of the results were not directly comparable, it was evident that extraction was a function of the degree of grinding. It was difficult to choose an economic point, although in order to obtain an extraction of 75% or over, the calcine had to be ground to minus 65 mesh. The minus 14 mesh sand was more amenable than the plus 14 mesh.

1940-6
MINERALOGICAL DAFA
CANADA DETARTMENT OF MINES - Parsons

Purpose of Examination:
To study the character of refractor; gold.

General Description:

The ore is highly siliceous with pyrite the most abundant sulfide. It occurs as medium to tiny disseminated particles. I small quantity of arcene-pyrite is present associated with the coarser pyrite and as tiny crystals scatted in gangue. Very rare small grains of chalcopyrite occur with the pyrite and also in the gangue.

or minus 5 microns. The fine pyrite of the minus 6 micron size is further distributed down to 1 micron. Approximately 47% of the sulfides are plus 200 mesh and 20% minus 2300. This 20% is approximately evenly divided into each micron size from 1 to 5.

There seems to be two ages of pyrite-an older scarse crystelline, dense pyrite, and a younger finely divided pyrite scattered throughout the gangue in stringers.

It can be safely assumed that the greater part of the gold occurs in the iron pyrite. Insbility to observe any fine gold in the pyrite crystals indicates the extremely fine subdivision of the gold. (It is quite possible to see particles of gold in pyrite as fine as one tenth of a micron.)

The sample of ore examined assayed 0.445 os Au/ton.

1940-6
PLOTATION-GYANIDATION
WIRERAL SEPARATION CORPORATION - Williams

Purpose of Investigation:

To find out whether flotation would concentrate the refractory minerals into a product of small weight, this making possible the symmidation of the bulk of the ore without previous reasting.

Procedure:

The ore was ground to 93% minus 200 mesh and floated at 23% solids with 0.3 %/t Z-5 15 minutes. The floation tailing was agitated 21 hours at a 2.5:1 dilution with a 4.75 lb. MaCN solution. Cyanids consumption was 2.4 lbs/ton.

Results:

Product Honds	X WE.	Oz. Au/ton	Dist.	
Come. Tails Cy. Tailing	12.45 87.55	1.0 .23 .10	38.20 61.80 56.52 en	Heads 34.935

Overall recovery by flatation and symmidation 72.13%.

Summery:

Plotation on this ore is not effective.

382

1941-9 OXIDE STRIPTING-CYANIDATION NAMES OF TESTING LABORATORY-KOCKISTOR Perpose of Investigation: 1. To obtain laboratory data that might be of aid in milling the Getchell Mine strippings at a profit. 2. To obtain laboratory data that could apply to profitable treatment of other low grade mineralised structures whose physical characteristics makes settling and filtering difficult, and whose mineral characteristics makes them not amenable to flotation alone. Procedure: 1. Grinding to minus 28 mesh followed by both a metallie and a non-metallie float with the final sand portion of flotation tailing being leached, gave a total recovery into low grade concentrates plus solution of 60.5% of the gold. There was 32.8% of the values remaining with the slimes indicating that any successful treatment method would have to include cyanidation of slimes. 2. Grinding to minus 26 mesh was followed by a metallic float for recovery of refractory sulfides (which would be given a further treatment in practice) with the flotation tails being leached by 2 hour agitation. The dissolved values were recovered by adsorption on freshly prepared charcoal, and the charcoal subsequently recovered into a concentrate by flotation. This gave a total recovery into sulfide plus carbon concentrate of 80.5% leaving, 26 cents in the final residue. 3. Grinding to minus 35 mesh was followed by sand-slime separation with the sand portion being given a metallis float and the slime portion being leached by agitation. The dissolved values were subsequently recovered by adsorption on freshly prepared charcoal and the charcoal recovered as a flotation carbon concentrate. This resulted in a sand flotation tailing assaying 30 cents per ton in gold and a slime residue assaying 43 cents per ton. Simulating grinding in practice to minus 20 meah with cyanide and line strengths as used in the Getchell Mill, with the equivalent of single stage filtering of a classifier overflow was carried out. The filter regidue was repulped with activated charcoal and the equivalent of 302 gas. The object of this was to use activated chargoal in place of secondary filtration, or thickening, for the elimination of soluble loss and at the same time reactivate the sulfides so that they sould be recovered by flotation of the activated charcoal, and the total sulfide plus the earbon concentrate to be given a reasting treatment shead of additional cyanidation. This resulted in 56.0% of the gold being recovered in the filtrate and 27.3% of the gold recovered in the combined concentrate. This left a total residue assaying 17.5 cents per ton in gold. Summary: From a metallurgical point of view, and most probably from a sost plus tailing point of view, the foregoing test work has shown that a plant built along the fellowing flow sheet, is indicated for the Getchell Strippings: Closed circuit grinding with cyanide and lime to 20 mesh; classifier overflow 69.

1941-9
OXIDE STRIPPING-CYANIDATION
NEWMONT TESTING LABORATORY - MCCMISTOR

Summary: (continued)
filtered with the filtrate going to precipitation or low gold circuit and the residue being repulped with activated charcoal and SO, gas; charcoal carrying the disselved values and sulfides being recovered together by flotation, the flotation concentrate being remeted ahead of a second symidation period. This to be carried out in their present sulfide symide circuit.

The foregoing scheme should recover more values than other schemes tried to date on Getchell Strippings for the following two reasons:

- l. Eliminates from 5 to 10 cent soluble less inherent in any straight symmidation scheme, using either filtration or thickening or a combination of the two for the recovery of soluble values from pulps similar to the Getchell.
- 2. Eliminates the loss in the sulfides by making it prestical to roast the small sulfide content of strippings.

FIGTATION-GYANIDATION
NESMONT TESTING LABORATORY - CRETY, Brown

Purpose of Davestigation:

To try various flotation techniques, reagent combinations and different schemes of floating the sulfides, attempting to make a satisfactory tailing either by direct flotation or cyanidation of the flotation tailing.

Procedure and Results:

The same assayed 0.17	te 0.18	for	test purposes	WILS	a composite	kiln	food	sample	which
Mrs. Coul and	and				t	30000.00		Om 1	1.

Toos	Mean	Min.					
No.	Grind	Time	Conditions and Reagante	Come.	Os.	an an alles	
lla	65	17	10/ Ma_CO, used in grind; 301-PbNO3	13.1	Cone.	Tails	AReq.
116	150	-	Flotation of slime from lia " "	39.2	.34	-064	77.3
14	150	20 30	Cy-71s. Way3-MacH-Cu30, 301-PhNO	54.5	-264 -253	.067	47.8 82.0
17	150	March Charles	W LAGO DELL TORON CONTROL OF THE PARTY OF TH	42.9	-29	-OLE	85.2
		STATE OF THE PARTY	S & 3 separation; sand roasted; slime float HCl-NaCH-Cu30,-301-404			o Ody	38.6
21	100		CA-MA-S-MA-COT-SOI	47 ab	-265	-043	87.7
28	100		Roast and symmide float tails Roast come, with tails and symmide	42.6	.297	-024	92.4
29	4.8		Plotation-roast sand tails-reflect	32.1	•375 •321	•066 •06−3aı	69.4
		•	CHIII		Slime	085	67.1

The state of the s			
37736	Ca	100	May well

33 35 38 39 40	65 35 100 100 65	Soap flatation; 301-Wa_000g-S 36-Oleie-A 18 23.7 Float carbon from sand heads; 301-Al_2(SO_4)3 15.7 Water wash; 301-PhAe-Na_2CO3 Carbon float; 301-NaOH-7.0. 44.7 Carbon float; 301-Na_2S-Karesane 42.7 Hew Test Sample: Heads 0.20 to 0.21 ex-An	5 .22 4 .364 5 .31	.12 .105 .10 .07	52.0 24.8 60.1 77.8 75.0	
42	100	Sulfide flotation-goal without 14 hours	1 .0/			
47	100	Hattast Joi-Phacella Con Hand Salas Nap. O.	Sands	.057 .04	36.1	
48	100	NacH 45#/T Same as Twat #47 NacH 54#/T	3 .36 Sands	.065 .065	74.2	

82.0

Sends

.03

1944-1 PLOTATION-CYANIDATION NEWWONT TESTING LABORATORY - OUTTY

No.	Mesh Grind 100	The state of the s	S Wt. Conc.	Tells Abos.
20		Samo as #47-total tails NacH 59#/T	40.1 .20	.055 83.1
51	100	Same as #47-sand tails NaCH 574/7	30.2 .hh	.086 69.6
			Slime float tails	.127
			Sand Cy. Residue	.055
52	100	Plotation; roast 2 hrs. at 1200°F	33.6 .43	.081 75.0
			Slime float tails	.16
			Sand Cy. Residue	.018
54	200	Same as #47 Nach 100#/T; 301-Ma200-	40.3 .38	.084 74.5
			Slime float tails	-103
			Sand Cy. Residue	.023
55	65	30me os #56; NacH 52#/T; 301-Na_002	42.8 .406	.046 84.2
56	65	Bulk fletation; 301-Wujol-Hagoo Jone	ex 42.9 .326	.12 67.6
6la	100	Sands; MaCH Add/T; eyenidation; Hds.O	nan alkay apaca	
616	100			.03 63.0
				.06 26.5
62	100	Separate S & S float; 301-Mag CO3-PbAs	SAND 6.2 .76	.123 22.8
4			IMES 6.8 J9	.16 12.8
65	65	Heat pulp to 100°F; 26-PhAc-kin.B Na2	CO2 22.7 .598	.09 66.2
69	200	Cyanidation of raw ore	,	.175 16.7
		±		

1941-11 Curry, Brown

Perpose of Investigation:

To follow up on work done at the University of Arizona of making a low weight sulfide flotation concentrate, and treating the tailings with NeCE prior to symmidation.

Procedure:

The sample used for test work was a Cetchell plant kiln feed composite from August 16 to September 27, 1944. Arsenic minerals were floated at 35 meah, which was fallowed by a 200 meah grind. After agitation with caustic for 40 hours the pulp was filtered, washed and given a sulfide float. Flotation tailings were eyanided 96 hours. Composite sample, heads away 0.20 on Au/ten.

1944-11
FLOTATION-CYANIDATION
HENDORT TESTING LABORATORY - CRIFF, Brown

Book!	Lee:				
No.	Back 2764/7; JOI-Na_COPEAC Recevery of Am in AS Come.) " " " Sulfide Come.) " " " Cymnide Sel.	7 Rt. 4-1 6-8	Come .	Au/ton Talls	\$200. 90.2 7.5 14.5
82	Sample #642 East X-out Same same procedure except sulfide flo		-74	-03	68.2 9.8 90.2
83	Sa S; float alims; song. added to sonds reasted 2 hrs. at 1250°F; agitate with 175/m	2.5 Sand + 31. Slime Floa	.735 Cone. t Tis.	.035 .065 .22	90.2
85	NaCH for 24 hrs; eyemids 96 hrs. Same precedure as f83 except calcines were ground to minus 200 before symmidation	Sand + Sl.	Coma	-03	62.8
92	70 produce low weight in consentrate me eyemidation minus 100 mesh grind	Slime Floa	rls.	.19	60.7

Purpose of Investigation: Test #86

To make as low a final tailing as possible, following up on Tests #79-80-82, which gave the lowest tailings to date.

Presedure:

Arsenic flotation was at 35 mesh. After grinding to 200 mesh a sulfide float was made, with the tailings classified into sands and slimes. They were treated separately as follows:

Sand Slime	8 Rt. 67.0 33.0	% Salids 35 10	Hach 13al	Hrs. Acis. 96 72	Nach 3 Sol. 1.0 1.0	Agit.
Results:						
Heads As. Conc. Sul. Conc. Sand Tis. Slime Tis. Solutions	55.7	03-A3 -19 -32 -63 -08 -16	07-Au 02-Au .01 .005	5 Diet. 100.00 5.85 43.82 2.90 .71	Plotat Cyamid	

1944-1 FLOTATION-CYANIDATION NEWMONT TESTING LABORATORY - CUFT, Brown

Procedure: Test #37

Arsenic flotation was at 35 mesh with PhAc - C.O. - C.A. The tailings were ground to minus 200 mesh and treated with equatic prior to sulfide flotation.

Resulte:

Heads	100.00	Assay 02-Au 0.193	% Mist.	A Res.
As Come. Sulfide Come. Cl. Tails R. Tails Cy. Tails	3.31 5.46 13.27 77.96	•345 •75 •33 •125 •06	5.9 20.8 22.6 50.7	5.9 20.8 9.0 29.3

Survey !

Potter results are obtained when sulfide flatation is made prior to caustic leaching. Caustic soda seems to have a depressing effect on the sulfides.

1777-21

Purpose of Investigation: Test #91

To further study the effect of NaOH at different strength leaching solutions.

Procedure:

Conventional arrests and sulfide floats were made with the flotation tailings split into several pertions to study caustic strengths and the effect of straight feeding or stage feeding.

Resul.	Lte	
EPhills at -5	Megallous.	

Conditions

Conditions

Conventional flotation

Sulfide cleaner tails treated with 165%/T - communition 72%

Conventional flotation

Sulfide cleaner tails treated with 165%/T - communition 72%

Show

SUMMARY:

Recoveries favor the high saustic strengths with straight feeding; however, consumption favors stage feeding.

1945-3 PLOTATION-CYALIDATION NEWWORT TESTING LABORATORY - CHATY

Purpose of Investigation: fest #91 To compare NeOF treatment with 502 treatment on a flotation tailing.

Procedure:

A portion of a flotation tailing was agitated 90 hours with 20%/T HaCH. Another portion was agitated the same time with 3004/T 6% SO2. The pulps were filtered, washed and symmided.

Receivent Nacil	Os-An O.033 O.08	800. 1 67.0 24.0
-----------------	------------------------	------------------------

Purpose of Investigation: Test #93 to protroat flotation tailings shead of syanidation.

Precedure and Results:

After a conventional arcenic sulfide float the tails were aplit into three portions - treated - mashed and sysmided 40 hours.

The sulfide comcentrate contained 7.85% by weight and acceyed 1.19 oz. Am/ton. The fletation tailings assayed 0.134 on.

		a rough month of
Test A Fac B Nac C Nac	Pretreatment Cl 56.54/T + NaON 33.44/T agitation 48 hours ON 28.44/T agitation 1 hr. Standing contact 168 hours E 556/T agitation - hot - 24 hours	Os-Au & Ree. 0.065 \$1.5 0.078 41.8 0.033 75.5

As was proved in the Getchell Filet Flant a satisfactory tailing cannot be made by straight flotation or by straigt evanidation of the flotation tailing; however, after leaching the flotation teilings with caustic soda a low eyanide

1945-12 FLOTATION-CYANIDATION MEMBERT TESTING LABORATORY - CHETY

Perpase of Investigation: Test /102

To obtain data of the flow sheet of a 26 mesh grind; areemis flotation; sand-slime separation; slime flotation; sands reasted for 2 hours at 1250°F and symboled.

Booulter

Neade	100.0	Assemy Cir-Ata	Bistribution I Am
Slimes Slime Come.	22.9	0.183	100.0
Sliss The.	49 to 65	.34 .17 .06	

1944-10 CYANIDATION-PLOTATION GUNCENTRATES NEWMONT TESTING LABOTATERY - CHETY

Purpose of Investigation:
To syanide the flotation concentrates without roasting.

Procedure:
A sample of Geteball Filot Flant iron consentrates was treated with NaCH and

eyanided without grinding.

Yest 977: Agitation for 120 hours with 60%/T MacM prior to symmidation.

Test #78: Agitation for 67 hours with 60#/T MacH prior to 95 hours eyenidation.

Test #84: Agitation for 48 hours at 10% solids in 5% NeOH solution prior to 96 hours symmidation.

Results:

Tost	Oss Assa/ S-com	Os Au/ton	al work .
No.	Heads	Taile 27	\$2.5
78	.61	.26 .28	54.0 57.4

Purpose of Investigation;

To find a proper reagent set up and to determine what constituted the losses in the sline floration tailing.

6x4: 4"

The test heads was a six wooks sample of kiln feed from the South Pit Exten-

Procedure and Results:

The armenic minerals were floated after a 20 mesh grind. The sand portion of the armenic floated separately. The slimes were also floated separately. These needs assayed 0.21 or Au/ton; 3.91 As.

No.	Sulfide Flotation Conditions and Reagents		mic Cond	entrate
I.	Sulfide Flotation Conditions and Reagents NegCo3-301-PbX-242 Sand Tailings cyenided	A III	OB AU	SAU Rec.
-	F. OF E 12-20 1211 Show-12 and T. P. B. J. Charles also	7.62		16.28
3.	Silmes centrifuged into gramular and on Soldat	10.67	•32 •32	18.02
	portions; granular portion ground and medianted		را العالمين 🖷	47.073
4-	TOTAL TOTAL TOTAL SECTION OF THE SEC			
	Reagents same except OuSO, added - centrifuged as above.	5.61	.32	8.54
5.	Reagents same; slimes centrifuged; granular portion added to sands for regrind and flatation		.30	8.96
	PbN-404-242-CuSO ₄ ; Combined flotation; Sond. reasted Soul-K-301-Ka, SO ₂ -FO; Sand-sline separation Grind absad of arsanic float; no Soda sub added to avoid pulp dispersion; RaCl ₂ to As tails grind; Recovery was attempted rather than concentrate grade; CuSO ₄ -X-Nujol-Z3; Conc. resated and cyanided.	6.94 8.02 9.34	•32 •295 •36	10.71 10.45 15.54

Test	Sulfide Co	ocentrate	glotation	railing		Cyanide Tai	Author States
1.	0.50 18.19 .50 19.29	0:76 39.38 •75 35.00	0.095 13.46 .125 16.10	0.048 0.048	ND <u>\$200.</u> 11.89 11.59	SLIME SAM	-AU
3.	.505 21.35 Combined Conc.	Colluida Granular .634 63.45	.09 9.47	.155	4.55		En pd
5. 6. 7.	.82 8.87 Combined Conc. .27 3.17	0 celloida 0 cenular .32 61.27 .63 64.05 .635 66.40	The second secon		12.23		04
8.	Combined Conc.	•32 - 75.06	Total Residue Combined Tail. Total Recidue	.05	9.44	•	03 04 5 035

1944-1 PLOTATION-CYANIDATION GETCHELL NIME - Silver

SWHEATT:

A short grind ahead of the As float shows a recovery of 86% of the arcenic. PbC yields a further recovery of the As.

Palling a large bulk of middlings as a consentrate lowers the residue but the assay is only slightly changed.

Purpose of Davestigation:

To float the realgar and orpiment at 20 mesh into a clean product; classify tailings into slimes and sands, with flotation of the slime portion. The sulfide consentrate combined with sands for reasting and symmidation. Slime flotation tailing to be discarded to waste.

Procedure and Results:

This sample comprised a six weeks composite of kiln feed from the South Pit Extension. Will heads averaged 0.16 os. to 0.22 os. with plant residues from 0.07 to 0.10 sumess. The As float was made at 20 mech.

Tout		Arso	mie Come	entrate
No.	Sulfide Plotation Conditions and Reagents	S WY	OB AM	XAL BOSE
40	Mg SO, -CHSO, -Feo-301 (Lime and symmide to As Float)	4.67	-05	1.17
2.	" " " (Lime and eyenide to As Float)	4.75	-70	2.22
3.	301-PbO Cond. As tails 12 hrs. with Oaso,	5.33	.22	5.74
ha	16-#25 (Very dirty froth)	6.67	175	6.02
5.	CMSO1-26-MagCOg (Soda Ash to As Float)	3.89	.30	5-64
6.	Very complisated reagent set up	6.11	.32	8-49
7.	Namicog-Ré-Pho-Caso,-242 Lims to As Fleat	5.39	-26	6.40
8.	Ma2CO2-26-O13O7-S75 " " " "	5-67	-23	6.36
9.	и и и Обети и и	6.19	-33	10.14
10.	/301	7.49	.30	11.69

Several tests were made using S-243 (Cationic reagent) but the results were not worth recording.

1944-1 FLOTATION-CYANIS TO A GLICHELL FINE - LIVER

Test	Sulfid	Conce	ntrate	2	· A w		CONTRACTOR OF THE PROPERTY OF THE PARTY OF T	fails	Cyanide SIII	SAAC
Ro.	The state of the s	020 AU	6 6C.	& ot	Maria All	shee.	OS-VA	& Ava		OB-AN
1.	5.25	0.76	20.27		0.13	44.66	0.127		0.11	物ではない。そのフィッキのかりっぱいない
2.	2.00	1.28	12.07	45.00	.19	40.33	.17	32.31	.125	
3.	2.92	1.40	20.05	44.72	.18	39.46	.136		·li	
	Sands			concentrate	PORH	ted 120	XOP and	gyani.ded		.058
40	14.39	.50	37.62	41.11	.15	31.71	-11	17.26	.096	
5.	7.78	.85	30.37	45.83	.172	36.78	.11	16.70	.07	
6.	6 odsta	.94	26.20	45.00	.165	32.13	.11	13.34		
	18.33	.67	72.23	Tails	-055	26.77	sands r		floated	-024
7.	5.28	1.25	30.41				-11	18.84		
	6.17	•33	24.83	Pails	.05	8.41	sands re	aground -	floated	-024
9.	11.00	-60	42.29	39.27	.16	31.05	.084	12.72		
9.	10.43	.62	32.21				.116	19.28		
	9.77	.66	32.06	Tails	.032	لماءن			floated	-02
10.	4.89	.92	23.48	47.89	.14	34.60	.008	8.16		4 100

Survey:

As Flotation: Recovery of realgar and orpiment into a comcentrate accepting 40% As with a recovery of 80% is possible at minus 20 mech. The armenic uniquentrate contains 2% of the total gold it cleaned with MaCN and 6% if MaCN is not used.

Activating with lead salts and sods ash improves the As recovery but also collects more gold. The best collectors appear to be PO and Kerosene at a line pH of 7.2.

Slime Sulfide Plotation: A sode ash pH of S.O and usual assumts of BOL or I-6 for collectors with \$242 for a frother yield good results. Lead salts and copper sulfate appear to scavenge finely divided sulfides.

Assuming the primary sands as part of the concentration recovery - the over-all recovery, with clean concentrates is 70%. With a low grade concentrate an 30% resovery can be made.

Sand Sulfide Flotation: Crinding the primary sands; floating; cyaniding the flotation tailings; rossting and cyaniding the sand flotation concentrates yields an O.Ok oz. final tailing.

Cyanidation of Slime Plotation Tailings: The slime flotation tailing of 0.125 ounces only yielded 0.025 ounces Au with a high chemical communition.

1944-4 PLOTATION-GYANIUATION GETCHELL HINE - Silver

Purpose of Isvestigation:

To compare South Pit eres with South Pit Extension orws. Plotation in a neutral or slightly acid aircuit ulthout idspersion and the possible bonefits of flatation with heavy hydroserbons. To find out effects of various electrolytes to precipitate a colleidal aresaic sulfide, and effects of apocial polyent reagents on flotation and evenidation. Coal dust and lear black eculaions were to be tried as scavengers.

Prosecure and Resulte:

The procedures and results for each of the eight tests are not given as all results are carefully sussed up in Silver's conclusions.

CONCLUSIONS!

1. There is practically no difference in the results on the two ores.

2. Slightly improved results more obtainable in a neutral or slightly acid elrouit, without dispersion.

3. The use of nembral cils (heavy hydrosorbens) served no good purpose.

A. Electrolytes, il₂(SO₁)₃ - Fe(SO₁)₃ - FeSO₂ were harmful to flotation whereas BaCl₂ - FeCl₂ and Fe₂O₃ were moderately beneficial.

5. Cleaning the Fe concentrate requires 30 minutes flotation time. The

addition of soul dust or lamp black emulsion alsens the froth up rapidly.

The following is a resume! of the reagents which have given the best results to date:

Healgar Grind and Float; Ca(OH)2 plus PbO plus a 70.30 misture of PO and Keresene.

Iron Trind: Reddle plus 3-9

Iron Ploat: Cuso, plus 8-9 to maintain the froth.

Scavenger: Ocal dust/Na_CO_ emulsion.
(3-9 is a hefithete mixture)

1964-12 FLOTATION-CYANIDATION-LABORATINY REQUEE: CETCHELL HINE - SILVER

Purpose of Investigation: To develop flotation to an economic aspect by simplicity of practice and metallurgical efficiency.

Procedure:

Flotation tests were made by the hundreds-practically every known reagent or combination of reagents were tried as well as various degrees of grinding and techniques.

Laboratory Davelopments:

The realgar flotation offered little difficulty yet this is an important conditioning stage for the sulfide flotation to follow. Devatoring after the arsenic float quite frequently promoted subsequent sulfice flotation showing something was removed which was believed to be molybdenum sulfate. The technique of using CaO to a ph of \$.6 to inhibit pyrite and the use of PbO to activate realgar took care of this soluble molybdonum salt. The stibuite in the ore mostly all floated in the realgar concentrate.

The sulfide float investigation had many ups and downs and reverses of epinion. Circuits renging from a pH of 5 to 11 were investigated. A sode ash

pulp dispersion was the best.

A great many reagents ranging from soaps to ferrie oxide to soal dust to lamp black emulsions to alighatic acids, etc, were used in an effort to pick up the last traces of finely divided sulfide coated particles.

CMSC, and Pbx were investigated as activators but saids from consolidating

the froth in the slipe fleet any advantages were hard to pin down.

The reground granular part of the ore never needed any special assistance se that most of the work was done on the calleids.

Cymnidation tests were made on practically all flotation tailings in hopes of finding some answer to the colloidal slime problem. Cyamidation tests on the flotation tailings showed additional resoveries ranging from 0.015 to 0.06

The ultimate tailing was too high to be interesting or the quantic recovery on the better fletation tailings too low to be economical.

Poor results by flotation practice were attributed to the difficulty to the fine sulfide coated particles of gangue and the failure to grind the granular portion of the ore to sulfide liberation.

Centrifuging removed a grammlar portion from the sline and permitted re-

grinding of this portion.

Most favorable sulfide flotation results were obtained in a high pH soda

ash circuit.

The advantage of copper sulfate, as an activator, was hard to min down. low residues could not be obtained without floating finely divided sulfide particles in the Laminations of emorphous carbon. No reagent was found which would float these particles, therefore, there was no substitute for fine grinding. 1944-12 FLOTATION-CYANIDATION-LABORATORY RESUME! GETCHELL WINE - Silver

Laboratory Developments: (continued)

On eres ranging in gold content from 0.16 to 0.20 mances gold it is entirely reasonable to expest an overall gold recovery of 80% into all types of comcentrates, and with a more earefully planned speration this might go as high as

There are the problems and costs of fine grinding which is one of adequate elassification and thickening capacity which would have to be ample to take care of thickening climes and reground material. Reagent costs are higher than normal. The end product, flotation concentrates, are of undesirable nature. The concentrates are extremely fine, settle and filter poorly and thus presents a difficult problem of preparing them for reasting. There is next the problem of reasting a very fine concentrate of high insoluble content, along with the final problem of making an economic gold recovery from the calcined consentrates.

The risks involved in the various phases of ore treatment by flotation to

the final phase of gold recovery are questionable.

1946-12 PLOTATION-CYANIDATION-FILOT PLANT RESUME! GETCHELL MINE - Silver

Pilot Plant Operations and Discussions:

The pilot plant flow sheet consisted of a 20 mesh grind for As fletation followed by a sand slime separation in a bowl classifier, with the sands to a regrind mill, and the slimes to thickening. The sands and slimes were floated separately.

After a period of adjustments both mechanical and resgent the results begen leveling off and the following table summarises several weeks of operation.

The ore was never ground to the prescribed finences of 90 to 95% minus 325 mesh, with an all minus 200 mesh product. Erratic and poor results are to be expected on a coarser grind. At no time during the entire pilot plant operation were conditions entirely favorable in the matter of thickening the silmes.

It is firmly believed that a more orderly and continuous operation would show further improvements. Standard practice is a realgar float at pH at 8.6 with CaO following a 20 mash grind-classification at 200 mesh into sands and slimes thickening slimes-conditioning thickened slimes with reground sands to a pm of 10.0 with soda sah and floating with standard reagents.

Standard reagents were 30% Fine Oil and 70% keresons for the arsenic fleat;

and 30/70 #242/FO: 2-3, 2-6 or 301 dissolved in a 10% 30dm ash solution.

The grade of concentrate could be greatly improved by cleaning; however, this was not done as efforts were entirely on recovery. Ordinary cleaning would probably increase the value by 50% without materially affecting the tailing.

In all Pilot Flant Operations a lime pH of 8.6 was maintained in arsenie

flotation and a line Pt of 10 was maintained for sulfide flotation.

Date Amg. 6-15	Flotation Flow Sheets Arsemic flotation; tailings to conditioner; sulfide flotation; tailings to bowl class- ifler; slimes to thickener; slime flotation classifler sand to regrind; sands to	CHO-POO-E/PO	Grand As Po + 325 30 20
Aug. 16-21	Same .	Same	48 20
Mg. 22-25	S amo	3440	48 20
Aug. 26-3	Same	Same	48 20 Erratie
Sept. 5-25	5234	Same plus Oronite 50	L8 30

(continued on next page)

1944-12
FLOTATION-CYANIDATION-PILOT PLANT GEOUNE®
GETCHELL MINE - Silver

Date 0et. 7-21	Arsenic flotation; tallings to conditioner; sulfide flotation; tailings to bowd classifier; slimes to thickener: UF to camtrifuge; colloids to waste; grammlar with sands to regrind; sands to flotation.	Respents Realgar Float; same Culfide Float; same except no PegO, or coal dust.	Grind Az Pa + 325 48 5
Nov. 15-24	Arsenic flotation; tailings to conditioner; salfide flotation; tailings to bowl classifier; slimes to thickener; UP with sands to regrind; combination flotation.	Same	48 20
Hov. 25th.	Arsenic flatation; tailings to classifier; slimes to thickener; classifier sands to regrand; WP in regrand sands combined to conditioner; combined flotation.	Same	48 33

Results;

Date Amg.	Heads Cz/Au	As Conc	entra e-Am 1		Fo Con	Oentrat Om-Au	1796.	Slime Au/os	Teil Aug	Sand Au/Os	Toil
6-25	.171	3.15	.63	11.64	24.70	.485	70.00	.057	10.06	.034	8.39
Aug.	•23	3،33	.405	5.94	26.93	.62	73.39	.097	12.49	.046	8.18
22-25	.24	10.04	.216	9.19	20.33	.78	67.26	.114	14.48	.054	9.07
Aug. 26-3 Sept.	.15	5.19	.20	7.03	34.76	-29	67.90	.072	12.84	.054	1.2 .23
5-25	.20	4.30	.37	8.03	20.50	.605	63.96	.099	15.66	.055	
0et. 7-21 Nov.	.208	4.35	.47	9.30	34.65	.462	77.02	.07	alloids 2.02 L flotai	.039	9.95)
15-24	.173	2.42	-42	5.86	27.86	childs	75.07	.044	17.27	4000	***
Mov. 25th.	.154	2.31	.31	4.69	19.83	-59	76.17	.035	17.25	ion ta	ils)

1945-11 ROAS T-GALGINE FLOTATION GETCHELL MINE - SILVET

Perpose of Investigation:

To determine the feasibility of floating the kiln discharge and circulating the empontrates back to the head of the roaster.

Procedure: Yest 23h

Samples of both the kiln feed and discharge were taken.

		Simo					ABRAYS
Plus 3/8	o God	20m	6Om	-60	As %	5 5	Os An ton
Kiln *sed .La	- 6m	20m	.135	-60	A3 8	2.96	-138
Kiln Discharge .13	.15	.175	.13	.20	.31	2044	-1.55

Gyanidation results on each screen product after a 60 mesh grind.

Kila Discharge .045 .055 .045 .05 .065 % Extraction Total - - - 67.67%

After grinding the kilm discharge to 100 mesh and floating, the flotation tailings asseved 0.135 cm. Au/ton. Cyamidation of the flotation tailing gave an 0.045 cm. residue.

SWABALT!

Rossting the fletation concentrates gave an additional 0.015 owners gold resevery.

Purpose of Investigation:

Many tests were run on the symmide plant residues in an effort to find out what was the sause of poor plant recovery.

Procedure:

will tailings assayed 0.0715 or. Au/ton. These tailings were ground to 100 mesh and floated. The floation products were rested and resymmeted.

Results:

		J.	3-	()	7	A	Ta.	I	O	N	CYANI	i A	T	I	Q	H
Products	4 24		(37		3		₹ Rug.	Asseys Oz An/ton		*		KÈ.	
Comets.	12.94 87.06		4	Lotolicani		(S) (5)	5	046-		% Russ. 32.72 68.28	03 Au/ton -0525 -035		Alle		L'al	

Total final residue 0.0372 oz. Az with a 50% recovery.

1945-11 ROASTING-CYANIDATION ORTCHELL "THE - SILVER

General Discussion on Getchell Roasting Problems:

The physical side of the reseting difficulties are (1) segregation of fines and coarse which cause serious runs through the furness and a subsequent partial rosst. (2) Formation of and balls which do not receive even the average rosst.

(3) Rosster flame highleted by dust contributing to poor heat transfer.

(4) quenching preventing further oxidation.

Other Notable and Accepted Pasts:

If reasting temperatures of 1200°F to 1400°F are reached the average mill result is attained. Very little arsenie other than that comtained in realgan

and orpiment is driven off in the roset.

Garefully conducted laboratory roasts seldom yield any better results than the plant. The plant selding when subjected to an additional 4 hour period of roasting at 1400°F does yield a relatively satisfactory residue; however, this laproved residue is seldom obtained in the laboratory in a continuous uninterranted roasi.

There is no evidence to show that further elimination of precise, sulfide sulfur by re-reasting results could be from further breaking down of gold bearing constituents in the absence of readily fusible silies.

A sample of areenic concentrates was rossted in the usual way-self rousting for the most parb-and symmided.

	Um Allyton	AB %	3 3
Heed Assay	0.52	43.00	23.44
Calcino	1.26	2.00	-49
Residue	-55	2.00	-49

In spite of slimination of 93.3% As and 99.3% S only 57.2% of the gold was amemable to symmidation.

- (23b) On the soustie sods treatment of the concentrate calcines using various strengths from 1% to 5% the molybdemum in solution appeared to be much higher in the strong solution effluent than in the weak. It is difficult, however to associate the poor gold recovery with the molybdenum content in the ore although the soluble sulfate which occurs naturally in the ere had its deleterious effect on the flatation problem.
- (23e) Rossts with any sodium salt yielded residues which increased with the amount of the salts used to as low a recovery as 40.0% of the Amount the concentrates. This was definitely proven by several tests heads is an established fact.

1945-11 ROAS TING-CYANIDATION GETCHRLL NINE - SILVER

Q3f) Extremely fine grinding of the concentrate calcine cyanidation residues in fresh cyanide solution gave up an additional 10% of the Au, but not commercially feasible or good enough.

(23h) Special roasts with coal dust mixed into the feed gave improved results on the raw ore but it didn't appear possible to show a like effect on the concentrates—more often the reverse was the case.

(231) Long period roasts and high temperature roasts both gave slightly poorer results on the concentrates and no appreciable improvement on the ore.

1/400

Purpose of Investigation;

The fellowing tests were made to compare the Quick Reast method with the comventional Roast - and also the meed for grinding the calcines.

Procedure: 7est 23a

The feed was ground to minus 20 mesh.

Conventional roast at 1150°F for four hours.
 Quick roast in thin layers for 15 minutes.

The same tests were made but with a 1400°F roast.

Resulte:

Test Ho.	-20 Mesh Assays Os Au/ton Heads Tells % Oxt236 -115 51.27 -239 -05 79.08	-60 Mesh Assays Os An/ten Heads Talls & Ext243 -05 7531 -249 -045 81.93
1406°F 1 2	•252 •065 66.20 •251 •06 76.06	.248 .06 75.81 .260 .05 80.77

Grinding the conventional reasted calcines had a very beneficial effect. The benefits of the Quick Roast are undeniable.

1945-11 ROASTING-GYANIDATION GETCHELL HINS - E11ver

Q3f) Extremely fine grinding of the concentrate calcine cyanidation residues in fresh cyanide solution gave up an additional 10% of the Au, but not commercially feasible or good enough.

(23h) Special roasts with coal dust mixed into the feed gave improved results on the raw ore but it didn't appear possible to show a like effect on the concentrates-more often the reverse was the case.

(231) Long period roasts and high temperature roasts both gave slightly poorer results on the concentrates and no appreciable improvement on the ore.

1945-11

Purpose of Investigation:

The following tests were made to compare the quick moast method with the conventional Roast - and also the need for grinding the calcines.

Procedure: Post 23m

The feed was ground to minus 20 mech.

(1) Conventional roast at 1150°7 for four hours.
 (2) Quick roast in thin layers for 15 minutes.

The same tests were made but with a 1400°F roast.

Remultar

Test No.	-20 Ms Assays (% Heads Tails -236 -115 -239 -05	a contract of the contract of	-60 Mesh Assays Os Am/ Heads Talls -243 -05 -249 -045	
1400°F 1 2	.252 .085 .251 .06	66.20 76.06	•248 •06	75.81 80.77

Grinding the conventional rossted calcines had a very beneficial effect. The benefits of the Quick Roast are undeniable.

1945-11 ROAS TING-CYANIDATION-FLOTATION CETCHELL MINE - Silver

Purpose of Investigation:

To separate the kiln feed into plus and minus 20 mesh portions. The plus size to be reasted and sysmided, and the aline portion floated.

Procedure: Yest 23m

Heads 0.19 oz. Au/ton;

As. 1.50%; 3. 2.68%

Results: Composited

Products	and the same	Assays	
420 Cy. Tail.	75.66	Ox Au ton	21.75
G. Salution	1000	49477	58.50
As Come.	3.36	.42	1.98
Fe Cone.	-94	.79	10.67
Midde	2.64	-14	2.25
Plot. Slime Tail.	14.33	-062	4.45

SAME ATT

The recevery is approximately the same as in the straight roasting of the ore. The furnaces are relieved to the extent of 20% of the normal furnace feed.

1945-11 ROASTING-CYANIDATION-FLOTATION GETCHELL MINE - SILVER

The following flow sheet is recommended after a two year investigation of the Ostobell metallurgical problem:

But of mine ore to a jaw crusher to deliver minus 4" to ore bin; from ore bin to Marey ball mill in closed direuit with an inch screen. The undersise is again screened to plus and aimus 10 mesh. Misms 10 mesh is floated, at a lime pM of 8.4 to remove the arsenic, with the tails classified into sands and slimes. The slimes thickened and floated for a sulfide recovery in a soda ash pM of 10.5 with membhate and copper mulfate. Slime tails go to waste. The oversise from the 10 mesh screen joins the classifier sands and is a roaster feed. Kiln discharge is cooled, ground and cyanided.

There appears to be no possibility that a simple crushing plant operation can be arranged which attempts dry crushing. Secondly, there is no justification in crushing finer than one inch for roasting. Thirdly, in the above flow sheet the greatest memace to the present type of roasting has been by-passed to flotation. Lastly, the most important problem of increased tonnege is provided for.

1944-7
PIOTATION-CHARCOAL-CYANIDATION
UNIVERSITY of ARIZORA - Chapman

Purpose of Investigation:

To determine if charcoal symmidation was amenable to Getchell flotation
Pilot Plant tailings.

Presedure and Results: Test 18.

Pilot plant sline tailings - agitated 24 hours with NaCH followed by agitation with MaCK and chargoal for 47 hours.

		ALID REALLY	
	% W&.	Os Au ten	3 Am. Distribution
Honda	103.05	-141	100.0
	1.18	13.10	78.1
O-Come .		.075	1.5
ici éde	2.78		
Tails	96.38	-03	20.4
T standardonale	Charact acceptate	after burning assayed 83	5.38 on. Au/ton.
	Personal distriction in curry district man an area.	THE REAL PROPERTY OF THE PARTY	(a) (a)

Test 19:	Pilot Plant send	tailings some treatment	
Hands		0.039	20 m A
O-Care.	.907	5.58	72.6
Wides	1.47	.06	2.3
Taile	98.03	.01	25.1

Test 20: Slime tailings agitated 46 1/2 hours with ReCH followed by agitation with charcost and BeCH for 117 hours.

Heads O-Come. #1 C-Come. #2 Midds Tails	0.901 .447 2.48 96.17	.148 15.07 .49 .03	91.6 1.5
I my man	, , , , , ,	.01	6.4

O-Gene. #1 burned to 94.40 cz. Au/tem

Tout 21:	Slime tallings	treated same as Test 18.	
Heads O-Come. #1 Widds	0.679	.135 13.06 .03	85 a2
Tails	97.05	.02	Llock

Test 22: Sand tailing - procedure same as Test 19.

Heads
O-Come. 0.442 5.83 83.2

Midds .98 .03 1.0

Tails 98.58 .005

By previous tests 11 and 16 indicated that 18% of the Am in the Sand tailings and 42% of the gold in the Slime tailings was recoverable by the charcoal process. The recent tests suggest that these figures are 70% and 90%. The charcoal fleats essentially, completely and rapidly. The three unfavorable steps are (1) Cost of caustic sods (2) Fulp dilution (3) long periods of agitation.

1944-11
FIOTATION-CHARCOAL-CYANIDATION
HNIVERSITY of ARIZONA - Chapman, McQuieton

Purpose of Investigation:

To determine the merits of charcoal-symmidation and to determine if emustic soda consumption could be out to practical amounts.

Procedure and Results:

Twet 30: Sline flotation tailings - Confirmation of Tost 21.

The pulp was conditioned with 216/T of 90% HaCH for 45 hours fellowed by chargoal HaCH for 48 hours. Consumption was 18.66 HaCH; 1.75 FHACH (one to CHEOL)

		Armay	
	% Wto	OH . 400/1-000	s an Distribution
Heeds	200.00	1.24	100.00
0-00me //2	0.733	14-104	812
0-Cesse #2	0.345	-799	2.3
Kidds	3.224	AO.	1.0
mile	96.462	• C2	15.6

Test 31: To determine if MacE and Charcoal - NacW treatments could be sembland. Slime pulp agitated simultaneous with 21 pounds MacH, 3.45 pounds of MacH, and 10 pounds charcoal for 65 hours.

Noody	100.00	.132	100.00
O-Come. #1	0.945	క ం షేటి	60.6
0-0eme. /2	-162	-42	1.5
Midds	3.33	.O6	1.5
Tails	95.93	.05	36.4

Test 32: Raw Ore: Fallowing the realgar fleat the thickened tailings were agitated 43 1/2 hours with a MaCH consumption of 19.6 lbs. The charcoal-symidation treatment followed the omistic treatment for 48 hours. Granide less was 0.46 pounds. Conditioning with CuSO, and fletation of sulfides followed charcoal-symidation.

Hoads Realgar Cons. C-Cons.	100.00 5.82 1.88	0.185 .256 4.375	100.00 8.1 44.3
Sul-Cone.	5.70	-40	10.5
Tailings	74.10	.06	29 1

These results confirm Test #29 in which am 0.06 cm. tailing was made.

Test 33: The colloids portion of the Pilet Plant slims comcentrate was agitated with NeCH for 42 hours followed by chargoal symmidation for 48 hours. MacH consumption was 55 pounds and NaCH was 6.7 pounds.

Results: Heads 0.36 owners with chargoal recovering 35.0% of the gold. The residue assayed 0.05 owners. These results sempare with Test #28 which abound an extraction of 82.0% with a 0.06 cames tailing.

1944-11
FIGTATION-CHARGOAL-CYANIDATION
UNIVERSITY of ARIZONA - Chapman, McCulston

Post 34: Naw Ore: This test differed from Test #32 only in the manner of conditioning the pulp for sulfide fletation. Nach consumption was 21.6 pounds and NaCN was 0.60 pounds. The tailing asserved 0.06 summes the same as on test #32.

Test 35: Raw Ore: To determine the possibility of a three-stage flow

shoet - realgar float - sulfide float - charcoal cyanidation.

The realgar float was made with B-23 and K. Tailings were conditioned with some ash and a sulfide float made, then thickened and agitated 36 hours with 25 lbs. NaON per ton followed by charcoal agitation for AS hours. NaON consumption was 0.50 pounds.

		Assey	
	% WB.	OS AW BOD	& am Distribution
Heeds	100.00	O.LES	100.00
Roalgar Come.	5.69	.20	6.3
3ml. Come.	11.12	. Mile	51.3
Midds	9.65	-22	11.7
O-Cens.	-63	6.12	21.3
gidas	-25	-93	1.5
Talls	72.66	.02	7-9

Note: Sulfide midds now added to syamide feed.

Test 36: Slime Tailings: To determine the possibility of decreasing the NaCH treatment to 12 hours. The tailing assay was 0.035 giving an extraction of 68% of the Am. In Test #31 A5 hours HaCH treatment gave a tailing of 0.02 oz.

Test 37: New Ore: To determine the possibility of combining the flatation of charcoal and sulfides. NeCH agitation for 43 hours was followed by charcoal-cyanidation for 48 hours. The tailing assay 0.092 os. Am/ton.

This method cannot compete with flotation of sulfides preceding charcoal-

gyanidatica.

Test 38: Raw Ore: To el the middling sulfides and to use the seme pulp right through to try and const any fouling by soluble salts.

Heads		.188	** • •
Realgar Cone.	5.25	.256	7.2
Sul. Come.	11.94	. 202	51.0
CC0826 .	4042	1.195	28.1
o-wieds	.43	o. A. 522	1.5
Barren Sol.		Tra 200	
Tails	78.41	•93	12.2

Test 39: Raw Ore: This test checked the above results very closely. An O.03 TRITING was made on this test.

1944-11 FLOTATION-CHARGOAL-CYANIDATION UNIVERBITY of ARIZONA - Chapman, Negulatem

The following is an average test.

Heads Aromic Cone. Sul. Cone. O-Cone.	5.55 12.23	Cr. /pi/tom •12 •23 •74 2•22	% Au Distribution 100.00 7.1 A9.9 26.6
O-Como.			
railings		-03	16.4

Charcoal concentrates should assay 13.19 oc. Au/ton and burn to 73.28 ounces. The final triling could probably be reduced below 0.03 ounces.

There was no evidence of fouling the charcoal. NaCH semessption was approximately 20%/tem and NaCH approximately 0.50 pounds per ton ere.

1943-3 FLOTATION-CHARGOAL-CYANIDATION UNIVERSITY of ARIZONA - Chapman, Maquiston

Perpese of Investigation:
To compare results from mornal symmidation with those of charcoal symmidation.

A sample of Getshell calcine with the sulfides removed by flatation were cyanided for \$4 1/2 hours with 8% CmO; 2% NaCH; 1.5% NaCH.

Results:

Heads 0.146 cs. Au Formal HaCN Res. Chargest HaCN Res.
The grade of chargoal before burning was 10.96 owners and 19.92 cances after

Procedure: Tests 7 and 5:

A sample of Getchell calsine-classifier overflow was agitated 46 hours with 8% CMO; 2% NaCH and 2.5% NaCH.

Results:

Heads 0.17 Hornel HaCH Ros. Charcoal MaCH Ros.

The grade of charcoal concentrate was 4.59 cunces before burning.

1945-4 PLOTATION-CHARCOAL-CYANIDATION GETCHELL MINE - Chapman

Purpose of Investigation:

To try charcosl-oyanidation in the Gatchell Cyanide Plant on large scale eperation.

Procedure:

Three mill tests were made on plant calcines. The ground calcines in Test 3 batch agitated in a 16' x 16' Dorr agitator. A 60 ton batch was agitated at 50% solids with 6 lbs. Ca(OH)2; 2 lbs. HaOH; & lbs. NaCH; \$ lbs. Chargool per ton of ere. Agitation was 40 hours. Charcoal flotation was made in a 10 cell M. S. flotation machine with provision for cleaning and recleaning.

Resulte:

The first two test results were showed poor gold recovery, which was to be expected because load acetate was not used to precipitate soluble sulfides, and the solutions became so foul the gold dissolution stopped.

Tout 13:

Nonds Coma.

2.68 % WS.

.175 ou. Au/tom

4.475 " " .0566 " "

68.53 % AM Rec. 33 47 " "

Tails

Summary: By G. N. Rigton

Compared with comventional evenidation the following deductions were made:

.1975 os. ton Robusta fon Ore Plant Practice Residue .0701 " Char. Cy. Residue .0606 n 4.36

Note: Not return on chargoal concentrates figured on 90% of gross value. which is not smalter return.

Sunsary: By T. C. Chapman

WASHED TAILINGS

Chargoal-Cyanidation Standard Cyanidation

0.0566 es. AR

0.075 oz. Am

Although a two day emparison gives nothing more than an indication it is encouraging to note that characal-eyanidation is favored with respect to tailing Asseys.

1945-6
FLO TATION-CHARGOAL-CYANIDATION
GETCHELL WINE - Chappens

The following tests were made to determine if Charcoal-symmidation made a better extraction than conventional symmidation. Tests were conducted on a laboratory-saleine, laboratory flotation tailing and mill calcine.

Bards (Gon.Gy) 9 (Ghar-Cy) 16 (" ")	Heads On Au/ton 18 .235	reasted calcine: Residue CZ Aw/ton .088 .073 .067	8 Extraction \$1.1 67.7 69.5	
Results: Cy	anidation of F	lotation Tailings;		
	Heads	Sulfide Come.	Cymnide % Total	
Tear	On An/ton	On-An I Ben.	Rasidue Ent. Briractie	
A R	0.234	.95 hd.4	0.052 32.0 80.4	
5	0.197	.85 44.6 .85 44.9	.0433 36.1 80.7 .04 35.7 80.6	
	V eav	ed) Week	.04 35.7 80.6	
Results; On	Mill Calcine;			
	Assembly	Assay		
Test	Heads	Pailing	& Extrection	
2 Vormal	6.773	.0583	59.0	
3 Normal	-147	-0583	60.1	
l-A Charocal	.164	-06	64-2	
1-3 "	-1.66	.058 .0586	64.6	
17	.173	-065	65.3 62.7	
Average Char.	-148	-064	64.2	
Man Marine	and the same of th	0.4.000	Aparticular State Company	

SYMPOLEY:

No increase in charcoal-eyemidation tailing; however, there is a alight increase in heads. With a 60% extraction on head of 0.168 the normal cyanide tailing would be 0.0672 as compared to 0.060% for charcoal-eyemide.

MAG

Treatment of Getchell calcines by charcoal-symmidation indicate, based on experimental data, that there is a difference of from \$0.30 to \$0.50 per ton in favor of charcoal-cycnidation.

I have obtained to date an extraction of 94% of the gold as bullion from the commentrate by chlorination. From 85 to 87% of the gold is readily saluble in chlorine and the remainder is apparently refractory.

1945-8
PLOTATION-CHARCOAL-CYANIDATION
UNIVERSITY of ARIZONA - Chapman

Purpose of Investigation:

To compare recent results obtained with those of 1944 using the following flow sheet. Crind ore to minus 20 mesh; arsenic flotation; thickening; 100 mesh grind; cametio-chargoal-sysuidation; sulfide-chargoal-sysuidation.

Procedure:

In 1944 a minus 200 mesh grind was used while in 1945 a minus 100 mesh grind was made.

Bowlto:

Beade		De-AM Sheet	Charges Conse	Sulfido Came.	Pailing	Total
1944	0.1A1	.23 6.6 .25 5.4	3.60 66.3 7.61 61.0	0.40 17.1	-06 -055	70.0

SCHOOL !

Moneting symmidation on the same ere gave an 0.076 or. residue with an extraction of 62.2% As. Characel cyanidation gave an extraction of 61.0 adding the realgar and sulfide concentrates to the symmidation residue the tailing becomes 0.071.

These results show that chargoal-symmidation recovered essentially as much gold in symmids without reasting as the plant recovered with reasting.

1925-10

Perpose of Investigation:

To attempt to obtain a lower tailing by arsenic flotation, sulfide flotation, followed by chargoal symmidation.

Rosultes

Warra A A		ABBUT	Distribution
Products	S WE	Ca Au/ton	% Ano
Realgar Come.	4.36	0.31	607
Sulfide Come.	17.63	.67	58-3
Charcoal Cons.	.50	11.05	27.0
Tailing + widds	78.05	.02	8.0
	Reasting	and Cyanidation	0.00
Realgar Come.	4.36	•32	6.7
Cy. Sal. Come. Treatm	ant		52.0
Charecal Cons.	.50	11.05	27.0
Float Tail + Come. Re	0. 95.95	.03	14.3

1945-10 FLOTATION-CTANIDATION-CMARCOAL UNIVERSITY OF ARIZONA - CAMPRIAN

PERSONAL TO

(1) The flotation tailing was decreased to 0.02 names gold per tem.
(2) Considering the realgar concentrate as diseard, the indicated extrac-

tion of gold in chargoal concentrate and cyanide solution resulting from the treatment of sulfide concentrate assumted to 79.0 per cent.

(3) If the realgar concentrate is reacted and evanided the indicated extraction would be approximately 60 per cent of the gold contained in the realgar concentrate which would add 4.0 per cent to the extraction given for the chargeal concentrate and symmide sciution of the sulfide concentrate or a total indicated extraction of 83.0 per cent.

(A) If the realgar concentrate could be disposed of for the gold content, as ease suggested by you as a possibility, the indicated extraction would be 85.7%.

1945-6
GYANIDATION-FLOTATION CONCASTRATES
UNIVERSITY OF ARIZONA - Chapman

Purpose of Investigation: To roast and eyanide a laboratory, and Pilot Flotation Plant sand concentrate.

Procedure and Results:
After reasting and cyanidation of sulfide concentrates were as follows:

		Heads	24.00	Cy. Nes.	
		Assay	Dist.	Yessa	
	\$ 776.	OS-AM	% AM	Can All	Red
Lab. Sulfide Cone.	17.63	0.67	58.3	0.074	39.3
Pilet Plant Cone.	erosen at a	1.58		.25	63.3
Lab. Sulfide Cone.	7.62	.47	13.6	.036	76.9

Referring to the rossting and cyanidation of sulfide consentrate there is, of course, some question as to whether the results can be duplicated in practice. It was necessary to use small ascents of concentrate for rossting and the rossting was necessarily done with a thin layer of concentrate in a clay dish in an assay swiftle with consequent rapid resoval of gases and fume. It was realised that with a thicker charge of concentrate in practice that contact between the charge and gases might result in the formation of insoluble gold compounds and that results in practice might not therefore confirm laboratory results. The recovery of gold from Octabell Pilet Flant Sand Concentrate by rossting and cyanidation ascenated to 63.3 per cent with a cyanide tailing of 0.25 cance gold per ton as compared to a recovery of 69.3 per cent and a cyanide tailing of 0.074 cance gold per ton for the concentrate produced in charcoal-cyanidation testing. There is, therefore, some evidence that concentrates produced in connection with charcoal-cyanidation testing together with certain modifications in the cyanidation of such concentrates, will yield satisfactory recoveries.

1945-10
PLOTATION-CYANIDATION-CMARCOAL
UNIVERSITY of ARIZONA - Chapman

Purpose of Investigation:
To compare final results of realgar floation; charcoal-cyanidation followed
by flotation of the sulfides with the results from the flow sheet just presented.

Results:	Weight	Assayo	Distribution
Predict	3.74	Os An/ton	neasure and the second second
Char. Come.	1.62	5.67	<i>5</i> 9 .0 18 .6
Sulfide Come.	7.24 87.90	•A7 •036	17.3
		Roasting and Cyanidation	5.1
Realgar Cone. Char. Cone.	3.74	0.25 6. 6 7	59.0
Cy. Solution		.041	14.3 21.6
Tailing + Cons.	Moz. Arell	e selen.	Soldier a de

(I) Considering the realgar concentrate as discard, the indicated extraction of gald in chargost concentrate and symmide solution resulting from the treatment of sulfide concentrate amounted to 73.3 per cent.

(2) If the realgar concentrate is reasted and eyanided the indicated ex-

treation of gold would be increased to 76.4 per cent.

(3) If the realgar concentrate could be disposed of for the gold content

the indicated extraction would be 78.4 per cent.

(A) It is my opinion that essentially all the gold in the charcoal concentrate can be recovered as bullion and also that the particular sulfide concentrate obtained with this flowsheet can be reasted and cyanided in practice.

1946-1 FLOTATION-CHARGGAL-CYANIDATION UNIVERSITY of ARIZONA - Chapman Final Summary:

(1) Charcoel-eyanidation recovers as much gold without reasting as the Octobell plant recovered with roasting based on repeated tests of the so-called refractory ore treated in the Getchell plant Sept. 24 to 27, 1944. Clarifying this statement, if the realgar concentrate is discarded and all sulfide concentrate discarded, charcoal-symmidation would still recover as much gold as was recovered in the Getchell plant from this are during Sept. 24 to 27, 1944.

(2) The combination of charcoal-cyanidation followed by flotation of sulfide concentrate and subsequent treatment of sulfide concentrate recovers more gold than direct reasting and cyanidation as practiced at Getchell. In this

procedure the realgar concentrate is dissarded.

(3) It follows from the two above statements that the direct reasting of Getchell ore results in the formation of compounds which are inscluble in eyanide. Although positive proof is not available at this time as to the nature of the insoluble gold compounds formed I have fairly strong evidence that molybdenum is the source of the difficulty rather than silies. At any rate the assumption that molybdenum is responsible for the formation of insoluble gold compounds in reacting has proved very constructive in obtaining improved recoveries.

(4) It is my opinion that Getchell sulfide flotation soncentrate (with realgar eliminated) can be satisfactorily treated for the recovery of its gold

content providing interfering molybdenum is controlled.

(5) If the sulfide concentrate is removed subsequent to characal treatment only one step is necessary for cyanidation of sulfide concentrate.

(6) If the sulfide concentrate is removed by flotation prior to charcoel

treatment two steps will be required to cyanide the sulfide concentrate.

(7) Tailing of 0.02 can be made with flotation of sulfide concentrate prior to chargoal treatment, but I have been unable to date to make a tailing lower then 0.035 with flatation of sulfides subsequent to chargoal treatment.

(8) Disposal of realgar consentrate is a problem. By reasting and cyaniding this product I have obtained 60 per cent recovery, but reasting of realger

concentrate means a plant nuisance with arsenis.

(9) My work since October 15 has been continuous and restricted to fletetion of sulfides as I believe the charcoel-cyanidation phase is satisfactory. One new advance of considerable importance has been made since Oct. 15 in floating sulfides, but I want to work out the details before reporting the results. It appears; however, that the sulfide float can be made with normal time of floating and that the wildness of past flotation froths can be eliminated. With the recent new development there is a very good possibility that flotation of sulfides can be improved with respect to recovery.

(10) It appears that there is a good chance to treat Getchell ore with a 65-mesh grind and with 15 lbs. caustic per ton. I am also werking along lines to reduce the time of agitation for both caustic and cyanide treatments from A

days to 2 days.

Summarizing, it is my opinion that much progress has been made since our work of Hovember, 1944 and that there is a good chance to work out a satisfactory flow shoot in the near future.

1944-8 FLOTATION-GRAVITY CONCENTRATION DENVER EQUIPMENT COMPANY - Gisler

Parpose of Investigation:

To determine the advisability of conducting an extensive ore testing program to work out the most economical method of ore treatment.

Procedure: Test /1.

After crushing to minus 10 mesh the ore was passed over a mineral jis. The jig tails were reground to minus 20 mesh and again passed over the jis. The tailings were ground to minus 65 mesh and floated with the flotation tailings passing over a table.

Time of fletation was 13 minutes using - Floto-Tarol #1 and Z-6 for reagents.

Two stage flotation of 3 minutes and 14 minutes. Consentrates were cleaned. Reagents used were CusO4-NaCH-FO-#15-Na23102-PO-Z8.

Results:				
	Post 1.	ASSAY	Dist.	
Products	% Wt.	Os Au/ton	- A-A-A	
Jig Come.	2.05	.28	3.58	
Tailings		.157	96.42	
Flot. Come.	13.94	.405	35.39	
Flot. Tails		.116	61.03	
Table Cons.	-45	· lafa	1.32	
Sand Tails	36.86	.09	21.51	
Slime Tails	46.70	.13	38.20	
	Tost #2.			
Hoads		.16		
Come. #1	14.00	-35	31.90	(65 meeh grind)
Conc. #2	4.50	- 14	12.9	(325 mesh grind)
Mide	31.00	.16	32.2	
Taile	50.50	.07	23.0	

SPECTRALLY :

In Test #2 practically all free sulfides were recovered in the first concentrate at a 65 meah grind. After regrinding the tailing a considerable amount of a black mineral floated with fuel oil. Chemical tests indicates this black mineral is graphitic in character, and contains considerable gold value.

Considering present plant practice the removal of graphite by reasting requires a high temperature and long time reast. If the graphite is not removed it

interfers with gold extraction.

1945-5

BOASTINO-CYANIDATION

GETCHELL MINE - Wigton, Davis

Purpose of Investigation:

To study the effect of eliminating excess air in the reaster. Comparative tests were run with various degrees of oxidation.

Procedure and Results:

The laboratory roasting farmace was reconstructed to make tests that duplieate the chemical atmospheric conditions that prevail in the rotary kilns used in milling operations.

A 10 mesh feed was reasted one hour at 1050°F. Calsines were ground to minus 48 mesh and syanided 42 hours. The ere had the following analysis:

Gold O.115 oz. per ten

Arsenie 0.9% Sulfar 2.61%

Test		Applicable and the second seco	ilts:
TOTAL STATE OF THE	Managed and a second as	Assays Os	And team
No.	Atmospheric Conditions	Pailings	Albert a
*	Reducing atmosphere; saleine washed	03	72.73
2	Caidising roast then reducing roast	.025	78.3
3	Oxidiming reast; sulfating; Haso, 10#/T leach ;8 hrs.		
À	#3 Calcine; washed; oyamided; ground		60.9
5	Out of a face and a face of a face o	.025	73.2
	Omidising; Reducing Roast; Grind with MapS_O_ 20#/T	·Q25	78.3

SUMMAPY:

The results of the tests indicate a greater elimination of arcenic and sulfur by the use of a reducing atmosphere; however, the subsequent gold extraction remained the same. The use of a slightly oxidizing atmosphere during the first part of the reast, followed by a slightly reducing atmosphere during the finishing stages offers the following advantages: (1) Improved reasting will result in improved settling and filtering during subsequent symmetries. (2) Reduction of excess air will result in reacting and will reduce fuel cost per ton cre-

Purpose of Investigation:

To study the effect of sulfur dioxide treatment on the calcines with the object of convexing refractory gold bearing compounds to form that yield to eyend-dation.

Procedure and Results:

fests 14 through 18 were made of a laboratory rousted calcine. A 3/4 inch feed was reasted approximately one how at 1050°F. Cyanidation was on a minus 48 calcine for 40 hours. Tests 19 through 24 were on a plant reasted calcine.

Test 80. 14 15 16 17	w	as agitati	io inc.	calci	39 68	50 min. 2:1 Q/R Roast 15 min. 2:1 5 min. 2:1 •5#/T Evaporated No mash	Assey Heads -113 -18 -23 -21	Tails -01 -03 -025 -045	
18 19 20 21 22 24 25	H2503	10 50 50 50 50	OI MA	ll cal	Gira by H H H H H H	by Felliaing	.21 .23 .23 .23 .23 .23 .23	.05 .035 .06 .05 .04 .06	76.2 84.4 73.9 78.3 82.6 73.9 76.3

The treatment of Getchell calcine by sulfur dicaide, either as gas or as a sulfureus acid solution, undoubtedly results in a substantial increase in gold extraction by subsequent cyanidation. The lowest tailings have been produced when the tailings were vigorously agitated by an excess of sulfur dicaide gas, when a well-reasted calcine was treated. It is indicated that, after the treatment with sulfur dicaide and before cyanidation, saluble salts should be removed by washing. Although the evidence is not canalusive, it is indicated that sixty pounds of sulfurous acid per ton ore may reduce the gold in the symidation tailing about 103 os. on an ore carrying 200 os. Jold per ton. The cost of sulfur dicaide wet treatment is estimated to be \$0.75 per ton of ore.

Purpose of Investigation:

To study different types of calcines and different methods of preheating the calcines.

Procedure and Results:

Calsines were ground to minus 48 mesh and cyanided for approximately 42 hours.

				manufactured on the
Post Bo.	Conditions and ProtrestmentSise	Min. °F	Results Os Au/ten	
ARREST OF THE	Commerce artists with Lagrange and Lagrange	The Tang.	Hoads Tails	The said
1		ordeniates and repairments	Heads Pails	Allero
	Ox.; Red.; SO2 (Sulfating roset) 3/4	A -	Alle Control of the C	AND DESCRIPTION OF THE PERSONS
A600	Mass Red John Court Ling Poest) 3/4	60 975	-21 -06	66.7
7	#6 Calcine floated; eyanide tails 3/4			
eth.	and a second sec	60 975	.177 .055	66.1
(3)	#6 Calcine neutralise with CaO before flest 3/4	A constant of the constant of		
0	The Cart of the Ca	60 975	-23 -065	71.5
7	Reduction with Sodium Sulfide 3/4	An oran		
3 9	3/4	60 975	.23 .065	71.5
spinetty.	Ammonia syanidation	60 1000	-	
13	Kigh temp. roast in reducing atmosphere	60 1000	.18 .045	75.0
**************************************	rest and the transfer at the sphere 10	70 1360		
		100 0000	.21 .105	43.7

1945-6
ROASTING-CYANIDATION
CETCHELL MINE - Wigton, Davis

						ulto	
Who was a fine of	pedure and pesults: (continued)		kin.	* P	OS A	e/ton	
	No. Conditions and Pretreatment	31 go	Time	Land .	Heads	Tails	Sixto.
NAME OF TAXABLE PARTY OF TAXABLE PARTY.	Ox. 900° LO"; Hed. 1000° 30"; Cx. 1000° 30"	-	Pl	ant	.21	.06	71.4
23	DX. AND TO LEGISTAN MEGISTAN	10		98	-23	.035	Block
26	H_200; leach 3% at 1:1 dilution	10		it	-23	.05	76.3
-	MaOH 20%; 11 dust 0.25%; grind; gyanide	10		68	-23	.05	78.3
25	pirect oyenidation by standard practice	10		ta ta	-23	.065	72.7
	liffect distribution of a content a branch	10		PT	.23	.065	72.7
31	**	10	70	1360	.21	.075	67.3
39	Ammonis in place of lims - Poul			ai.t	.23	.06	73.8
41	Asmonia; to grind; agitation 24 hours			108	.23	.055	63.0
42	Ammonia; NaCH; CaO to agitation		La	b.	.21	-O4	50.0
43	H2802 6% at 1:1; washed Reroast at 1360° calcine; oxidizing cond.		30	1040	.21	.11	47.6
44	Melose at They estated to continue and				.21	.095	54.7
45	Red. 45" 1260°; ex. 30" 1180°	1/4	60	1020	.195	.06	68.7
49	Simple syanidation		3G	1040	.195	.085	64.5
50	Miter exidizing reast 30//T						-

Test No.

40 Centrifuge Pend Tails Heads 0.06;1.5% Sand 0.05; Coll. Slime 0.065

48 ** ** ** ** Keads 0.06; 30% Sand 0.065; Slime 0.06

1945-6

Purpose of Investigation:
To determine at which point extraction is aided by a smastic soda leach of the calcines.

Procedure and Results:

A plant calcine was leached with NaCH and cyanided for 40 hours.

Acreting calcines with strong caustic solutions showed a small but unattractive improvement in the tailing. Comstic consumption, as indicated by titration of the solutions with standard acid before and after treatment, varied from 36 pounds to 45 pounds exacts per too of salaine.

1945-6 ROASTING-CYANIDATION GRICHELL MINE - Higton, Davis

Purpose of Investigation:
To find practical and economic use of sulfurous acid.

Procedure and Resulte:

Test			Rossting Cond	Remilte
10.		Pretrestment of Calaine	line Time Temp.	Cos Ass/E-ora
65	112.903	(3%) leach lil for I hour	Plant Calcine	Hends Palls SExt.
66	-	heat 10m calcine to nearly dry	N M	-24 .07 70.8
68	VV	heat 10m saleine more acid	77 02	.24 .06 75.0
73	regr	leach - minimum amount	1/24 50 1000	.195 .048 99.3
71	19	15# grind - leach 150 mimites	#92 Culcine	.23 .06 93.9
74 76	10	15# leach - grind in water	# #	.23 .06 73.9
83	77	15% long standing 8 day contact	Plant Calcins	.17 .067 74.7
	-	124 lbs. agitation with Pond	M N	.08 .03 62.5
		Tailings		

Treatment of ground calcins in the form of a wet pulp by large amounts of sulfuris acid, sulfurous acid, or caustic soda pickis comparatively low tailings, but so much reagent is required that there is little indicated not gain in profit.

Purpose Of Investigation:

To see if Wetting Agents promote better gold extraction.

Procedure and Recults:

Plant calcines were ground and treated with different types of Wetting Agents them symmids.

Tose		A State of the Contract of the
Hoa	Protrestment of Calsina	Os Au tom
Ho.	OWA Coll pound per ton	Heads Tails Kat.
70	AMA OPPR DOMEST DEL PORT	Beads Talls Tout.
	Kes 0.10 pound per ton	.24 .075 68.7
71	X-1 0.10 pound per ton	.24 .065 72.9
72	Money water grind; wash; regrind NaCH	
80	Grind with OWA 0.10 lh/ten	-23 .06 73.9
81	Grind with Me O.10 lb/tem	.17 .07 58.8
82	Control with me A 20 22 A	.17 .07 58.8
WATER STATE OF THE	Grind with 08 0.10 lb/tem	.17 .067 59.3

Perpose of Investigation;

To determine if long time 'standing contact', as would be obtained in a stagment poal, was an aid in gold extraction.

Precedure and Results:

A plant calcine was ground to AS moch than left standing for a period of time as follows: Cyanidation was AO hours.

1945-6 ROASTING-CYANIDATION GETCHELL MINE - Wigton, Davis

rest		RABEL CB				
	104 mmant 1 Constant	On Au/ton				
75	'Stagment' Conditions	Heads Tails	That.			
73	Lime contest for 7 days	.17 .10	58.8			
76	" " 15 days	.17 .017				
132	" " 15 days 100/T		74.7			
	Formal plant tailing	.183 .06	67.2			
135	NaO: - 10% at 2.5:1 2 days leach on 10m	.06	67.2			
137	W 3d w was I days Leagn on Los	.185 .05	73.0			
139	Lay leads on the	.135 .05	73.0			
	Line 900/I contact for 4 weeks	A 48 04	70.0			
136	Nach 40%/T contact for 15 days	.135 .065	64.8			
140	NaCH 20%/T " Flotation Tails for 22 days					
141	HaCH 200/T " for 15 days		67.2			
152	Lime SOU/T " for 48 days		66.9			
153			67.2			
	HECH 208/T " for 42 days	.183 .065	63.5			

Stagmant Peel conditions with alkalis shows alight improvement in extraction, although not enough to justify its adoption. The pulp does not change color during this treatment.

1925=1

Perpose of Investigation:

To find out what effect bleaching of the wet pulp from the raw ore or calcine has on subsequent symmiation.

Proc	edure and Results:	Roast	. Cond	itions	Contract of	enlts	
No.	Blesching Treatment	21.50	Time	-	Heads	Au/ton Tails	Kant.
97 98 99 103 104	Lime seration for AO hours Lime - NaCH seration for AO hours Lime HaCl seration for AO hours Lime 205/T in grind	Plant	45 30	1000	.17 .17 .17	.067 .067 .067	60.0 60.0 55.9
106	Raw Ore - cyanide exsess MnO2 Line 10%/T in grind - agitate with	f.one	~	200.0	.115	.066 .03	56.0 25.1
107 112 116 117 120 123	chlorinated lime - 18/T MnO, cyanide Same except 1.5%/T MbAC add8d H250, seration - 22 hrs. seration CaO HaC " Aeration at 7.0 ph ahead of cyanidation SO, percolated thru damp calcine HaCH used in cyanidation	1/2 10 Plant a n **	60 30	1000	.175 .15 .183 .183 .134 .183 .185	.097 .077 .063 .128 .126 .066	50.0 54.6 30.0 64.0 57.0

1945-7 ROAS FIND -CYANIDA TON GETORSLL MINE - Rigton, Davis

Sweety:

Bleaching can be accomplished by simple acretion at a pH of 7.0 to 8.0; the grayish black rule from the sulfide ore or calcine can be changed to a yellowish-brown to cream color, although no substantial oxidation of sulfides occurs. However, no increase in extraction has been obtained by bleaching in this menner.

Purpose of Investigation:

To investigate further any possible advantages from other schemes of pretreat-

Procedure and Results:

Grind shead of oyenidation was minus 43 mosh.

	Vianad I			
Feet Be. Gonditions-Pretreatment 142 Flet tail reasted after As Float 143 Flot tail receted after As-Pe Float 144 Grind -35m; filter reast 145 Amalgamatica prior to reasting 146 Standard reasting-cyanidation 147 Velatilisation by Hydrocarbon reduction 148 HNO2 Leach at 2-511 Com 30 minutes	Reasting Min. 79 Fine Resp. 70 1050 70 1050 135 1025 30 1200 30 1050 65 2030	02 Heads -24 -13 -27 -145 -145	Result Au/tem Tails -065 -035 -07 -067 -065	%axt. 72.0 73.0 74.1 40.0 55.2
146 Standard roasting-cyanidation 147 Valatilisation by Evirocarbon radiation	30 1200 30 1050	245 246	.065	40.0

Summary

Reasting flotation tailing showed reduction in tailing assay, particularly when an iron concentrate was also resoved.

IVA DI

Purpose of Investigation:

To determine if the Naw Ore would yield a good extraction to cyamidation after treatment.

Procedure and Results:

Tost			Results	
No. 161	Pretreatment of Raw Ore CaF 200%/T - 500%/T Hul - agitated 12 hours H ₂ SO _A 100%/T agitated 12 hours SO%/T-CaF for 12 hours (50%/T) 100%/T - 100%/T CaF for 12 hours	.15 .16 .16	AM/ton Tails .06 .085 .07	60.0 43.0 60.0
	The same was secured to	.16	.07	60.0

1945-9 ROAS TING-CYANIDATION GETCHELL MINE - Wigton Swamary: Although the present process of roasting and evanidation has achieved a measure of success in the past, the resulting recovery has been low, the cost high, and it will not produce profit on those over assaying less than 0.18 or. gold per ton. Hevertheless, a more satisfactory process has not yet been found. Research has been conducted to determine the causes of low extraction. They may be listed, in order of decreasing importance, as follows: . 1. Association of much of the gold in the ore with siliceous material in such a way as to prevent contact with the gold solvent. 2. Association of gold with sulfide minerals, due to incomplete reasting. 3. Association of gold with iron arsenates formed during the reasting. A. Poulness in symmide solutions. 1. Siliceous Gold Aqua regia will dissolve only 50% to 70% of the gold in some of these raw eres that are available for future treatment, although it is a solvent for all forms of gold. However, if the siliceous material is first removed by treatment with hydrofluorie seid, squa regis will dissolve practically all the gold. As extremely fine grinding does not accomplish the same result that is obtained with hydrofluoric seid, the association of such gold with siliceous material may approacy a state of solid salution. I have called such gold "siliceous gold". 2. Gold Associated with Sulfides This type of gold needs no particular comment. Anything that is done to obtain a better reast should increase the extraction of gold associated with sul-3. Gold Associated with Iron Arsenates In roasting arsenical gold ores, some of the gold is locked up by iron arsenates formed during the roast. The iron arsenates cannot be decomposed by high temperature alone, but reducing conditions tend to prevent their formation. Iron ersenates can be decomposed in the wet way by sulfur dioxide, alkalis, or hydrochlorie for that purpose, but so much is required that its use does not have economic value. 4. Foulness in Cyanide Solutions
Foulness in Getchell cyanide solutions is caused by the presence of incompletely reasted sulfides in the calcine. Some of the soluble sulfides can be washed out before cyanidation, but foulness continues to develop during cyanidation, and must be taken care of in a chemical way. The principal cause of high tailings is that siliceous material is so associated with the refractory gold that it prevents contact between such gold and the solvent. 110.

1945-9 BOASTING-CYANIDATION GETCHELL MINE - Wigton

Summary: (continued)

Roasting

We can expect a thorough roust to:

(1) Destroy colloidal slime, so as to permit repid settling and filtering in subsequent cyanidation.

(2) Eliminate eyanides, such as arsenic sulfides and ferrous salts that form

thiocyanates and ferrocyanides when contact is made with cyanide solutions.

(3) Free the gold associated with sulfides for better contact with the cyan-

ide solutions.

(4) Form iron arsenates that prevent dissolution of some of the gold by eyanide solutions. The iron arsenates can be decomposed in the aut way by sulfur dictide, exastic soda, or hydrochloric acid. On account of the large amount of acid consuming gangue in the calcine, the only practical way of decomposing arsenates is by the use of caustic soda solutions.

We cannot expect a thorough roast to aid in removing the silice from the "eiliceous gold".

1945-1
ROAST-CALCINE PLOTATION-CYANIDATION
GETCHELL MINE - Migton, Davis

Purpose of Investigation:
To obtain sufficient data for a plant installation.

Procedure and Results:

Calcines were floated and the flotation tailings cyanided. Many rangents were used with approximately the same results.

						TALL	INGG			
		LCIME	FLOTATI		SULTS	GIANIC	ATION			
	Heads		scantrat		Tails		Plant	% Foot	rection	1.
Date	08-AU	3 Ht.	CS-YM	TRev.	Os-Au	OS-Atl	On-Au	Fl.Tls.	Total	Pleat
7	.175	9.5	.45	25.1	-145	.03	.055	79.3	84.5	
8	.161	7.9	.41	20.1	.14	.045	.06	67.8		66.6
9	.170	7.7	.59	25.9	.135	.025	.055	41.4	74.3	69.2
10	.14	5.3	.435	19.3	.12	.03	.045	75.0	79.8	63.1
11	.15	7.5	.43	21.1	.13	-06	.06	1340	1700	67.6
12	.135	4.5	- Jada	14.6	.12	.035	-045	70.4	74.8	67.2 63.1
13	.12	4.7	-315	12.3	.11	.035	.045	68.1	72.0	
14	.155	6.3	-44	13.0	-135	.025	.035	31.5	84.0	67.6 70.5
15	.14	10.2	.39	28.4	.11	04	.055	63.7	74.0	66.6
16	.15	9.2	-47	23.4	.12	.02	.04	83.3	43.2	71.8
19	.186	13.5	.355	25.7	.16	.05	.065	68.8	76.6	66.6
20	.178	3.8	-47	23.2	.15	.05	.065	66.6	74.4	53.7
22	.133	7.3	.365	14.5	.115	.035		69.5	75.2	53.3
25	.155	11.5	.39	28.8	.125	.045		64.0	64.0	60.6
27	.132	5.7	•33	14.2	.12	.06		50.0	57.1	66.6
28	.137	7.0	-43	22.0	.115	.045		60.8	69.4	70.6
25	-219	10.1	.565	26.1	.18	.08		55.5	67.2	1000
29	.206	7.1	-605	20.8	.175	.055		63.5	75.0	75.0
30	.223	9.9	.615	27.3	.18	.055		69.5	77.8	75.3
1	-255	10.7	.59	25.0	-215	.075		65.0	73.8	, , ,
2	.133	16.7	.22	27.8	.115	-04		65.2	64.09	56.1
3	.16	10.7	•33	22.2	-14	-045		67.8	75.0	7002
4	.155	6.4	•31	12.8	.145	-05		65.5	69.9	68.1
5	.182	5.1	•59	16.5	.16	.045		71.8	76.5	57.5
0	.167	7.3	.38	16.8	-15	.06		60.0	60.3	64.3
7	.171	4.5	-405	10.6	.16	.055		65.6	69.2	61.7
	.18	4.0	.54	12.0	.185	.045		73.0	76.2	65.7
9	.168	8.5	-525	26.8	-135	.045		56.6	74.6	74.4
10	.167	10.9	•35	22.3	-145	.05		65.2	65.5	4 -4 4 -9
11	.171	10.2	-445	26.9	.14	-04		71.4	79.0	
12	-164	7.3	-47	21.0	-14	.045		68.0	73.7	
17	.190	9.0	.51	24.0	.17	.035		79.0	94.2	

1945-1 BOAST-CALCINE FLOTATION GETCHELL MINE - Migton

Laboratory work indicates that it is possible to remove unroasted sulfides from the roasted ore by a simple and cheap flotation operation, and re-roast the small amount of flotation concentrate, about 10% by weight, before oyanidation; the flotation tailing would pass directly to the present eyanidation plant. It may be possible to return the flotation concentrate for another pass through the same reasters. Laboratory tests on kiln discharge ground to pass a 35 mesh sersen, indicate that it is possible to obtain a tailing containing about .03 oz. gold per ton by floating the unreasted sulfides from the calcine before cyanidation. No change in the mechanical handling of the flotation tails in the present cyanide

1745

Furpess of Investigation:

To determine if the laboratory experiments of fleating sulfides from the calcines could be duplicated in plant practice.

Procedure and Results:

One of the 10-cell M.S. machines was operated intermittently for some time, and continuously at the time of the Chapman test, taking the feed to one of the eyamide circuits before it was washed. Flotation tailings went on to the wash thickener and the thickened pulp to cyanidation. Commentrate was elected in two Denver cells, then thickened, filtered and hamled to the crusher yard, where it was mixed with new ore and passed through the same roaster. No serious trouble was encountered in flotation proper, although at times we were bothered some by fuel oil in the foed. The froth was rather tough unless one to two lbs. sods ash per ton was used. Plotation reagents were "301" and "242".

We did find, however, that we had insufficient thickening capacity; this resulted in the sperators not pulling the cells as fast as they should have done, with the result that we made only about 3% concentrate by weight instead of the 7% that had been anticipated. He were just preparing to put a larger thickener

into service when the order came to stop all operations.

STATE OF PERSONS

The syanids tailing from the circuit in which calcine flotation was used averaged about .01 Os. lemer than the tailing from the old circuit, in which flatation was not used. The cost of the operation was a little less than 25 cents per toh, so that there was a slight profit by the use of calcine flotation.

I believe that we sould have done somewhat better if we had not been limited by lask of consentrate-thickening capacity. However, it appears that, on average ore, the profit by calcine flotation will not be enough to class it as a major improvement. On some ores it seems to be quite effective, but on other eres it does little good. Its shief function appears to be to float unreasted sulfides that remained in the interior of clay balls.

1945-1 ROAST-CALCINE PLOTATION GETCHELL MINE - Migton

Junuary:

Laboratory work indicates that it is possible to remove unroasted sulfides from the reasted ere by a simple and cheap flotation operation, and re-reast the small amount of flotation consentrate, about 10% by weight, before quantitation; the flotation tailing would pass directly to the present eyanidation plant. It may be possible to return the flotation concentrate for another pass through the same reasters. Laboratory tests on kiln discharge ground to pass a 35 mesh screen, indicate that it is possible to obtain a tailing containing about .03 os. gold per tem by floating the unrecated sulfides from the calcine before eyanidation. No shange in the mechanical handling of the flotation tails in the present eyanide plant would be necessary.

1110

Purpose of Investigations To determine if the laboratory experiments of floating sulfides from the calcines could be duplicated in plant practice.

Procedure and Recults:

One of the 10-call M.S. machines was operated intermittently for some time, and continuously at the time of the Chapman test, taking the feed to one of the eyamide circuits before it was washed. Flotation tailings went on to the week thickener and the thickened pulp to cyanidation. Concentrate was elemed in two Benver calls, them thickened, filtered and hamled to the crusher yard, where it was mixed with new ore and passed through the same reaster. No serious trouble was encountered in flotation proper, although at times we were bothered some by fuel cil in the feed. The froth was rather tough unless one to two lbs. soda ash per tem was used. Flotation reagents were "301" and "242".

we did find, however, that we had insufficient thickening capacity; this resulted in the operators not pulling the cells as fast as they should have done, with the result that we made only about 3% concentrate by weight instead of the 7% that had been anticipated. We were just preparing to put a larger thickener

into service when the order came to stop all operations.

The eyenide tailing from the circuit in which calcine flotation was used averaged about .01 Os. lower than the tailing from the old circuit, in which flotation was not used. The cost of the operation was a little less than 25 cents per toh, so that there was a slight profit by the use of salcine flotation.

I believe that we could have done somewhat better if we had not been limited by lack of comcentrate-thickening capacity. However, it appears that, on average ore, the profit by calcine flotation will not be enough to class it as a major improvement. On some ores it seems to be quite effective, but om other ores it does little good. Its chief function appears to be to float unreasted sulfides that remained in the interior of clay balls.

1945-(5-6-7-9)
CYANIDATION-PLOTATION CONCENTRATES
GETCHELL MINE - Migton, Davis

Purpose of Investigation:
To try and work out a method for treating a flotation concentrate.

Presedure and Results:

Fletation sulfide concentrates were all simus 100 mesh.

Test					Result	9
		Min.	· P	OB	Am/tom	
No.	Conditions-Treatment	Timo	THEIR.	Heads	Tails	dext.
27	SO Gas agitation 15 minutes; mash	ELES SO	1000	a dada	Tails	63.6
32	H2903 " 10 minutes; "	30	1000	.315	.19	39.6
33	Aluminum - NacH reduction	30	1.000	abb	.175	60.2
34	NaCH agitation	30	1000	-44	.18	60.0
35	MagSO ₂ 124d/T 20 hrs. agitation	30	1000	.44	.16	63.6
35	Reducing reast at high temperature	240	1380	.51	.31	39.2
019	HoSOs agitation	30	1000	.315	.19	39.6
DOO	Mich 10#/T - 0.25#/T Al dust in grind	30	1000	-44	.175	
p31	Nach treatment without Al dust	30	1000			60.0
022	HgSOg 1246/7 calcine - agitation 20 hrs.			-lah	.10	60.0
16	many amen's contraction - afficient to the	30	1000	-44	.16	63.6
	Reducing - Omidining roast	60	1300	-44	-32	29.3
47	BagO2 20#/T in grind	60	1200	-44	.32	29.3
119	Resos 12#/Y agitation	60	1200	· lake	.18	60.0
120	Migh grade recleaned cone.	80	1050	1.125	-495	56.0
131	80 ₂ gas agitation	45	1000	.61	.31	50.0
132	Normal symmidation	45	1000	.61	.30	51.0
134	Realgar economizates	60	1000	1.47	.86	
162	Cap 18/T - HCl 12.58/T agitation 12 hours					41.5
-	and mill a ridge openabil I after person my mountain	(dish	oine	-64	.10	84.2

The commentrate seems to be more refractory than the original ore, which suggests that the gangue constituents of the ore may have a beneficial effect, and that closer contact of the gangue with the gold bearing minerals may produce a calcine that is less refractory.