DENISON MINES (U. S.) INCORPORATED

PAINTE

Subject: Fox Range and Big Mouth - Secret Canyon Areas

To: Jerry Harrold

From: Paul Klipfel Date: August 4, 1981

<u>Introduction</u> - Interest has been shown by Denison Mines in two large areas as major ventures in terms of exploration targets. They are portions of the Fox Range and the Big Mouth - Secret Canyon areas of the Pah Rah Range, both in Washoe County, Nevada.

The following is a preliminary evaluation report by Paul Klipfel of the two areas. Evaluation is based soley upon skanty field work, literature search, and conversation with Harold Bonham of the Nevada Bureau of Mines and Geology and with Jim Sjoberg of the U.S. Bureau of Mines.

Regional Setting: The regional setting of the Pyramid Lake Basin and surrounding ranges would seem to be ideal for mineralization potential.

Pyramid Lake lies within the Walker Lane and is also the apex of what some geologists call the Mendocino Oroclinal fold. These large scale tectonic features meet at Pyramid Lake. Mineralization and hydrothermal activity around the Pyramid Lake area include; 1) 2 porphyry Cu anomalies - the Guanomi and Pyramid Lake anomalies, 2) Au, Ag mineralization of the Olinghouse district which is possibly related to the Comstock system, 3) Au-Ag mineralization of the Pyramid District, 4) Au,Ag,Pb of the Lakeview mine, 5) Ag, Pb, Zn, Cu of the southern Fox Range, 6) U of the Pyramid District, 7) W from the Nightengale District, 8) abundant tuffa deposits which are the results of aqueous pleistocene hydrothermal emanations.

Both the Fox Range and the Pah Rah Range lie partially within the boundaries of the Pyramid Lake Indian Reservation. The areas of interest though lie peripheral to the reservation.

Each of the areas are geologically mapped at a scale of 1:250,000 and published as the Washoe and Storey County Map. Several theses written by students of the University of Nevada, Reno deal with various disciplines, including geology, mineral deposits, and environmental aspects of the Pyramid Lake Basin.

Fox Range: Poor access to the western Fox Range area has apparently delayed geologic investigation of this area. Printed material on the area includes one M.S. thesis of the Wild Horse Canyon area, the 1:250,000 scale county geologic map, and a U.S. Bureau of Mines report.

Geology: The general geology of the area is best synthesized by Dixon (1977) in his thesis abstract.

"Rocks in the Wildhorse Canyon area range in age from Early Mesozoic to Recent. The oldest rocks exposed in the area are the Triassic-Jurassic Nightingale sequence composed of metamorphosed, quartz-rich, argillaceous, sandy, fine-grained clastics and intercalated limestones. The Nightingale rocks were regionally metamorphosed, folded, and faulted by late stage Sierran batholithic intrusions in the late-Middle Cretaceous period, and locally further dynamothermally metamorphosed by post-batholithic granodiorite intrusions in the Late Cretaceous. The Nightingale rocks were also intruded by several possible differentiates of the granodiorite magmas during Late Cretaceous time.

The Mesozoic rocks of the canyon area have undergone two episodes of deformation, with each episode resulting in the development of two distinct structural grains. The earliest episode originated and ended in the Late Mesozoic period and developed an east-west and a north-south structural grain. Late Tertiary Basin and Range faulting initiated the latest deformation episode developing a northwest and a northeast structural grain and forming the Fox Range horst.

Continued horsting of the Fox Range fault block along Basin and Range structures has resulted in the folding of local Late Tertiary volcanics into a broad anticline. The axis of the anticline generally parallels the north-north-east trend of the Fox Range fault block.

The Late Cretaceous to Middle Teritary period of erosion and peneplanation is represented locally by a few outcrops of stream channel deposits developed in the peneplaned Nightingale sequence.

Tertiary volcanism in the area began in the lower Oligocene with the eruption and flows of the South Willow formation. The area was volcanically quiescent from the middle of the Oligocene until the lower to middle Miocene when dacite intruded Basin and Range fault planes and related structures. The volcanic flows and sediments of the Pyramid sequence were deposited from the middle Miocene to Mio-Plicocene time.

Erosion has been continuous in the elevated canyon areas since the beginning of the Pliocene epoch. In the adjacent Smoke Creek desert, pluvial lakes formed lacustrine and subaerial deposits in Quaternary time. Mineralization in the Wild Horse canyon area is limited to goldquartz veins developed in the post-batholithic Wild Horse mine granodiorite stock."

<u>Mineralization</u>: Known mineralization of the Fox Range is confined to quartz-pyrite veins associated with the granodiorite stocks and shear zones within the metasediments and the granodiorite. These veins have produced minor amounts of silver and gold, along with Cu, Pb, Zn. Minor amounts of Sb and W are also present. Bonham (1969) reports the following results of 3 select grab samples from an ore pile at the Silver Fox prospect.

РЬ%	Cu%	Sb%	Au OPT	Ag OPT			
1.4	0.9	2.4	0.06 tr.	70.68 7.68			
0.7	1.1	0.5	0.16	37.94			

Samples from the Wild Horse Mine showed no gold, but contained up to 5 OPT Ag.

A single anomulous Au occurence is reported from a soil sample taken within the reservation boundary of material similar to the shale/carbonate soil found in the Wild Horse Canyon area. Also, selenite crystals occur abundently in this type of soil. Pervasive pea-yellow coloration coats most of the fracture and planar surfaces of the metasediments. Low-grade disseminated mineralization is concievable in this area.

A hornblende gabbro contains disseminated chalcopyrite and other sulfides. Assays of grab samples of this rock type showed traces of U, .18 Cu, but no Au, Ag, or PGM elements. Bonham feels this rock type may contain magmatic sulfides.

Along the western edge of the range, there are several occurences of moderately extensive breccias. These breccias have not been examined in detail, however, Bonhan, (personal communication) indicated that they may be a viable exploration target. One such breccia was visited and sampled by Denison.

Upon further investigation these breccias, if they are the same as what Bonham refered to, are jasperoid breccia in which a rhyolite dike system is breciated and jasperoidized and jasperoid is also brecciated. The rhyolite dike system seems to be related to a paleofault zone (possibly range-front). Rhyolite flows on the present clay surface to the south may be a surface manefestation of this hypabys sal system.

Argillization of volcanics along a range-front fault at the western edge of the range is suggestive of the presence of a small structurally controlled epithermal system. This zone is likely related to the nearby jasperoid.

Land Status: At the present time, there are only a few claim blocks in the Fox Range, each of which contains two to five claims. During the literature search for this writing, a Noranda geologist came to the library also inquiring about the Wild Horse Canyon thesis. She claimed Noranda was investigating a submittal which was likely the Linda claims of section 27.

This area appears to have been staked for the rhyolite.

Dave Iveson, a prospector from Sudcliff, has expanded from 2 claims to 12 claims in section 10. He is interested in dealing with Denison.

Although the Pyramid Lake Indian Reservation is nearby, it is my feeling that there would be no major conflicts with a mining venture as there might be if the reservation was a wilderness area. Dealing with the Paiute tribe is slow and requires diligence. Should a mining venture come about, though it would be in the best interest of all persons to attempt to include the Indians in as many ways as possible; i.e. jobs and cooperating with there needs and desires.

The Western Pacific Railroad runs along the base of the range and could likely provide easily accessible transportation for mining activities. Land surrounding the railroad is all BLM land.

Summary: The Fox Range is a poorly studied range north of the Pyramid Lake Indian Reservation which appears to have a diversity of mineral potential. Targets include:

- quartz veining assoicated with the intrusion of granodiorite into Nightengale sedimentary rocks, Au, Ag, Cu, Pb, Zn, ±Sb, W.
- 2) Disseminated mineralization in carbonates, shales, and other related sediments Au, Ag.
- 3) Epithermal jasperoid breccia system.
- 4) Dissmeninated magmatic sulfides in hornblende gabbro intrusives.
- 5) Skarn (?)

Proper evaluation of the Fox Range will demand considerable time and the efforts of individuals with a variety of backgrounds. First appearances (surface coloration, workings, a complex geologic history) lead one to believe that this area can offer quite favorable potential. The rugged nature of the area, present day poor access, and need for a great deal of work to be done place the reality of a mine farther down the road than in other areas.

Recommendations

- Along with sample data, spend several days in the Range to determine the most favorable areas.
- 2. Locate several claim blocks on favorable areas.
- 3. Run a moderately detailed geochem and mapping program over the entire area.
- 4. Follow-up with geophysical surveys if appropriate 1) the hornblende gabbro should show well with a magnetic survey, 2) utiliza IP and/or VLF to locate hidden structures with potential mineralization.
- 5. Evaluate and make appropriate discussions with regards to drilling and retention of properties.

Big Mouth/Secret Canyon

Big Mouth and Secret Canyons drain the east side of the Pah Rah Range which is located southwest of Pyramid Lake. The boundary of Pyramid Lake Indian Reservation intersects each Canyon near its mouth. Areas of interest however, lie outside the reservation.

Lithologies of the Big Mouth and Secret Canyon areas consist of the Hartford Hill Rhyolite which is overlain by later andesite flows. One unit within the Hartford Hill rhyolite is of particular interest. It is a propylitized ash flow tuff(?) which has locally been argillized and silicified. Assays of samples from workings within this unit show Au values from .18 to .62 OPT and Ag values from .7 to 2.6 OPT.

Harold Bonham (personal communication) reports native gold along thin "knife blade" quartz veins.

Seven miles to the south lies the Olinghouse district. Production in this district has and still is from Au and Ag in quartz veining. The district is centralized on the northeast trending Olinghouse fault. Mineralization tends to be strongest in the footwall and quartz veining is strongest in the headwall, according to Bonham. A recent analysis by the U.S. Bureau of Mines a high-grade pan concentrate sample shows values up to 2% Ag, .3% Au, 9% Pb, 8% Te, and anomalous amounts of other metals. Production figures from the Olinghouse district are reported to be 11,883 oz lode Au, 405 oz placer Au, and 29,155 oz Ag along with some Cu, Pb, and WO3.

Extensive placer deposits occur in the valleys that drain the Olinghouse district and in the range-front alluvium. The presence of placer deposits along with the fact that veining in the Olinghouse district is very shallow (200-300 feet) suggests that the Olinghouse system may be largely eroded away.

The age and type of mineralization in the Olinghouse district is similar to that of the Comstock system which suggests likely genetic relationship.

Continuous and pervasive occurrences of silicification argillization, quartz veining and mineralization along the eastern flanks of the Pah Rah Range suggests that the area is underlain by a large system. If this is the case, the Big Mouth and Secret Canyon areas may provide excellent exploration potential.

In my conversation with Harold Bonham, he conceded that the area may be very worthwhile as an exploration target and to his knowledge had not been looked at previously.

Land Status: There was one claim block of three claims filed in 1972, however, proof of labor has not been filed since 1977. Other than this one claim block, the area appears to be completely open. The proximity of the Pyramid Lake Indian Reservation is not likely to cause difficulties. The Paiute Tribe, however, should be given due consideration and consultation if a mining venture is attempted in the future.

Summary: Sample results and field evidence suggest that the Big Mouth-Secret Canyon area of the Pah Rah Range provides excellent exploration possibilities. In particular, a propylitized ash flow tuff unit is the host for later argillization, silicification, and mineralization. This unit appears to be quite extensive because it outcrops over a large area. Significant portion of the unit (if it is continuous) is beneath later volcanics.

Recommendations

- 1. Claim appropriate area
- 2. Compile a detailed map and sample the unit where it is exposed
- 3. Attempt to delineate extent of unit beneath later volcanics
- 4. Drill areas where the unit is covered if appropriate
- 5. Evaluate

The area may be claimed as one large claim block (safest) or two smaller individual blocks (least expensive). A large single claim block containing about 200 claims would probably cover the area of interest until the unit's extent is properly projected beneath overlying volcanics. Two smaller claim blocks (one about 90 claims, the other about 30 claims) would also cover the area of interest but would leave an area open that may be of interest later after more work is done. See map.

REFERENCES

- Bibliography of Graduate Theses on Nevada Geology to 1976; Nevada Bur. of M. & G. Report #31.
- Bell, E.J. and Slemman, D.B., 1979, Recent crystal Movements in the Central Sierra Nevada Walker Lane Region of California-Nevada, Tectonophysics 52, 571-583.
- Sales, J.K., 1974, Simulated "True Color" Images from ERTS Data: Comment; Geology V.2 #10, p. 496.
- Sales, J.K., 1966, Structural analyses of the Basin Range Province in terms of Wrench Faulting Ph.D. U.N.R.
- Oldham, R.L., 1971, Structural Geomorphic Analysis of the Virginia Mountain, Washoe County, Nevada; M.S. theses UNR
- Brooks, Howard, 1956, Geology of a Uranium Deposit in the Virginia Mts., Washoe County, Nevada; M.S. Thesis, U.N.R.
- DeGuire, M.F., 1974, A study of the Eurtophication of the surface waters of Lake Pyramid; Thesis, NU.N.R.
- Waggoner, R.R., 1975, Environmental Geology Problems of Pyramid Lake Basin, M.S. Thesis, U.N.R.
- Dixon, J.B., 1977, Geology of the Wild Horse Canyon area Fox Range, Wasshoe County, Nevada, M.S. Thesis; U.N.R.

- OLINGHUSE

 Ser 21,28 TZIN, RZZE

 located 5/11/81

 Lee Smith: 1735 Belford Rd, Reno, NU. 89509

 Robert Rossier: 1735 Plumas St., Reno, NU. 89509
- 2) LINDA I- I

 Cottonwood

 Sec 27 T3ON R 21E

 Located 619181

 Donald T. M' Davell: 7994 Mendownew Ct. 95610

 Reed Atkinson: RT. I Box 703 Sutcliff Creek, (a.

 Gregory M'Davell: 7994 Mendownew Ct., Citrus Hots., (a.
- 3) Lookant
 Olinghouse (whitehorse
 sec 19+20 TZIN RZZE

 located 6/2/81

 Ken Bryant 2180 Rice Rd. Fallon, NU 89406
 remarks: joins Mattie B. patent on south
- White Horse
 assessment complete for 1981; dated 6/18/81
 sec 28 TZIN RZZE
 Frank Tarantino P.O. Box 6112 Carmel, Ca. 93921

- FOX RANGE

 TZ9N RZIE located 1/9/81

 Del Macede 7 700 Pedeham Rd., Rene, NV.
- 6) Gerlach
 Cottonwood
 Sec 15 T31N RZZE
 Located 4/10/81
 CD. Harmon: 23 Bridge St, Mason?
 WE Harmon: 1420 Dubban Dr, Carson City, NV. 89701
- 7) ANNA; SLIP + GOLD LEDGE LODE; (ANADA; MIDWAY),

 CABIN LODE; GOLD KING; "V" CLAIM; GREENHILL # 1 + # 2;

 GREEN VALLEY

 located Oct; 1979

 assessment complete for 1981

 Sec 20, 29, 30, 32 T ZIN R23E

 OLINGhouse [W.1dHasse

 Ted Smith: 555 (TUMMER LANE, RENO, NV.

 Tohn Heizer: P.O. Bax 30, Reno

 also: Dennis Smith
- 8) SLOPPY WEATHER 1-14
 Whitehorse
 see 23 TZIN RB 23 S
 located 7/12/81

 Daughas Hamilton: 1777 Howell Mt. RD Argu. N. Ca. 94508
 Gene Sackett: 120 Arraw St., Fernley W.

- 9) Bobcat

 Up known district

 Sec 3 T30N RZIE

 Located 5/17/21

 David Iveson: Sitcliffe Stan Bert. Peno, NV 89510
- C) ANNA (repeat)

 Olivehase (whitehorse

 Sec 29 TZIN RZZE

 located 7/3/81

 Dennis Smith 2385 Camelot Way, Reno

 Ted Smith 555 (rummer Reno
- Whitehorse
 Sec 20 TZIN RZZE

 located March ZZ, 1981

 James Matthews: P.O. Box 56, Reno

 Carrol Charlot P.O. Box 18034, Steamcost, NV.
- 12) Subsam and (ardine (2 claims)
 Whiteherse
 Sec 20,21,28,29 TZIN RZZE
 assessment complete for 1981
 Milton Jacobs 1634 Knox Ave Reno
- 13) Siwash; Siwashtoo; Olga Min; Cactos (laim and Olga Min. millsite
 Olinghouse
 sec 29,30 721N RZZE
 H.L. Murphy 1455 Mallory Lane, Pene
 wood assosment complete for 1981

(4) Karen Placer
Whitehorse.
location?
assosment complete 1981
mervin Pead
Vernan Erlandson: 380 Sitherland Dr Reno

15) Green Gold
Olinghouse

2 soc 21, 28 TZIN RZŠE

located 4/29/81

Lee Smith: 1735 Belford Lame Reno
Robert Rossier: 1735 Plumas Dr. Reno

Olinghouse

Seczi, 28 TZIN KZZE located 5/15/81

Lee Smith:

R. Russier:

Memarks: Gordend on north by "JENI"; on west by

Cardine

- (17) Gold Fraction Placer
 Cliniquese

 Lec 21, 28,29 TZIN RZ LE

 Located 5 15 6/14/81 (originally daimed 1964)

 Lee Smith

 R. Rossier
- Olinghouse

 Street 20,21 TZI RZ3

 Located 6/26/81

 Lee Smith 3 1735 Belford, Reno

 Ernestine Smith)

 Lewark: banded on south by Subsam, on west by Goldking
- 19) Wild Horse

 Wildhass (For Rg)

 Sec 2 T29N RZIE in For Rg

 located 6/9/80

 Lee Geresola, Wadsworth

- 20) Arranhead
 Whitehorse
 Sec 33 Trin RZZE
 located 1/13/81
 Harry Michelas 47 Silver Reef Dr. Rene
- 21) OLD GOLD Olinghouse Sec 28 TZIN RZZE Located 5/25/81 Lee Smith, 1735 Belford, Remo
- 22) SUNBEAM EXT.

 Olinghouse

 Sec 21 TZIN RZZE

 Albert Risley 3111 Idlewild Pr. Rene

 Dennis Smith 2385 Cambot Rene

 assessment complete for 1981
- 23) Tunnel (laim; Silver wave #1+#2 assessment complete only through 1977 RH + RI (ades, Keno, NV.

DENISON MINES (U. S.) INCORPORATED

Subject: 1981 Annual Report - Paiute DN24

To: Jerry L. Harrold

From: Paul Klipfel Date: January 29, 1982

INTRODUCTION

The Paiute property is located approximately 30 miles northeast of Reno, Nevada and 5 miles south of Pyramid Lake (Figure 1) on the east flank of the Pah Rah Range, (T22N, R23E). Ninety-seven claims were staked during August and September of 1981 in the Big Mouth Canyon area, 7 miles north of the Olinghouse District (Figure 1). Claims are bounded by private ground and ±15 patented claims.

GEOLOGY

The Paiute property is situated in the Pyramid Lake structural basin which possesses strong mineralization potential. The basin marks the intersection of two large tectonic features, the Walker Lane and the Mendocino Oroclinal fold. Several mining districts, at least 2 porphyry anomalies, and abundant current and paleo hydrothermal activity are present within the basin. Precious metals at the nearby Olinghouse District are thought to be related to the large Comstock epithermal system (Figure 1).

The Paiute claims cover a thick sequence of rhyolitic ash-flow tuffs (Hartford Hill Rhyolite) characterized by extensive and pervasive propylitic alteration and silicification. Old workings on the property are reported to have produced a few small shipments of Au and Ag. There are also occurrences of Pb, Te, Cu, and WO₃ in the Olinghouse District.

1981 PROGRAM

Reconnaissance work was directed toward (1) evaluation of this area as a target of interest, (2) reconnaissance mapping and sampling to designate the area of greatest interest, and (3) establishing a land position. Claims were staked to cover areas of most intense argillic alteration and silicification. An aerial photographic /photogrametric survey was also flown to provide imagery for geologic interpretation and production of a suitable topographic map.

DISCUSSION

The structural character, the abundance of mineralized areas, and presence of hydrothermal activity make the Pyramid Lake basin an ideal areasfor precious metal exploration.

Geochemical results (Table 1) and area geology indicate that the Big Mouth Canyon area possesses potential for significant Au-Ag mineralization in the form of a Comstock or DeLamar or combination type model.

The exploration program for 1982 will include:

- (1) Regional and detailed geologic mapping
- (2) Orientation survey and grid geochemical sampling
- (3) Investigation of geophysical applications
- (4) Acquisition of additional land if necessary
- (5) Communication with the Paiute Tribe of the Pyramid Lake Indian Reservation

Proximity of the Paiute property to the Pyramid Lake Indian Reservation (Figure 1) is not expected to be problematic. However, positive dialogue with the Indians will be part of the 1982 program.

PDK/sn

TABLE 1 PAIUTE GEOCHEMICAL RESULTS

S	ample #	Rock Type	Au	Ag	Hg	As	Sb	Fe	Mn	Cu	Pb	Zn	Mo
	3124	Silicified volcanics	.040	2.5	.935	17	37	5500	28	5	22	12	121
	3126	Altered volcanics	1.600	5.8	.330	23	49	5000	25	6	32	17	31
	3127	Altered volcanics	1.000	4.6	.225	16	58	4000	47	1	34	11	130
	3128	Quartz vein	.200	5.6	.160	6	23	16000	118	1	64	27	151
	3131	Altered volcanics	1.000	1.9	.215	6	44	7000	40	1	16	12	16
	3134	Altered tuff	3.700	3.4	.415	18	75	4500	33	32	30	85	60
	3135	Silcified tuff	.065	2.4	.380	12	43	6000	21	13	13	26	117
	3222	Calcite vein	<.005	0.3	.800	6	<2			11	30	28	4
	3223	Volcanics	.035	0.2	.950	5	<2			5	16	49	1

Volcanics

3223

DENISON MINES (U. S.) INCORPORATED

Subject: Paiute Project Summary

To: J. J. Antony

From: P. E. Kavanagh Date: December 8, 1982

Introduction:

The 97 Paiute lode claims (92 whole, 5 fractions)(Fig. 1) were staked as a result of the 1981 Western Silver reconnaissance program. A number of large scale tectonic features considered to be favorable for mineralization were known to be coincident in the area. Several porphyry copper prospects, numerous small precious metal prospects and generally widespread alteration further demonstrated the potential of the Pyramid Lake area as a whole. Finally, a number of grab samples from Big Mouth Canyon and Secret Canyon were analyzed and found to have extremely high precious metal content. The land was found to be available and staking commenced in September 1981. An airborne photogrammetric survey was flown early in 1982 and color photo coverage is now available at a scale of 1:12,000.

Location:

The claims are located in Washoe County, Nevada, approximately 30 miles northeast of Reno (Fig. 2). They are bounded by patented claims to the south and east and by the Pyramid Lake Indian Reservation (Paiute Tribe) to the north. The area is toward the southern end of the Pah Rah Range and relief on the property is nearly 3,000 feet (Fig. 1). The claims are accessible via 3 miles of dirt road from State Route 34 which runs between Pyramid Lake and Fernley.

Geology:

The majority of the rocks in the claim group belong either to the Lower Miocene Hartford Hill Rhyolite or to the Upper Miocene Pyramid Sequence (Bonham, 1969). Rocks of the Hartford Hill unit generally form canyon walls in the area while the Pyramid unit outcrops at higher elevations to the west (Fig. 3). Minor exposures of Oligocene Pah Rah Formation andesites occur near the bottom of Coal Creek Canyon in the north and a small intrusive rhyolite plug is exposed between Big Mouth and Secret canyons. Beyond the claim group, Tertiary basalts make up the Truckee Range to the east, Cretaceous intrusions and Tertiary fluviatile and lacustrine sediments outcrop to the west, and intermediate to felsic flows and flow breccias of the Tertiary Kate Peak Formation occur to the south.

The Hartford Hill Rhyolite consists largely of rhyolitic to quartz latitic, variably welded ash flow tuffs. Intercalated with the ash flows are thin ash fall deposits and epiclastic sediments. It appears that at least one of the ash flow units in the Big Mouth Canyon area has been extensively propylitized and locally argillized and silicified. The Hartford Hill Rhylolite hosts mineral deposits in the Olinghouse district, seven miles south of the Paiute claims, and numerous workings within the claim block are in altered portions of the unit. The Rhyolite is generally considered to predate mineralization in the region.

OUTLINE OF THE PAIUTE CLAIMS T22N, R23E

0 1/2 I mile

12/81

Pyramid Lake Indian Reservation PYRAMID Olinghouse District

GEOGRAPHIC AND GEOLOGIC SETTING PAIUTE CLAIMS

LEGEND

- Districts
- Major active hydrothermal systems
- Volcanics
- Intrusives
- Sedimentary
- Alluvium
- Walker Lane

REGIONAL GEOLOGY OF THE PAIUTE CLAIMS

5 miles

Andesite and basalt

Sedimentary rocks

Kate Peak Formation

Tertiary

Pyramid Sequence

Hartford Hill Rhyolite

Pah Rah Formation

Cretoceous

Area of Paiute claim block

Paiute Project Summary cont'd.....page 2

Geology cont'd

The Pyramid Sequence consists of basic to intermediate flows, flow breccias and tuffs, with minor intercalated waterlain sediments and silicic tuffs. The unit has undergone extensive propylitization, but not the intense degree of alteration common in the Hartford Hill Rhyolite.

The prospects in Big Mouth Canyon and Secret Canyon explore northerly-trending altered and mineralized fault zones in the Hartford Hill Rhyolite (Bonham, 1969). Gold mineralization generally occurs with pyrite in several-foot-wide networks of quartz, adularia and calcite veinlets. Commonly the host rocks are propylitized, brecciated, welded ash flow tuffs.

Geochemistry:

Several samples were collected from adits, dumps and outcrops in the claim block (Figure 4), and were analyzed for a suite of eleven elements. Results are given in Table 1. Samples 3126 and 3127, both high in Au, are dump samples of bleached and silicified material. Sample 3131 is a select grab sample of adit and dump material on the south side of the south fork of Big Mouth Canyon, and sample 3134 is from inside an adit in the north fork of Big Mouth Canyon.

References:

Bonham, Harold F., 1969, Geology and Mineral Deposits of Washoe and Storey Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 70, 140 pp.

PEK:ek

LOCATION OF GEOCHEM SAMPLES
PAIUTE CLAIMS

TABLE 1

PAIUTE

GEOCHEMICAL RESULTS (in ppm)

Sample #	Rock Type	Au	Ag	Hg	As	<u>Sb</u>	Fe	Mn	Cu	Pb	Zn	Mo
3124	Silicified volcanics	.040	2.5	.935	17	37	5500	28	5	22	12	121
3126	Altered volcanics	1.600	5.8	.330	23	49	5000	25	6	32	17	31
3127	Altered volcanics	1.000	4.6	.225	16	58	4000	47	1	34	11	130
3131	Altered volcanics	1.000	1.9	.215	6	44	7000	40	1	16	12	16
3134	Altered tuff	3.700	3.4	.415	18	75	4500	33	32	30	85	60
3135	Silcified tuff	.065	2.4	.380	12	43	6000	21	13	.13	26	117
3222	Calcite vein	<.005	0.3	.800	6	<2			11	30	28	4
3223	Volcanics	.035	0.2	.950	5	<2			5	16	49	1

1

PAIUTE PROJECT SUMMARY REPORT

DENISON MINES (U.S.) INC.

DENVER, COLORADO
DECEMBER 10, 1982

PAIUTE PROJECT SUMMARY

Introduction:

The 97 Paiute lode claims (92 whole, 5 fractions)(Figure 1) were staked as a result of Denison's 1981 Western Silver reconnaissance program. A number of large scale tectonic features considered to be favorable for mineralization were known to be coincident in the area. Several porphyry copper prospects, numerous small precious metal prospects and generally widespread alteration further demonstrated the potential of the Pyramid Lake area as a whole. Finally, a number of grab samples from Big Mouth Canyon and Secret Canyon were analyzed and found to have extremely high precious metal content. The land was found to be available and staking commenced in September 1981. An airborne photogrammetric survey was flown early in 1982 and color photo coverage is now available at a scale of 1:12,000.

Location:

The claims are located in Washoe County, Nevada, approximately 30 miles northeast of Reno (Figure 2). They are bounded by patented claims to the south and east and by the Pyramid Lake Indian Reservation (Paiute Tribe) to the north. The area is toward the southern end of the Pah Rah Range and relief on the property is nearly 3,000 feet (Figure 1). The claims are accessible via 3 miles of dirt road from State Route 34 which runs between Pyramid Lake and Fernley.

Geology:

The majority of the rocks in the claim group belong either to the Lower Miocene Hartford Hill Rhyolite or to the Upper Miocene Pyramid Sequence (Bonham, 1969). Rocks of the Hartford Hill unit generally form canyon walls in the area while the Pyramid unit outcrops at higher elevations to the west (Figure 3). Minor exposures of Oligocene Pah Rah Formation andesites occur near the bottom of Coal Creek Canyon in the north and a small intrusive rhyolite plug is exposed between Big Mouth and Secret canyons. Beyond the claim group, Tertiary basalts make up the Truckee Range to the east, Cretaceous intrusions and Tertiary fluviatile and lacustrine sediments outcrop to the west, and intermediate to felsic flows and flow breccias of the Tertiary Kate Peak Formation occur to the south.

The Hartford Hill Rhyolite consists largely of rhyolitic to quartz latitic, variably welded ash flow tuffs. Intercalated with the ash flows are thin ash fall deposits and epiclastic sediments. It appears that at least one of the ash flow units in the Big Mouth Canyon area has been extensively propylitized and locally argillized and silicified. The Hartford Hill Rhyolite hosts mineral deposits in the Olinghouse district, seven miles south of the Paiute claims, and numerous workings within the claim block are in altered portions of the unit. The Rhyolite is generally considered to predate mineralization in the region.

The Pyramid Sequence consists of basic to intermediate flows, flow breccias and tuffs, with minor intercalated waterlain sediments and silicic tuffs. The unit has undergone extensive propylitization, but not the intense degree of alteration common in the Hartford Hill Rhyolite.

Geology cont'd

The prospects in Big Mouth Canyon and Secret Canyon explore northerly-trending altered and mineralized fault zones in the Hartford Hill Rhyolite (Bonham, 1969). Gold mineralization generally occurs with pyrite in several-foot-wide networks of quartz, adularia and calcite veinlets. Commonly the host rocks are propylitized, brecciated, welded ash flow tuffs.

Geochemistry:

Several samples were collected from adits, dumps and outcrops in the claim block (Figure 4), and were analyzed for a suite of eleven elements. Results are given in Table 1. Samples 3126 and 3127, both high in Au, are dump samples of bleached and silicified material. Sample 3131 is a select grab sample of adit and dump material on the south side of the south fork of Big Mouth Canyon, and sample 3134 is from inside an adit in the north fork of Big Mouth Canyon.

References:

Bonham, Harold F., 1969, Geology and Mineral Deposits of Washoe and Storey Counties, Nevada: Nevada Bureau of Mines and Geology Bulletin 70, 140 pp.

OUTLINE OF THE PAIUTE CLAIMS T22N, R23E

12/81

Figure 2

REGIONAL GEOLOGY OF THE PAIUTE CLAIMS

0 5 miles

Figure 3

LOCATION OF GEOCHEM SAMPLES
PAIUTE CLAIMS

12/81

TABLE 1

PAIUTE

GEOCHEMICAL RESULTS (in ppm)

Sample #	Rock Type	Au	Ag	<u>Hg</u>	As	Sb	Fe	Mn	Cu	Pb	Zn	Mo
3124	Silicified volcanics	.040	2.5	.935	17	37	5500	28	5	22	12	121
3126	Altered volcanics	1.600	5.8	.330	23	49	5000	25	6	32	17	31
3127	Altered volcanics	1.000	4.6	.225	16	58	4000	47	1	34	11	130
3131	Altered volcanics	1.000	1.9	.215	6	44	7000	40	1	16	12	16
3134	Altered tuff	3.700	3.4	.415	18	75	4500	33	32	30	85	60
3135	Silcified tuff	.065	2.4	.380	12	43	6000	21	13	13	26	117
3222	Calcite vein	<.005	0.3	.800	6	<2			11	30	28	4
3223	Volcanics	.035	0.2	.950	5	<2			5	16	49	1

PAIUTE PROJECT

DENISON MINES (U.S.) INC.

January, 1985

TABLE OF CONTENTS

	PAGE NO.
Summary	1
Introduction	2
Location and Access	2
Geology	2
Property History	5
1984 Exploration Program	7
Interpretive Geology	10
Ore Target Concept,	15
Recommended 1985 Program	15
Proposed 1985 Budget	18
Bibliography	19
Fig. 1 Location of Paiute Claims	3
Fig. 2 Regional Geologic Setting	4
Fig. 3 Map of Paiute Claim Boundaries	6
Fig. 4 Generalized Geologic Plan and Sections	13
of the Comstock Lode	
Fig. 5 Buchanan's Conceptual Model of Epithermal	16
Precious Metals Deposits Hosted in Volcanics	
Fig. 6 Denison Conceptual Model of Mineralization	17
at Paiute Property	

Table 1 Significant Mineralized Intercepts
1984 Drilling

Appendix I 1984 Drill Logs
Appendix II 1984 Drill Hole Cross-sections

LIST OF MAPS IN POCKET

- Plate I Geologic Map Paiute Claims
- Plate II Sample Location Map 1983 Reconnaissance Geochem
- Plate III Sample Location Map 1984 Detailed Rock Geochem
- Plate IV Surface and Drill Hole Assay Map East Zone, Paiute Fault
- Plate V Longitudinal Cross Section in the Hanging Wall of the Paiute Fault Zone and Location of Proposed 1985 Drill Holes

SUMMARY

The Paiute claims are located in the Pah Rah Range of northwestern Nevada, approximately thirty miles northeast of Reno. The claims are underlain by a thick sequence of felsic and mafic volcanic rocks of the Tertiary Hartford Hill Rhyolite and Pyramid Formation. Gold and silver mineralization on the Paiute property occurs in a quartz stockwork vein system associated with a prominent east-west trending fault zone.

The target being pursued at Paiute is a low-tonnage, high-grade epithermal vein deposit containing 100,000 to 400,000 ounces of gold, mineable by underground methods.

Exploration work performed during 1984 on the Paiute claims consisted of detailed outcrop sampling over a portion of the Paiute fault zone, and shallow, angle core drilling. The results of the lithogeochemical survey have outlined two areas with the potential for high-grade vein or stockwork mineralization. first area is at the eastern end of the Paiute fault zone. 1984 drill project was directed at this area. A 1,700' drill program, composed of six angled core holes, disclosed multiple intercepts of medium to high-grade gold and silver mineralization, with true widths ranging up to 4.3' and grading up to 0.11 OPT gold and 1.06 OPT silver. For a first stage limited drilling program testing only 1/8 of the total strike length of the mineralized zone to 100-150' in depth, the results are considered quite encouraging. The second area is approximately 1,200' west of the 1984 drill target. Both areas are characterized by strong pervasive alteration, quartz stockwork veining and significant gold/silver mineralization over a broad area.

Based on results of the 1984 exploration work, the quartz stock-work vein system on the Paiute Property appears to contain gold/silver mineralization confined to discrete shoots within the vein system. A systematic and detailed geologic study of the vein system will indicate the areas of highest probability for mineable ore shoots.

Proposed work for 1985 includes surface stripping, detailed geologic mapping, further detailed geochemical sampling, structural analysis of the Paiute Fault and a modest follow-up drill program. Pending results of this work, additional drilling may be warranted. The proposed 1985 exploration program will require an expenditure of approximately \$125K to \$130K.

INTRODUCTION

A literature search and helicopter reconnaissance of the Pyramid Lake area in 1981 initiated Denison's interest in the Pah Rah Range. Several grab samples from prospect pits in Big Mouth Canyon and Secret Canyon yielded significant gold/silver anomalies. The ground was open and claims were staked in September, 1981. Presently, the Paiute claim block is composed of 79 claims.

LOCATION AND ACCESS

The Paiute claim block consists of 79 contiguous lode claims located in sections 7,8,9,16,17 and 18, T22N, R23E; Washoe County, Nevada (fig. 1). The claims lie on the east flank of the Pah Rah Range, approximately thirty miles northeast of Reno. The Pyramid Lake Paiute Indian Reservation is adjacent to the claim block on its north boundary.

Access from Fernley, Nevada is by Nevada State Route 445, west to Pyramid Lake. Three miles of dirt road, including two miles traversing Paiute Reservation land, connect the property with the highway. All access corridors on reservation land have been secured.

Topographic map coverage is provided by the Nixon 15-minute quadrangle. A photogrammetric survey has been flown and color stereo photographs are available.

GEOLOGY

The Paiute claim block is underlain by the Hartford Hill Rhyolite, excepting a small area on the east boundary which is underlain by the Pyramid Formation. Both units are Miocene in age (fig.2, plate I).

The Hartford Hill Rhyolite can be divided into three members, all of which outcrop on the Paiute claims. The lower member, which hosts the gold/silver mineralization, is a monotonous sequence of welded, gray to purple, felsic lapilli tuff and lithic tuff. The unit contains thin beds of volcanogenic sandstone and conglomerate. A 700' thick section of the lower member outcrops on the claim block. The tuffs of the lower member have undergone pervasive propylitic alteration on the property. The middle member is a welded, gray, crystal tuff of felsic composition overlain by a thin layer of purple lapilli tuff. It is approximately 200' thick. The middle member is commonly bleached and argillized to a white siliceous rock with goethite-stained fractures. The upper member of the Hartford Hill Rhyolite is predominantly purple, welded lapilli tuffs and agglomerate, with intercalations of lithic tuff. The upper member is unaltered. A 500' thick section is exposed on the claim block.

GEOGRAPHIC AND GEOLOGIC SETTING PAIUTE CLAIMS

LEGEND

- Mining districts
- Major active hydrothermal systems
- Volcanics
- Intrusives
- Sedimentary
- Alluvium
- Walker Lane alteration zone

The Pyramid Formation unconformably overlies the Hartford Hill Rhyolite along the east boundary of the claim block. The Pyramid Formation consists of unaltered basalt and andesite flows.

A prominent structural feature on the property is the Paiute Fault zone. It is a sinuous, east-west trending zone of roughly parallel normal faults that served as the locus for mineralization on the Paiute property. The fault zone dips approximately 70 degrees north, can be traced over 4,000' on the surface and shows approximately 400' of vertical displacement. The lithic tuffs within the fault zone have undergone variable amounts of silicification, propylitization, argillization, phyllic alteration and quartz stockwork veining.

Geologic mapping on the property indicates three distinct sets of faults. Northeast trending structures appear to be oldest and are offset by east-west faults. The east-west trending faults in turn are offset by younger northwest trending faults.

Past hydrothermal activity is evidenced by a multi-episodic network of complexly cross-cutting quartz stockwork veins and veinlets. The veins occur in lithic tuff that has undergone weak to strong silicification, propylitization, argillization and phyllic alteration. Besides quartz, the veins may contain adularia, calcite, pyrite, hematite, barite, clay or gypsum. Trace amounts of argentite and a fine-grained, dull dark gray, cubic sulfide mineral have been noted.

PROPERTY HISTORY

Pre 1981

The original claims in Big Mouth Canyon, now lapsed, were located in 1860. Past production amounted to a few small shipments of gold/silver ore. Old workings exist as prospect pits and shallow adits supposedly worked for high-grade pockets. The prospects in Big Mouth Canyon are considered to be part of the Olinghouse Mining District.

The geology of the Pah Rah Range is discussed in the Nevada Bureau of Mines Bulletin 70, Geology and Mineral Deposits of Washoe and Storey Counties, Nevada by Harold Bonham. The geologic map that accompanies the bulletin is scaled at 1:250,000. The gold/silver prospects in Big Mouth Canyon are briefly mentioned on page 75.

Denison 1981-1982

The Paiute property was staked by Denison Mines (U.S.) Inc. in August and September of 1981 through the Western Precious Metals reconnaissance program (fig.3). Ninety-two claims were staked, based upon widespread alteration in the area in addition to numerous small prospect pits and adits. Eight grab samples from dumps indicated anomalous gold and silver concentrations of up to 0.11 OPT gold and 0.17 OPT silver. No work was performed on the

OUTLINE OF THE PAIUTE CLAIMS T22N, R23E

0 1/2 1 mile

property in 1982, and in the latter part of that year it was decided to attempt a farm-out. Perhaps due to the limited exploration work that had been done to date, only slight interest was aroused, and no offers were made. Not wishing to see the property lapse, a minimal program of geologic mapping and sampling was undertaken in late 1983.

Denison 1983

The 1983 exploration program at Paiute indicated that a major east-west trending fault zone hosts the majority of the gold/silver mineralization in the area. Geologic mapping on a scale of 1:6,000 disclosed a strongly altered, quartz-veined zone with maximum apparent dimensions of 5,000' by 700'. The mineralization is associated with an east-west trending zone of normal faults, hereafter referred to as the Paiute Fault zone. One hundred sixty-nine reconnaissance rock chip samples were taken (plate II). Of approximately ninety samples collected specifically along the trend of the Paiute Fault, thirty contained greater than 0.01 OPT gold equivalent, and six contained greater than 0.10 OPT gold equivalent. All samples taken during this program were approximately two pounds in weight and were biased in favor of quartz-veined and altered material.

Thirteen claims at the southern end of the claim block were dropped in 1983.

1984 EXPLORATION PROGRAM

Exploration work performed during the 1984 season consisted of detailed lithogeochemical sampling and shallow angle core drilling. The eastern third of the mineralized trend indentified in 1983 was the target of the 1984 exploration program.

Lithogeochem Sampling Program

The 1984 detailed lithogeochemical sampling program was concentrated in an area of strong gold/silver values identified in the 1983 program. A total of 327 lithogeochemical channel samples were collected along a 1,500' length on the east portion of the Paiute Fault zone (plate III). The width of the quartz stockwork zone in the area varies from 150' on the east to 700' on the west end. The bedrock exposure is good, except in the central portion of the study area. Continuous exposures of mineralized bedrock were channel sampled perpendicular to the strike of the fault zone. In areas of poor exposure, all available mineralized outcrops were sampled.

Exceptionally good exposure yielded four continuous channel samples across the stockwork vein system. At the extreme eastern end, one continuous exposure of bedrock, perpendicular to the strike of the fault, permitted a detailed channel sample across the entire width of the mineralized zone. Two continuous perpendicular traverses were sampled on the west end and one in the

central portion. All available mineralized outcrops in the immediate area of the 1984 drilling project were sampled. All 1983 samples showing significant gold/silver mineralization within the area were channel sampled in detail in 1984.

All samples collected in 1984 were channel rock chip samples of ten to twelve pounds, taken across 5' widths. Care was taken to collect unbiasd material along the channel. Rock chip rather than soil samples were employed due to the lack of soil development. Channel sampling was utilized because of the comparable appearance of barren and mineralized stockwork, the apparent erratically distributed mineralization and the need to collect samples unbiased toward quartz veins.

All surface samples were fire assayed for gold and silver in one assay ton charges by Hunter Lab in Reno.

Lithogeochem Sampling Results
Results of the 1984 rock chip sampling survey disclosed two broad areas of low-grade mineralization with erratic, high-grade gold/silver values throughout. The first area occurs on the far east end of the Paiute fault zone, the second is 1,200' to the west.

The first area of low-grade mineralization averages 150' wide and can be traced 500' on strike where it is then covered by overburden. A continuous channel sample, consisting of thirty-three 5' segments, taken across the entire width of the mineralization, averaged 0.015 OPT gold equivalent (using a Au:Ag ratio of 1:50). Sample 84-015 was a horizontal channel sample perpendicular to strike that assayed 0.33 OPT gold across 3'. A small vein cut in sample 84-015 was selectively sampled; a 1" thick, white quartz vein filling a dilation that cuts the older stockwork veining yielded on assay of 2.9 OPT gold and 2.3 OPT silver.

A broad zone of erratic precious metals mineralization located in the west portion of the area encompasses a 700' width of altered and quartz stockwork-veined rock. This area was delineated by two nearly continuous lines of rock chip channel samples. sample traverses were spaced 100' to 200' apart, dependent upon availability of outcrop. The second traverse (easternmost) was implemented to determine the strike direction and extent of significant gold/silver values identified by the first traverse. The erratic medium to high-grade assays occur in no obvious recognizable pattern, except for a slight clustering of the values toward the hanging wall portion of the Paiute fault zone. All samples with high-grade gold values have recognizable quartz veins that cut earlier generation stockwork veins. Sample 84-111 is a horizontal channel that assays 0.12 OPT gold, 3.72 OPT silver across 5'. A subsequent field check revealed a white quartz vein, 6" across that cuts all other veins. This vein

appears to be a later stage of quartz than the rest of the quartz stockwork veining. The 191 samples taken in the two lines average 0.007 OPT gold equivalent, including both barren and mineralized stockwork.

Drilling Program
The 1984 drilling program consisted of six angle core holes in a fan array, totaling 1,700'. The program was designed to test a strong gold/silver anomaly and to better determine the character and mode of mineralization at depth (plate IV). The surface anomaly includes 88 samples averaging 0.015 OPT gold equivalent. Two holes were collared on a western pad and four holes on the pad 300' to the east. All six holes were drilled at least 50' past the target zone, based on the continuing presence of quartz veining. Acid tests indicated no significant deviation in the drill holes.

Drilling Results
Results of the 1984 drilling program mirrored the results of the detailed rock geochemistry survey (plate IV). The two programs both demonstrate the existence of a wide, strongly altered and quartz stockwork-veined zone that is generally barren to low-grade, but contains narrow high-grade zones of gold/silver mineralization (appendix I). A composite total of all drill samples in strongly altered and quartz-veined zones averaged 0.014 OPT gold equivalent. A composite assay from 108' to 272' in hole P-84-1 averages 0.019 OPT gold equivalent. A composite assay from 10' to 162' in hole P-84-3 averages 0.010 OPT gold equivalent.

Significant gold values intercepted in drill holes fall into two distinct clusters, one in the hanging wall portion of the fault zone, the other near the footwall portion (Appendix II). The gold/silver mineralization associated with the hanging wall is fairly well-defined and characterized by quartz stockwork veining, pyritization, propylitic and argillic-phyllic alteration and high background precious metals values. The footwall zone of mineralization grades into barren, weakly altered rock. The degree of quartz veining and level of precious metals values are generally lower in the footwall region, as compared to the hanging wall.

Drilling suggests that zones of strong alteration and stockwork veining, when plotted in cross-section, show a decrease in true width with increase in depth. The mineralized zone at the east end of the Paiute Fault is 150' wide on the surface, but narrows with depth. The zone is 85' wide in hole P-84-3 and 46' in P-84-4. Likewise, the zone is 42' wide in hole P-84-6 and 27' in P-84-5. With increasing depth below the surface, there is a notable decrease in the quantity of silicic alteration associated with the quartz stockwork veining.

Table I lists the significant gold/silver mineralization intercepted by drill holes.

TABLE I: SIGNIFICANT MINERALIZED INTERCEPTS - 1984 DRILLING

HOLE	INTERVAL	TRUE WIDTH	Au (OPT)	Ag (OPT)	
P-84-1	110-112	1.1'	.021	.02	
P-84-1	128-136	4.3'	.111	1.06	
P-84-1	134-136	1.1'	.370	1.39	
P-84-1	222-224	1.1'	.008	2.85	
P - 84 - 1	262-264	0.1'	.111	1.09	
P-84-1	266-268	1.1'	.181	11.95	
P-84-2	56-58	1.3'	.001	1.37	
P-84-2	218-220	1.3'	.046	1.20	
P-84-3	36-38	1.7'	.151	6.98	
P - 84 - 3	56-58	1.7'	.114	. 14	
P-84-3	78-80	1.7'	.033	. 21	
P-84-4	96-98	1.4'	.210	1.05	
P-84-4	106-108	1.4'	.018	4.89	

The quartz-veined portions of the core were analyzed by fire assay. Field work has shown that significant gold/silver mineralization occurs only in association with quartz-veined rock. The selected portions of the core were sampled in two foot sections. The core was photographed, and then the entire core from each interval was analyzed for gold and silver in one assay ton charges.

INTERPRETIVE GEOLOGY

Characteristics of Productive Vein Systems

Zones of economic gold/silver mineralization in epithermal volcanic-hosted deposits are characterized by multiple episodes of quartz veining, refracturing and cementing; or in the case of a single vein, complexly banded veining. This characteristic indicates economic mineralization is dependent upon episodic plugging of the fracture system and refracturing, enabling the trapped hydrothermal fluids to suddenly be released and allowed to boil, thus precipitating ore minerals (Buchanan, 1981).

Recognition of the characteristics of ore shoots is important in the evaluation of precious metals mineralization in epithermal vein systems. Productive quartz stockwork vein systems are primarily composed of barren or sub-economic pre-ore stage veins superimposed by high-grade ore-stage veins. Ore is typically confined to discrete shoots that occupy only a fraction of the vein system. The ore shoots occur as isolated zones within the vein system, enclosed along strike and dip by low-grade to barren gangue (Buchanan, 1981). Ore shoots in the quartz stockwork vein

system at Oatman (Arizona) are typified by small high-grade stringers carrying up to 100 OPT gold, giving the entire width of the lode a mineable grade (Lausen, p.82). At Guanajuato (Mexico), the quartz stockwork veining outside of the ore shoots averages 0.003 OPT gold (Buchanan, 1979).

The Paiute property exhibits many characteristics similar to other well-known epithermal precious metals-bearing vein systems. In other districts, the ore-stage quartz gangue within ore shoots is commonly very fine-grained, contains significant amounts of adularia and displays platy quartz pseudomorphs after calcite (Buchanan, 1981; Lausen, p.69). All of these characteristics occur in the vein system at Paiute. Field observations imply that gold-silver mineralization at Paiute is confined to quartz veins or gouge zones bordering stockwork zones. The silicified and propylitized wall rocks, exclusive of quartz veins, appear to be barren. Examination of outcrops and drill core indicates that later stage quartz veins carry the significant precious metals values.

Observed characteristics of the mineralization at the Paiute property permit the following interpretations to be made. Paiute fault zone has localized a broad, multi-episodic network of complexly cross-cutting quartz stockwork veining. A major portion of these veins may represent a wide-spread episode of barren, pre-ore stage silica deposition in open fractures and dilations. There are several episodes of cross-cutting quartz veining due to periodic fault movements. Late stage, high-grade gold-quartz-adularia veins are superimposed over previous stages of veining, filling opened fractures and cementing brecciated veins. During ore stage quartz deposition, where the density of open fractures is high, the density of the high-grade, ore-stage gold-quartz-adularia veinlets can constitute ore. In areas of the fault system where the existence of open fractures during the ore stage mineralization is minimal the low density of the gold-quartz-adularia veinlets will result in erratic, high-grade mineralization that may not make the bulk of the lode commercially mineable.

Vertical Control of Ore Shoots

In epithermal vein districts, the ore shoots occur at specific elevations within the vein system. The ore shoots will commonly have flat tops and bottoms (Buchanan, 1981). Ore deposition at a restricted elevation is related to gold and silver precipitating in the zone of hydrothermal fluid boiling. If post-mineral fault displacements are subtracted, the elevation of a known ore shoot can be a useful exploration tool to indicate the elevation at which other blind ore shoots might occur.

The productive elevation within a vein system can be completely removed if the erosion level is deep. Occurrence of the following characteristics is an indication that the level of erosion is

above the level of boiling: adularia, platy quartz pseudomorphs after calcite, very fine sugary-textured quartz gangue, high precious metal values, advanced argillic alteration and wide-spread silicic or phyllic alteration halos (Buchanan, 1981). All of the above indicators, with the exception of advanced argillic alteration, are present on the Paiute property. This indicates that the level of erosion at Paiute may not be advanced enough to expose the boiling horizon where precious metals would have precipitated.

Erratic narrow zones of high-grade gold/silver mineralization could represent primary upward leakage of ore-stage quartz from a blind ore shoot at depth. Homestake's McLaughlin gold deposit, a blind ore body, is a good example of ore-stage quartz leakage. Low-grade gold values occur with mercury mineralization in the original mine workings. Tiny gold-quartz-adularia veinlets occurred as a primary leakage of ore-stage quartz deposition above the deeper ore. The upward continuation of ore-stage quartz deposition above the deep bonanza ore of the Comstock Lode would appear as erratic, narrow, high-grade gold-quartz-adularia veinlets within barren vein gangue (fig. 4). The erratic, high-grade nature of outcropping mineralization at Paiute may represent primary leakage above deep ore shoots.

The hydrothermal solutions responsible for mineralization leach the wall rocks and deposit silica and pyrite above the productive boiling horizon, resulting in an intense alteration halo overlying the ore shoots. Detailed alteration mapping may indicate intense alteration halos above deep ore shoots, thus being a useful exploration tool. At Republic (Washington), Oatman (Arizona) and Jarbidge (Nevada), prominent silicified outcrops are known to overlie productive ore shoots (Full and Grantham, 1968; Lausen, 1931; Schrader, 1923, p.35,40). Detailed mapping of the types and relative degrees of alteration along the Paiute Fault zone may help define additional drill targets.

The restricted occurrence of ore shoots in epithermal vein systems, coupled with the small chance that the productive elevation within the vein system will be exposed by erosion, indicates the probability for discovery of major lode-type deposits is good. Small exposures of an ore shoot led to the discovery of rich deposits at Tonopah and the Comstock Lode (C.G. Clifton, 1984, pers. comm.). Large ore shoots at Oatman, Mojave (California) and the Gooseberry mine (Nevada) occurred at depth and were discovered by prospect shafts (Clifton et al, 1980). The fissure vein containing the ore shoot at the Cactus Queen mine, Mojave District, was discovered by "interesting looking" float that prompted sinking of a shaft through a thick layer of colluvium (Tucker, 1935).

Figure 33. Generalized geological plan and sections of the Comstock Lode, Virginia City, Nevada (modified from Becker, 1882, and others).

(from Boyle, 1979, p. 274)

Figure 4 - Generalized geologic plan and sections of the Comstock lode

Horizontal Control of Ore Shoots

Ore shoots are localized by structural features within the vein system which produce and maintain a high density of open fractures. Ore shoots are related to zones of dilation or intense shattering caused by bends and flexures in fault planes, and vein or pre-mineral fault intersections. Flexures along strike and down-dip in a fault plane result in a relatively high density of fracturing due to localized stress concentrations during fault movement. The deep bonanza ores of the Comstock Lode occur in bodies of crushed quartz localized by bends and flexures in the Comstock Fault, coincident with the intersection of antithetic faults in the hanging wall (see figure 4). In the quartz stockwork vein system at Oatman, the ore shoots formed where faulting and reopening of the pre-ore stage quartz veins occurred (Lausen, 1931, p.76). On the Paiute claims, the Paiute Fault zone appears to have exerted important control over the localization of gold/silver mineralization into discrete shoots. Ore shoots localized by intense shattering may be isolated from one another by long strike lengths of relatively less-fractured, pre-ore stage vein filling (Buchanan, 1979, p.34-36,43). identification of areas where favorable concentration of stress creates a high density of open fractures in a fault will greatly increase the probability of finding a blind ore shoot.

Pre-ore alteration that imparts a brittle nature to the wall rocks promotes shattering and maintenance of open fissures, both of which are conducive to the formation of an ore shoot. Pervasive silicification, propylitization, alunitization or adularization give the wall rocks the ability to deform brittlely. Argillized rocks, on the other hand, deform ductilely and tend to form tight gouge-filled fissures (C.G. Clifton, 1984, pers. comm.). The ore-stage quartz-adularia veins in the ore shoots at the Las Torres mine (Guanajuato, Mexico) were created during the fracturing of pre-ore silicification and adularization (Buchanan, 1979, p.34-36).

A favorable structural feature in the Paiute fault zone, 1,200' west of drill hole P-84-1, may indicate a zone of high probability for an ore shoot. A 1,200' strike length of the Paiute fault separates hole P-84-1 and a gentle flexure, coincident with a fault intersection, in the Paiute fault. Significant gold/silver values and strong alteration intersected in drilling and anomalous low-grade values on the surface (avg. 0.011 OPT gold equivalent; 19 samples) occur in the area of hole P-84-1. A broad area of quartz stockwork veining 700' wide with significant gold/silver values (avg. 0.007 OPT gold equivalent; 191 samples) and strong silicification and propylitic alteration occur in the area 1,200' west of P-84-1. Outcrop between the two points is poor, but strongly propylitized and silicified outcrops occur. The anomalous mineralization, strong quartz stockwork veining and alteration observed may indicate a 1,200' strike length of the Paiute fault zone with continuous mineralization.

ORE TARGET CONCEPT

The Paiute property is currently being evaluated for deposits of high-grade vein or stockwork mineralization of small tonnage. Ore will probably occur in multiple shoots, mineable by underground methods. Ore grade in the shoots would probably average 0.3 to 0.4 OPT gold, 2 to 5 OPT silver, with grades greater than one ounce per ton gold being possible. A realistic target at Paiute would be a 100,000 to 400,000 ounce reserve of gold. A schematic model of Paiute-type mineralization and Buchanan's conceptual model of epithermal precious metal deposits can be found in figures 5 and 6.

RECOMMENDED 1985 PROGRAM

Based on results of exploration in 1984, continued exploration on the Paiute claim block is warranted. Surface sampling and drilling at Paiute indicate many of the characteristics of Comstock-type high-grade vein-hosted mineralization, including a) a broad zone of propylitized volcanics, b) an extensive, structurally-controlled mineralized zone, c) episodic stockwork quartz-adularia veins and breccias and d) high-grade gold and silver values.

To date, only a small portion of the lateral and vertical extent of the mineralized zone has been tested. Only the upper 150' along a 400' strike length of the vein system has been tested by drilling. The drilling indicates reasonable continuity for gold and silver-bearing structures.

Ore grade mineralization may be restricted to a narrow vertical range within a more extensive vein system. Surface exposures and drilling at Paiute may be testing the upper, non ore-bearing portion of the vein system.

Exploration work along the 1,200' strike length of the Paiute Fault zone west of hole P-84-1 indicates a zone of high probability for an ore shoot. A comprehensive program integrating detailed geologic studies, lithogeochemical sampling and follow-up drilling is recommended in the area west of drill hole P-84-1. It is proposed to step-out from the P-84-1 intercept along strike and down-dip to test for significant changes in the morphology and characteristics of the vein (plate V). Two 500' holes are proposed to test the mineralization 400' below the P-84-1 and P-84-4/P-84-5 intercepts, along with two holes arranged in a vertical fan array 500' along strike to the west.

Further detailed surface sampling is proposed for the extreme western 1,500' strike length of the Paiute Fault zone. Grab samples collected in this area in 1983 returned assays up to 0.100 OPT gold and 0.160 OPT silver. This area, rather than the central part of the fault zone, is proposed due to the relative difficulty of drilling presented by topography in the central portion.

Figure 5 - Buchanan's conceptual model of epithermal precious metals deposits
hosted in volcanics (Buchanan, 1981)

Ore stage veins outcrop as erratic narrow high-grade pockets of goldsilver mineralization

present erosion level

X x Pre-ore stage brecciation and qtz stock-X x work veining

Fault

Ore stage brecciation and fluid movement, boiling zone, qtz + adularia + gold veins superimposed over pre-ore stage qtz stockwork veins.

- 1) Local intrusive activity; heat source for geothermal convective system.
- 2) High-angle normal faulting (pre-ore); creates open fractures.
- Pre-ore stage propylitic alteration. Qtz deposition in fractures effectively seals the plumbing system. Hydrothermal solutions trapped, unable to precipitate ore mineralization because lithostatic pressure greater than hydrostatic pressure. Solutions unable to boil.
- 4) Subsequent fault movement. Greatest concentration of stress at flexure in fault plane; creates good system of open fractures. Hydrostatic pressure exceeds lithostatic pressure. Hydrothermal fluids move upward, boil, and precipitate ore minerals. Greatest concentration of ore minerals in the areas of best plumbing. Ore shoots thus confined to the area of the greatest concentration of stress on the fault plane. Brecciation along straight portion of fault above ore shoots; poor development of open fractures. Leakage of thin, erratic ore stage qtz + adularia + gold veins, possibly sub-ore grade due to small size and erratic distribution. grades of these veins may reflect grade of mineralization at depth?

A detailed geologic study of the Paiute Fault zone is recommended in order to determine areas of highest probability for ore shoots. Detailed surface mapping of faults, types and intensities of alteration, types and density of quartz veining and the chronology of cross-cutting relations in the veins will help identify additional drill targets.

The suggested program may be implemented for approximately \$130K.

PROPOSED 1985 BUDGET

The estimated budget for the proposed program is as follows:

	\$000
Drilling - direct cost, 1,650' @\$23/foot	37.9
- assaying 500 samples @12.50 each	6.3
Access, trenching	10.0
Geology and Supervision (6 man months)	40.7
Geochemistry - 6 man months	22.2
- assaying 700 samples @\$13.00 each	9.1
TOTAL	126.2

BIBLIOGRAPHY

Bonham, H.F. (1969), "Geology and Mineral Deposits of Washoe and Storey Counties, Nevada", Nevada Bureau of Mines Bull. No.70, 140pp.

Boyle, R.W. (1979), "The Geochemistry of Gold and Its Deposits", Geological Survey of Canada Bull. No. 280, 584pp.

Buchanan. L.J. (1979), "The Los Torres Mine, Guanajuato, Mexico: Ore Controls of a Fossil Geothermal System", M.Sci. Thesis, Colorado School of Mines; Golden, Colorado, 141pp.

Buchanan, L.J. (1981), "Precious Metal Deposits Associated with Volcanic Environments in the Southwest", Arizona Geol. Soc. Digest, Vol. 14, p.237-262.

Clifton, C.G.; Buchanan, L.J.; Durning, W.P. (1980), "Exploration Procedure and Controls of Mineralization in the Oatman Mining District; Oatman, Arizona", Amer. Inst. Mining and Metall. Engineers Preprint No. 80-143, 17pp, 24 figs.

Full, R.; Grantham, R. (1968). "Ore Deposits of the Republic Mining District; Ferry County, Washington", in J.D. Ridge (ed.), Ore Deposits of the United States, 1933-1967, Vol. 2, p.1481,1494.

Lausen, C. (1931), "Geology and Ore Deposits of the Oatman and Katherine Districts, Arizona", Ariz. Bur. of Mines Bull. No. 131.

Schrader, F.C. (1923), "The Jarbidge Mining District, Nevada", USGS Bull. No. 741, 86pp.

Tucker, W.B. (1935), "Mining Activity at Soledad Mountain and Middle Buttes, Mojave Mining District", Calif. Div. of Mines, Rept. No. 31, p.465-485

APPENDIX I

1984 PAIUTE DRILLING DRILL LOG EXPLANATION

VEINING

Qtz veining

Clay veining

Calcite veining

Pyrite veining

Weak stockwork veining

Moderate stockwork veining

Strong stockwork veining

STRUCTURES

Fractures

Flow foliations

Faults

Shearing

Contacts

ALTERATION

Weak

Moderate

Strong

	. !		ER	AT-	L	1	1	CC YTS: E. Cone	7	I	-1			_		CORE	SAMPLE	INTE
te oe Co. -1 5	SECTION	C.	ill.	PYL.	FRACTURING	VEINING		REC'Y/HOLE	- ILLING	NTERVAL	RECOVERED	CORE	SAMPLE	SAMP. INT.	ESTI- MATED			Aş
Paiute Washoe P-84-1 or	S	SILIC.	ARGILL	PROPYL	FRA	VEI		DESCRIPTIVE GEOLOGY] a	Z	RECC	Ou	S S	SAMP		[opt]		lop
PROJECT: LOCATION: THE HOLE NO: SHEET 1	10			17.	2000			Set casing with rock bit - no recovery			0							
Coates NQ M. H. Payne 10'		8037740000000000000000000000000000000000					1	10.0-66.0', purple, coarsely lithic, welded tuff; latitic. Propylitization on fracts and in lithic frags; weak but increasing slightly with depth. Limon on fracts		10	00							
CONTRACTOR: CORE SIZE; LOGGED BY; SCALE; 1" =	20 -					1	4	26-281		9	95							
- 1						77		26-28', minor sugary qtz veinlets forming wk stkwrk		1			9			BD		0.0
IF.	30							28 & 32', bleached pale gray, gougy material on borders	_	-	-	_	10	_		BD		0.0
CQLLAR GOORDINATES. ELEVATION: 5500' N	+0						to the sass			10	0		11			BD		0.0
STARTED COMPLET	0		***************************************				1											

عدا الـ إ	RATIO	w.L	_1	COMMENTS:	-	I	T_				CORE-	SAUPLE	INTE
Co.	, ا ز ا ز	Z. JRING	0	REC'Y/HOLE	: DY	RE BED	w _w	m'E.	- L	ESTI-	-		
Painte Washoe Co P-84-1 OF 5 OF 5 SILIC. ARGILL	PROPYL	FRACTURING	VEINING	DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. IN	* %	Au		Ag
CONTRACTOR: COSTES PROJECT: CORE SIZE: NQ LOCATION: LOGGED BY: M. H. PAYNEHOLE NO: SCALE: 1" = 10" SHEET 2 SHEET 2				66-101.9', gray-grn, welded, coarsely lithic tuff. Pervasive propyl; mostly as chlorite and clay. Soapy grn clay filling fracts. 87.7 to 93.8, strongly fractured, sheared, gougy in appearance. Weak limon and goeth stain on fracts		100							
5500' 225° -60° 4: 335'			7	101.9-112.0', sharp gradational contact to soapy grn-gray massive clay; locally sheared and gougy									
ATION: 55								50			BD		0.0
BEARING: INCLINATION: TOTAL DEPT				110	_			51			0.021		0.0
BEARING: INCLINAT TOTAL DE	嬲		1	112.0-120.4', sharp gradational contact to gray-grn,	-			52			BD		0.11
BEARIN INCLIN TOTAL				welded, coarsely lithic tuff. Pervasively propyl (chlorite + py). Trace hematite on fracts				53	_		BD		0.0
7 2 7 7				(entertie : py). Trace hematite on tracts				54			BD		0.0
F1 20			La	(7)				55			BD		0.04
77 F			7	120.4-134.5', same as 112-120' except for weak qtz				56			BD		0.0!
8 8 F			3	stkwrk veining with minor SiO ₂ flooding along vein		ļ		57			BD		0.0
8-20-84 8-30-84 9: 8-30-84 5:	****		7	margins. Vein qtz is gray, cryptocryst and glassy looking. Mod. goeth, limon, hematite				58			BD		BD
₹ 3 ∞ ∞ F			12	124.0-131.0', silicified patches.				59			0.007		0.26
ä <u>1</u> 30	##		3	\rightarrow \psi_1 \rightarrow \psi_2 \rightarrow		0.5	and the same of the same	60			0.038		0.6
ä L			3	19		85	9	61			0.022		1.15
£ 5 5 F			3	13,14				62		(0.015		1.03
STARTE				134.5-140.3', massive gray py clay (fault fissure?)				63		(0.370	4	1.39
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			1	134.5-138.8', up to 1% dissem py		100	100	54		(0.009		0.05
140				138.8-140.3', 1-3% dissem py Sharp contacts			1	55		0	0.001		30.0
1000	wille.			The state of the s				A					

-: -	1		ERA	rioni		-	L	COMENTS	7	I	T	I			CORE	SAMPL F_IN	
e Co.	CTION		, L	.21	FRACTURING	NG		REC'Y/HOLE	: UNC	RVAL	CORE	ER	N.	ESTI-			-
Paiute Washoe P-84-1	140	SILIC.	PROPYL	PYRITIZ.	FRAC	VEINI		DESCRIPTIVE GEOLOGY		* CORE	89	SAMPLE	SAMP. INT.	*	Au opt	1	loi
Àe de	50.					11111111		140.3-146.0', gray-grn, welded, coarsely lithic tuff. Py increasing to 2-3% @ 143.0-145.7'. Wk qtz+hem+py veining of sugary qtz @ 145.7-146.0'. Minor hem filling fracts 146.0-158.7', lt red-brn, welded, coarsely lithic tuf Zone of wk qtz+hem+py veining, locally forming wk stkwrk. 1-3% dissem py in veins and wall rock. Vein just fill fracts with no brecc. Ladder-type vein @	f	95		66 67 68 69 70 71		- 44 (4)	BD BD BD 0.001 0.002 0.001	0. 0. 0. 0.	. C . C . 1
OR: Coates : NQ Y: M. H. F '' = 10'	60.			#		111111		153.0'	-	93		72 73 74 75			0.001 0.001 BD BD	0.	1
CONTRACTOR: CORE SIZE: LOGGED BY: SCALE: 1":							9	lithic, welded tuff. Propyl restricted to lithic frags only.	-			76 77 78 79			BD BD 0.001	0. 0. BC	1 1 D
-	70-						1	68.7-179.9', sharp gradation into lt gray-brn, bleached, coarsely lithic, welded tuff. Slight increase in propyl. Hem assoc with wk qtz veining. Wk SiO ₂ flooding for 2mm bordering a vein @ 172.0'.				80 81 82 83			0.002 0.002 0.001	0.0	0
55 22 -6 -6 133	80-			000000000000000000000000000000000000000				1-2% dissem py with a reddish oxidized cast.				84 85 86			BD BD 0.001 0.001	BD BD BD)
# ELEVA BEARIN 1-84 INCLIN, 1-84 TOTAL	90	1					1	82.8-203.9', unaltered, black, fine-grained basaltic dike cut by minor calcite veinlets. Contacts marked by thin chilled zones. Dike contains traces of fine dissem py, particularly in the chilled zones.		100		87			0.001	BD	
STARTED: 8-29 COMPLETED: 8-30	00	i i					1	3.9-217.6', med gray-grn, coarsely lithic, welded tuff, wk sugary qtz+hem+py veining from 208.3' onward	-	98		98 99 00			0.002 0.001 BD	BD BD BD	

		I	ERA"		200		L	CCENTS: LVE. CODE		I	T	L			CORE	SAMPLE	INTE
Paiute Washoe Co. P-84-1 OF 5	SECTION 210	SILIC.	PROPYL.	PYRITIZ.	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	ESTI- MATED	Au [opt]		Aç
- 7												101			0.012		0.12
PROJECT: LOCATION HOLE NO: SHEET										100		102			0.001		0.0
PROJE LOCA Payne HOLE SHEET						\bowtie			_			103			0.002		0.0
2 7 2 2		##			鐖	XX		217.6- 222.5', It tan-gray welded, coarsely lithic		-		104			BD		0.1
, y	220							tuff. Minor silica-flooded pyritic patches. Wk				105			BD		0.08
S Pa					魕		x	qtz+barite veining	_ _	97		106		HE END	BD		0.10
E te						***	1	222.5-224.01, str qtz stkwrk (>25% of rock; 5-10% py	-	1		107			0.008		2.8
Coates NQ M. H. F				矋		- 1		224.0-236.7', It gray to tan welded, coarsely lithic tuff. Minor veinlets of clay+py to 234.5'. Wk	1-			108			BD		0.10
ı it	220							qtz+adularia (?) veining, milky white, vuggy,	-	-{					BD		BD
0 " = 1	230					- 1		slightly banded. Qtz veins occur from 234.5- 235.2'	.	-		110			BD		0.5
CONTRACTO	1			M			.	Clay+py veins from 235.2-236.7'.	1-	1		111			BD		BD
CONTRAC CORE SIZ LOGGED SCALE:	-			▓.		1	Y		1	1		112			BD		0.06
CORE							1					113			0.001		0.12
IF.	240							236.7-244.5', gray, welded, coarsely lithic tuff.	-	1		114			BD BD		0.05
IF.	246					1		Gradational contact. 240.0-244.5', wk qtz and qtz+hem+barite+py veining,	-	1	-	116			0.001	7 (7/11)	0.0€ 0.1¢
- IE						1		up to $\frac{1}{2}$! thick.	-	1		17	-		BD BD		
5500 225° -60° 335'	.						-		_	1		18			BD		0.18
NY I WE								244.5-261.2', It grn-gray, welded, coarsely lithic tuf	-		- 1	119	-		0.001		
#IF.	250			ļ.		1	1	250.5', 1" wide clay-filled fracture parallel to	-	1		20	-	***			0.07
z o alt	250				1	`		welding and narrow qtz+hem veinlet	-	100		21	+	*** ****	0.001		30.0
BEARING: NCLINATIO					1					}		22	+		0.001		0.05
X 8 X X					1						1	23	11.11		0.001		0.12
13 % DE						1	1			-	1	24		220	0.006	100	
E.									1-2			25	- 1	A	0.001		0.24
m ml	66	88			-	1	-	2(1.0.0//.01				26	-	F-H-1	0.001		0.15
29-8					1		14	261.2-266.0', gradational color change to med grn-gray 262-264, 1" wide qtz+py vein with 1/8-1/4" wide	;	1		27		100 miles	0.111		1.09
					L	_	4	silica-flooded zone on vein margins		1		28			0.002		0.16
\$ w	#	8	#		***	200	2	266.0-266.8', dk gray silica-flooded, str yuggy.				29			0.181		1.9:
Ö Ü E2	7 d						1	qtz+py+adularia veining 266.8-287.3', same as 261-166 except w/o patches of		85		30		1	0.001		0.16
E E E				-	٦		'	silic. 266.8-271.2' wk qtz+py and clay+py veining.	_		1	31			BD		0.16
COLLAR COORDINATES. N E STARTED: 8- COMPLETED: 8-	0.0	es.				1		270', argentite in qtz? 277.5', thin clay+py+goeth fract filling 279.3', 2" dk gray strongly silic patch w/ irreg boundaries		100							
7	011								- 1	1.	ı	1	1	1	1	I.	

		-	ERA	_	I.		CI NTS /E. C			<u> </u>	_			CORF	ENABLE	INT
.03	NO N	1			RING	(2)	REC'Y/HOLE:	N-K	SED SED		W. C	>,+:	ESTI-	1	1.	1
Paiute. Washoe P-84-2	O SECTION	SILIC.	PROPER	PYRITIZ	FRACTURING	VEINING	DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. IN	MATED %	Au [opt]		A lo
PROJECT: LOCATION; e HOLE NO; SHEET 1							Set casing with rock bit - no recovery		0							
Coates NQ M. H. Payne . 10'	10.						10.0-28.2', dark red-brn, welded, coarsely lithic latitic tuff. Propyl along fracts. Rock typically contains silic lithic frags. (reworked material?)		93							
CONTRACTOR: CORE SIZE: LOGGED BY: SCALE: 1" =	20						18.7', 1" fracture filling, clay + chlorite 24.1-28.2', fractures with limon and MnO ₂ staining, clay + chlorite fillings		95							
	30 -					1	28.2-30.2', tan gouge material 30.2-31.5', cream-color str bleach, faint tuff text. Mod limon stain on fracts 31.5-35.2', sharp gradation to red-brn, welded, coarsely lithic tuff, the same as 10.0-28.2'		70							
55 99 1	40-						35.2-60.2', sharp depositional contact into a similar tuff unit of lighter color. Wk to mod. limon on	1			78	1		0.001		В
ELEVATION: BEARING: INCLINATION: TOTAL DEPT	.			100 March 100 Ma		1	fracts, abundance of silicified and/or pyritized lithic frags. Calcite veinlets from 58.5-60.2'.		91	1	79 80 81			BD BD 0.001		0.0
E 5	50-					4 10			90	18	33 34	-	100	0.001 0.001 BD		BI 0.
E 8-30-84									12	18			C	0.001		0.(B[
~ 01-0	0-					1	60.2-97.5', sharp gradation to bleached, welded, coarsely-lithic tuff. Lt grn-gray where wkly propyl,	1		18	8	+	0	.001 .001 BD		BC BC
STARTED:				***		1	med gray-grn where mod, bright blue-grn where strong Limon-stain on fracts. Minor colorless granular qtz vlets, 60.2-61.3'.	8	9	19 19	2			.001 BD .001	(0.C 0.C
<u></u>	0 1		SA.			L				19	3		0	.001		BC

~		1 -		ERA	_	!		-	CC NTS YE. COME	T	T	7		-	_		CORE	SAMPLE	INT
co.		×				RING			REC'Y/HOLE:	9	1	SED SED			`.	ESTI-		1	1
7.0	2 6	SECTION	Ö	7 1	TIZ	D L	ING			43	ERV	N N	CORE	SAMPLE	υZ.	MATED	Au		A
PROJECT: Paiute LOCATION: Washoe	P-84-2	70:	SILIC.	ARGILL	PYRITIZ.	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	DRI	INTERVAL	RECOVERED	00	S S	SAMP. IN		[opt]		loi
: ×	N	= "		1900			1	3		7		89		1					
JEC	ET					****	Y	3											
PROJECT:	HOLE NO:	-						3			1	00					34		
		80-		i		##	1	7											
	Payne	[]					2	13/13/3		1	-	-		- 1				ģ., .	
es .	÷	:					155	H				93							
מז	10. T	-		I DOOS				1		1	-	\dashv							
	Σ-		1				733	3		1	1	96							
CONTRACTOR:	ء ج	90					55	21131313			-	-			1			1	
CONTRACTO	SCALE: 1"			9 0-2006			1			1	10	00			- 1				
N E	SCALE	-						9		1									
889	의			\$1100	5	256	27	2-							- 1				
		106	ı				1	15	97.5-118.2', moderately bleached, welded, coarsely	_									
	E		1				1		lithic tuff with faint texture. Variable propyl, color is lt grn-gray (wk) to med. gray-grn (mod).	_	-	-	2	09	_		0.001		В
- 0 •	- -	-					1		2" thick olive-grn clay + (alunite?) seam parallel		1	1							
5500	380								to foliation @ 100.5' and a pink (alunite?) patch at 101.1'		1.			-					
1		10									19	8	-						
ž Ž	DEPTH						1	1					1						
I N Z	2 3 5					/				1				-					
ELEVATION: BEARING:	TOTAL		***			1	1	١.	1/ / 110 01		1	L	_	-	4				
w a ±	1		***				3		16.6-118.2', tiny glassy looking qtz veinlets		1	-	21	17	+	_	0.001		В
	E	20					3] '	18.2-138.9', shear zone. Lt to med grn clay gouge containing brn & gray silicified frags of tuff.									1	
34	7 P						3		Patches of massive silica-flooding from 120.8-126.91				1						
E &	2 E						30		Pink-tinted, sheeted, glassy qtz veins appear at 126.9-132.2 and 133.0-134.0'. Strong silica-flooding										
MA M	8			7 m	***		3		cut by str. qtz stockwork veining, and (>25% veins				22	2			BD		BI
OR O	WIL.	30-					1		in rock) breccia filling 132.2-133.0' and 134.0-				22		1		0.001		BI
COLLAR COORDINATES	ETED					1	1		138.9'. Color of rock dk gray where strongly silic.	_		-	22		+		0.001		BI
AR ART	COMPL			曩			33					-	22		+		0.012	-	0.!
א א				8			33					-	22		+		0.002		BE
ŭ		10		E003	ea Par	77	13				91	1	22	_	-		0.002		0.1
		× 100									7	21		1_		. 10	.002	1	0.1

2	-	٠.,	ERA		1	-	l	CO	-	T	1_	L			CORE	SAMPL	F_INT
Paiute Washoe Co., P-84-2 of 6	SECTION	SILIC.	ARGILL.	PYRITIZ.	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	ESTI- MATED	Au [opt]	1	A
, 20 E	- 140							138.9-157.4', sharp contact into 1t brn-gray bleached, welded, coarsely lithic tuff with faint welded text.		95		229 230			0.00		B
PROJE LOCAT HOLE !	-							Wk qtz + py + hem veining throughout with wk stkwk veining at 138.9-143.4', 150.7-151.8' and 153.6-]		231			0.00	2	В
	:					31	6	154.2'. Most py occurs dissem at outermost edge of		94		232			0.00	4	В
s Payne	150					1:	PA	veins. Veins are both granular and glassy types				233			0.00	1	0.
Pay						77	V					234			0.00	1	0.
tes.						Z	19			98		235			0.00	1	0.
Coates NQ M. H. F				-		-	W					236			0.001	1	0.
1							1	157.4-158.8', shear zone, hvy lim + clay fract filling				237			0.001		В
CONTRACTOR: CORE SIZE: LOGGED BY: SCALE: 1" =	160							158.8-188.5', med gray, welded, coarsely lithic tuff, slightly bleached, with propyl lithic frags. Volc	D								
Z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3						1		text slightly more pronounced. Wk qtz ± hem ± py				240			BD		В
CORE	-							veining, clay + py veining and qtz + clay + limon		100	12	241			BD		BI
	170							veining. Qtz veins predominantly granular textured with only minor glassy veins		100							
5000										99	12	46	1		0.001	 	0.:
5500 160° -60° 380												47	+		0.001		BI
عاتے ہے ۔	186									ı		-	_				
G: C: CTION: DEPTH:											2	49	1		0.004	1	0.0
E 2 7 0 1	1					K	H			100	_	50			0.001		BE
ELEVATION: BEARING: INCLINATION: TOTAL DEPTH						XGSSSO	2			-							
F	196				1	100	E 1	88.5-203.7', same as 158-188' except It gray with		1	2	53	-		BD		0.0
F					1	4	स	grn propyl lithic frags, and increased bleaching.		87		54			0.001		0.
78-6			8		4	16		Wk to strongly silicified, dk gray patches w/ 5% py		0/	2	55			0.001		0.
30.					- XX		2	locally. Rock contains ½-1% dissem. py. A shear zone			2	56		(0.016		0.2
* * * * * * * * * * * * * * * * * * *	***		9555£ 55		1		3	with 1-2% py and sharp contacts @ 191.1-191.4'. Wk granular hairline qtz veins 189.5-191.1' and 198.1-				57		(0.001		0.0
2 2	00				1	1	1	203.7' and wk stkwk 191.4-194.1', incr with depth.				58			.001		0.0
E E						1	V	194.1-196.0', dk gray str silic bx zone w str atz +	_	_		59			BD		BC
N STARTED: COMPLETI					1	1		hem + py + adul stkwk, silic clay-gouge, 2-3% py				60			BD		0.0
COLLAR COORDINATES. N STARTED: 8-30 COMPLETED: 8-31)	Y			1	00		61	_		.001	BD	BC
9						1	1	-			_	52	-			0.001	BD
L2	1 01	I SHOW	m. 12)		MA.	_	1		L		26	63			BD		0.C

Z	7	AL	TER	TIO	M	-	T	CONTENTS - TAKE CORE	T	T	7			-	2005		
ute noe Co., +-2 6	SECTION	SILIC.	ARGILL.	PROPYL.	FRACTURING	VEINING		REC'Y/HOLE:	ILLING	INTERVAL	ECOVERED	SIZE	* REC'Y.	ESTI-	1	SAMPLE	E INT
Paiute Washoe P-84-2 or 6	210	SIL	AR	PR	FR	VEI		DESCRIPTIVE GEOLOGY	P.R.O.	Z V	RECC	3	SAMP		loptl		lo
PROJECT: LOCATION; HOLE NO; SHEET 4								203.7-242.0', It gray, welded, coarsely lithic tuff	_			26	+		0.001		0.
PROJECT: LOCATION HOLE NO: SHEET 4	-					A		with trace dissem py, bleaching and flow foliation. Zone of wk scattered qtz + clay ± hem ± py veins,	_	1	00	26	_		0.001		0.
PROJEC LOCAT HOLE N	:							qtz ± py veins, and clay ± py veins, filling fracts.	-	_		266	-		BD		0.
	.							WK qtz + py stkwk veining and assoc propyl and	-	4		267			0.001		0.
Payne	226					1		silica-flooding @ 225.8-226.6' and 241.5-242.0'	_	-		268	-		0.046		1.
S d								Scattered dk patches of silicification @ 232.7-233.0 and 239.2-239.4'. Gradual color change to med gray	¥	- !	99	269			0.001		0.
Coates NQ M. H.	-							240-242'.	_	-	-	270			0.001		0.
35 5.0			#			4			-	+	-	271	_		0.001		0.
# TIF	220					-12	2		-	-		272			0.001		0.
CONTRACTOR: CORE SIZE: COGGED BY: SCALE: 1" =	230						3			-		273			0.001		0.
CONTRACTO CORE SIZE: LOGGED BY; SCALE: 1"						Y	3			1	_	274			0.003		0.
CONTRA CORE SA LOGGED SCALE:	-						Arrive			-		275			0.001		0.
0 0 0 0							15			- 10	0	276			0.001		0.
IC	240						1			-		277			BD		0.
IF:	249					Y	2			1		278			BD		В
F						鹼	30	242 0-243 5! fault zone to au atractic		1	_	279			BD	*	0.
F	.					~~	55	242.0-243.5', fault zone, tr py, str clay stkwk veins		1	_	280			BD		0.
Z O AIL	256					,	DA DA	243.5-253.5', med gray, welded, coarsely-lithic tuff w/tr dissem py. Wk dk gray qtz veining and silic. patches 243.5-244.0'. Wk clay veining @ 244.0-248.9' Clay + qtz + py veinlet @ 253.0'. Gradational contact		97	7		Į.				
× = = =						1	1	252 5-275 71				285			BD		0.
IF.	260							253.5-275.7', unaltered, welded, coarsely-lithic tuff; dk gray, with fresh biotite, becoming bleached 263.4-266.9'. Wk py ± qtz veins and thin qtz + clay veins scattered @ 266.0-266.8' and 268.9-275.7'. Zone of med. grn-gray altered tuff from 266.9-268.9'		100							
9 9 2	70				1	1					-	202			001	-	_
90 a === 2	19						1		-		-	293	\dashv		0.001		0.
N STARTED: COMPLETE								F	-		-	294	-		0.001		0.
T T T T T T T T T T T T T T T T T T T					1	1			-			295 296	-		.001		0.
	8				1]2	75.7-284.0', med gray, altered, welded, coarsely lithic tuff with thin, wk qtz + py vlets. Gradat'nl upper contact				270			.001		0.

~ ~ ~	-1			TER	. A.	~		-	1_	Comments VE. Cons	1-	I	1-	I	_		CORF	ENMPLE	INT
PROJECT: Paiute LOCATION:Washoe Co., HOLE NO: P-84-2 KHET 5	JO.	SECTION	SILIC.	ARGILL.	PROPYL.	PYRITIZ.	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP INT	ESTI- MATED	Au [opt]		A
7: P	11	280			***						7_		t	299			0.001		0.
TIO TIO	11-			#			0.000			201. 0. 200. 21. 5- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	_	-		300			0.001		0.
I See See See See See See See See See Se	1								Boson	284.0-289.2', fault, high clay content, volc texture obscured. Horse of unsheared med gray tuff at 287.0-288.3'									
Payne	IE2	9G						1		289.2-336.0', med gray, altered, welded, coarsely	-	1	H	304			0.001		0.
Pe	E	-						1		lithic tuff with <1% dissem py. Scattered qtz and qtz + clay veins @ 290.4 (granular qtz), @ 292.8-		100		305			0.001		0.
CONTRACTOR: Coates CORE SIZE: NQ LOGGED BY: M. H. SCALE: 1" = 10'	3	00						\		293.7' (glassy qtz), @ 303.5' (qtz + py), @ 313.7' (qtz + clay + py), @ 315.3'' (½ glassy qtz, ½ banded @ 328.7' (qtz + hem + py); clay or clay + hem + py veins @ 302.6-336.0')								
COR	1.1.3	10						. / .				100		2					
5500 160° -60° 380	F					1		-			-	-	\vdash	317			0.001		0.
BEARING: 10 INCLINATION: -(TOTAL DEPTH:	E ₃	20						,				67		517			0.001		0.
	E3:	36						7			_		_	323	-		0.002		0.
COLLAR COORDINATES. N STARTED: 8-30-84 COMPLETED: 8-31-84	31	46						1000		336.0-337.4', wk shear zone, wk clay vlets 337.4-368.8', same as 289-336' except for zones of dk gray strong silic up to 4'' thick parallel to flow foliation of welding. Tr dissem py in rock. Wk yel to gray clay or clay + py vlets from 343.0-368.8'		100							
<u> </u>	139	5d			1			1				98							

Paiute Washoe Co., NV P-84-2 OF 6 SILIC. ARGILL. PROPYL. FRACTURING	VEINING	DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE NUMBER	SAMP. INT.	ESTI- MATED %	Au lopt)	WPL	A
PROJECT: Paiute LOCATION: Washoe HOLE NO: P-84-2 SHEET 6 OF TITITUS SEC	× +		1		98						
966 - 360				10	00						
CONTRACTOR: Coates CORE SIZE: NQ LOGGED BY: M. H. SCALE: 1" = 10' LOGGED BY: M. H. SCALE: 1" = 10' LOGGED BY: M. H.	Copyer	368.8-374.0', fault zone; sheared material, same as 289-336'		9	96						
CONTRA CORE SI LOGGED SCALE:	1	374.0-380.0', same as 289-336'		7	78						
4G: 160° ATION: -60° DEPTH: 380'											
BEARING: INCLINATION: TOTAL DEPTI											
E 8-30-84 : 8-31-84										a.	
COLLAR COORDINATES. N STARTED: 8-30-84 COMPLETED: 8-31-84								,			

>	11	-		ATIC		T		COM-5TS: CON-5-				_			COSE .	AMPLE	INT	
, co. ,	SECTION		اند	ان	FRACTURING	92		REC'Y/HOLE:	RVAL	ORE	CORE	PLE BER	INT.	ESTI-	Au			
Paiute Washoe P-84-3	o sec	SILIC.	ARGILL	PROPYL	FRACT	VEINING		DESCRIPTIVE GEOLOGY	DRILLING	* CORE RECOVERE	८इ	SAMPLE	SAMP. INT	*	lopti		10	
PROJECT: LOCATION: HOLE NO: SHEET 1	سيلسي							Set casing with rock bit - no recovery										
Payne	10-		#					10.0-15.5', gray-grn, bleached, altered, welded,		\dashv	-	349			BD		0.0	
S P	F	ı						coarsely lithic tuff, wk limon on fracts		99		350			0.002		0.0	
Coates NQ M. H. F	- 1		8				1					351			BD		BI	
0 N N 0	ΕI							15.5-23.6', sharp contact, gray-grn, massive clay,				352			BD		0.	
	20							strong stkwk of massive qtz, 1/8-3" thick, veins				353			0.001		0.1	
CONTRACTOR: CORE SIZE: LOGGED BY: SCALE: 1" =	[20]							slightly vuggy, show signs of brecciation and re- cementing w/ clay + qtz, limon & jaros on fracts		97		354			0.012		0.1	
CONTRACTO CORE SIZE: LOGGED BY: SCALE: 1"						₩		cementing wy cray + qtz, rimon & jaros on rracts				355			0.006		0.2	
N F E C C C C C C C C C C C C C C C C C C	-					₩		23.6-30.4', str qtz stkwk veining in gray-grn, bleached				356			0.001		0.1	
CORT COPE LOGG SCAL						***		altered, welded, coarsely lithic tuff, sheared and				357			0.001		0.0	
	30-	-4	_#			₩		mod silica-flooded @ 26.0-27.0', massive clay @ 29.0-29.6-30.4 silic assoc w/ str stkwk,				358			0.001		BE	
						***		30.4-65.8', bright blue-grn, altered, welded, coarsely -		80		359			0.001		0.0	
-						\otimes		lithic tuff, volc text very faint, str silic assoc				360			0.001		0.0	
	-					\otimes		w/ qtz stkwk veining, some adularia in veins, ‡"				361			0.001		0.0	
5370 226° -25°				(S#8)			\otimes		bleached gray envelope on some vein margins, mod				362			0.151		6.9
71	40-			*		\otimes		hem, goeth, limon, and jaros on fracts 63.2-65.8', grades to bleached, gray-grn color				363			0.021		0.7	
ELEVATION: BEARING: INCLINATION: TOTAL DEPTH				*		\otimes		oj. 2 oj. o , grades to breached, gray grin coror		83		364			0.002		0.2	
T Y O	:					\otimes						365			0.001		BD	
> 2 - 3	- 1					▩			_	_		366			0.003		0.0	
ELE BEA INCL		8				▩						367			0.001		0.0	
	50-					▩	-		1	00		368			0.003		BD O.C	
1)						\boxtimes	1			-	:	369			0.002		0.0	
ATES: 8-31-84 9-2-84						\bowtie			_			370			0.001		0.0	
2 3 5	-					\bowtie			_			371			0.001		0.0	
¥ 3 8 6						×	-		_	78		372			0.114		0.1	
ة ة	60-					×			_	′°	_ 3	373	_		0.001		0.0	
ETED:						\bowtie			_			374	_		0.001		0.1	
								그 그 것 같아 하나 하나 아이들의 나는 경기 없어 나를 다 다 했다.	<u> </u>	00		375	-		0.001		0.1	
N START COMPL		2003					-		_	-		376			0.001		0.2	
COLL						\otimes				37		377			CBD		BD	
THE REAL PROPERTY.	70		inta		h.ppsii	\propto			1	-	13	78	1		0.001	-	BD	

- IL A-SEATION -	COMPTENTS: - CORE	1					-coa E	STUDIE INTI
Painte Washoe Co., P-84-3 OF 4 SECTION SILIC. ARGILL. PROPYL. PROPYL. FRACTURING	DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	TI-	lot V
PROJECT: LOCATION: HOLE NO: SHEET 2	65.8-84.0', qtz stkwk veining in blue-grn altered, welded, coarsely lithic tuff, volc text preserved; trace dissem py in veins and wall rock, wk hem + clay veining up to 3/8"		37	<u>-15</u>	379 380 381		0.001 0.001 BD	0.1
Payne 08			80		382 383 384 385		0.001 0.033 0.002 0.002	0.2 0.1 BC
08: Coates NQ	84.0-99.8', pale grn-gray, bleached, welded, coarsely lithic tuff. 84-89.3', heavy limon on fracts. 86.7-99.8', tr dissem py in veins & wall rocks. 89.3-		00	100	386 387 388		0.001 0.001 0.001	0.C BD 0.0
CORF SIZE: LOGGED BY: SCALE: 1" TITITITITI	99.8', wk to str stkwk, vuggy, granular qtz + adul + py veins up to 1/8" thick. Silicified 1" borders of larger veins and areas of str stkwk veining. Wk clay + limon veins		84		389 390 391		0.001 0.001 0.001	0.0
100	99.8-108.5, olive-gray becoming It grn, bleached,	h	00		392 393 394		0.003 0.008 0.001	0.1
5370 226° -25° 4:225'	altered, welded, coarsely lithic tuff. 99.8-100.4', minor soapy grn epidote + chlorite on fracts. 100.4-103.3', wk brecc'n of rock, filling by massive gray, tan, grn clay		98	3	395 396 397	-	0.001 0.002 0.012	0.0 0.1 0.2
BEARING: INCLINATION: TOTAL DEPTH	108.5-121.9', It yell-grn becoming pale gray-grn, bleached, welded, coarsely lithic tuff, volc text oblitereated 108.5-110.0'. Cut by minor qtz veins to mod qtz stkwk. 108.5-110.0', mod clay veining.		-	3	99		0.003 0.001 0.012	0.2 0.0 0.0
120	110.0-112.4', wk clay veining. 110.0-113.0', str pervasive silica-flooding. 110.1-110.9' & 111.8- 112.4', sheared		90	4	01 02 03	1	0.002 BD 0.001	0.06
8-31-84 9-2-84	121.9-127.6', fault. Silic fault bx with gray & red-brown rounded clasts of massive qtz and silic tuff. 124.6-127.6', bleached, lt gray sheared tuff.		8	4	04 05 06 07		0.003 0.008 0.001	0.16
E 130	127.6-134.9', sharp contacts, red-brn, altered, welded coarsely lithic tuff, wk propyl on fracts, wk grn and tan clay veining on fracts	6	7	4	08		0.001	0.02 BD 0.07 0.20
START	134.9-145.2', gradation to bleached, lt gray, altered, welded, coarsely lithic tuff, volc text more distinct, (cont'd)	_	0	4	11		BD 0.001	BD 0.08

,			CTION						91	-	COMMENTS: REC'Y/HOLE:	N.	RE	",	, we	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ESTI-	€08E	SALIDI E	T				
Painte	Paiute Washoe P-84-3	140	SILIC.	ARGILL.	PROPY	PYRITIZ	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. IN	*	Au (opt)		lop					
Ë	ä ä	~	: "	3000							134.9-135.7', minor qtz + clay veins w/ wk silic on		20		414	-		0.008		0.0				
PROJECT	HOLE NO:	-							.		margins, 142.0-145.2', wk clay veining	8			415			0.001		0.1				
0	0	SHEET									145.2-158.3', med gray, altered, welded, coarsely	1	1		416			0.001		0.0				
۵.	9 H	11-									lithic tuff, Mod tan clay + py veining.		1	-	417	*****		0.004		0.0				
	Payne	1	150								148.8-149.3', dk gray patch of str silicif. 153.0-155.4', very vuggy, wk to mod qtz + py stkwk	-	1		418	1		BD		0.0				
S	P	F							4		veins up to 3/4" thick, 1% py dissem.		94		420			BD BD		0.0				
Coates	±.	- 1	-					Š		_					421			BD		0.0				
S C	Σ	2								4			1	-04-	422			0.001		0.3				
ä		"E	16Q						-	1	158.3-162.5', red-brn, altered, welded, coarsely	-	1		423			0.002		0.0				
0 .	3 ;	-15							1	V	lithic tuff, minor clay veins and qtz veins	1			424	a message of		0.01	10.	0.1				
CONTRACTOR:	LOGGED BY:	ALE:									162.5-169.7', bleached, lt gray, altered, welded, coarsely lithic tuff; wk qtz + clay + py veining		80											
0 0	C	SE								1		1111111		4.41	427			BD		0.0				
		1	178					1	1	1			59		428			0.001		0.0				
		E						200		1.	169.7-174.0', red-brn, altered, welded, coarsely lithic tuff; volc text quite distinct		59											
.02	0,0	25				1			1	4	174.0-179.7', bleached, It gray tuff same as 162-169'				431			BD		BD				
537		21									175.7', clay and lesser qtz vein		98											
ت	ä	TOTAL DEPTH:	188								79 7-18/ 01 mod ones, alberted and a series		90											
0 :	110	- LEP											79.7-184.0', med gray, altered, welded, coarsely lithic tuff, color change due to incr in hem content						- 1	- 1		1		
× ×	ž	7/-													1	84.0-196.5', It gray, altered, welded, coarsely				-1			a a	
ELEVATION:	INCLINATION:	0									lithic tuff, color change due to decrease in hem		99											
	-	E.	ad						1		content, volc text well-preserved. 188.2-194.5',													
		IE	9							1	minor qtz + clay + py veins. 188.9-196.5', tr dissem py in veins and wall rock. 194.5-195.0, mod qtz													
	78	# E								1	stkwk veining.					- 1			1-1					
*	31-8							×	4	1														
7	8-3	7								1	196.5-225.0', It grn-gray, altered, welded, coarsely		100					- 1						
107		öFa	200								lithic tuff. 196.5-207.0', tr dissem py. 199.7',		100			- 1								
300	ö	# F							1		clay seam, ½" thick. 209.0-210.0', hem + clay vlets. 215.5-216.5', propyl on fracts only. 224.5', hair-							- 1						
x	Y S	a E									line pyrite veinlets				- 1			- 1						
GOLLAN COONDINATE	STARTED.	COMPL							1	1														
3.									1	1			89											
2		2	10		-	-1	1	-	_	_		1		1	1	ı	1							

Co., N/	SECTION	TER/		TURING	VEINING		CE	NT-	-		-		YE. REC'Y/HOL	: . E:	SVAL	SRED ERED	E E	ERE	NT.	ESTI- MATED	COR	MPL*	1
Paiute Washoe P-84-3	216	ARGILL	PROPYL.	FRAC	VEINI				DESCRI	PTIVE	GEOL	DGY			DRILLING	* CORE	CORE	SAMPLE	SAMP. INT	*	Au (opt)	Ð	lc
Coates PROJECT: NQ LOCATION: M. H. Payne HOLE NO: 1" = 10' SHEET L	226					p / d										95 93 100							
ELEVATION: 5 BEARING: 2 INCLINATION: -																							
COLLAR COORDINATES. N E STARTED: 8-31-84 COMPLETED: 9-2-84																							

2	1	TER	ATION	10		COMENTS :YE. COS		1 0		—	,		CORE	Mrt.	1
P-84-4 OF 4	SILIC.	ARGILL.	PROPYL.	RACTURIN	VEINING	DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	ESTI- MATED %	Au [opt]	3.0	1
B 4	S	4	مام	1	>			α			**				+
= - E															
Payne HOLE NO: SHEET 1		П			П										1
MOLE T															1
a F.								0							
è Eio	1					Set casing with rock bit in badly fractured ground -		0							1
. 11-	1					no recovery									1
. O E		П													١
¥ 2			1		П										
= -20	1														1
SCALE: 1			88			21.0-27.0', strongly altered, bleached, welded,	-			457			0.009		7
# # E						coarsely lithic tuff, lt grn-gray, becoming lt gray		57		458 459			0.001	-	1
SCALE:				2363		@ 25'. Mod qtz ± hem stkwk veining, wk clay veining				460	-		0.001		+
						27.0-30.0', sharp color change to bright blue-grn. Mod	-			461	\neg		0.001		1
E 30	1332		*************************************		-	qtz stkwk veining, wk clay veining. 30.0-35.0', color and alteration similar to 21-27'	-	100		462			0.001	-	1
IF	П					except wk incr to mod py; wk qtz veining @ 34-35',				463			0.001		†
- 1		į.			7	wk clay veining 30-34'		-		464			0.004		1
272'	1				17	35.0-57.6', sharp change to variably propylitized, py-		43		465			0.009		1
#110	50051		1883		13 þ	ritized and silicified, welded, coarsely lithic tuff bright blue-grn (strong propyl) to med gray-grn (mod		-		466			0.009		
DEPT					14	propyl) color; strong silic 35-39.4', wk patchy				467			0.001		
TOTAL DEP					1/4	silic 39.4-57.6'. Wk qtz stkwk, veins are massive,		99		468			0.003		1
TOTAL DEPTH					1	glassy type to 48.3', then predominantly colorless, vuggy, granular types, with tan clay ± barite		77		469			0.001		1
풀 위투					14	filling centers. Wk yellow clay veining. Py < 1% @	\dashv	-		470	-		0.001		4
50.					111	35-39', 1-3% @ 39-57'.	_		-	471	-		0.001	4	+
F	#		20		18	35.5', large broken, gray, glassy, qtz vein 52.5-56.4', heavy limon + hem mud in fracts	-	91	_	472	-		0.001		+
18-					11/3	57.6', 1/8'' qtz + hem + py vein	$\overline{}$			473 474	-	-	0.001 BD		+
77	#				W)		-	-	_	475	-		0.001		\dagger
20	2006 3006		888		70	57.6-95.0', altered, It gray=grn, qtz veined, welded,	\dashv	1		476	-		0.002		+
ë €60 ·						coarsely lithic tuff. Wk patchy silic assoc with	\dashv	+		477	-		0.001	-	1
STARTED: COMPLETI						qtz stkwk at 76.7-78.1', and 83.0-86.4'. Wk to mod	$\overline{}$	1		478	-		0.003		
ARTED:			65569		X	stkwk of banded, vuggy, granular qtz ± adularia ± hem ± py ± clay veins from 64.1-78.1', 80.0-81.0',	-	100		479	_		0.001		1
5 8					Mi	83.0-86.4'. Wk qtz ± clay, or clay veins filling	\neg			480			0.003		
IE .					14	parallel fracts throughout the remainder (cont'd)		1		481	1		0.001		1

	CCNTS			·				199,
11 1 1 1 1 1 1 1 1 1	REC'Y/HOLE:	-		-			ORE	enter the
e Co. ction	REC T/HOLES	2	" B			F E	STI-	
te ooe ooe ooe oo oo oo oo oo oo oo oo oo		4 38	VEN	CORE	P.L.BER	UZ M	ATED	
Paiute Washoe Co., P-84-4 OF 4 OF 4 ARGILL. PROPYL. PROPYL. PRACTURING	DESCRIPTIVE GEOLOGY	DRILLING	* CORE	SN	SAMPLE	SAMP. INT.	lopti	10
a 3 a 70		1 -	~			K.Y.		
PROJECT: LOCATION: HOLE NO: SHEET 2 TITTT	Dissem py occurs both in veins and wall rock	-			482		0.00	0.
A T E E	63.5', parallel qtz veins 65.5', larger parallel qtz veins				483		0.00	A CHIEF COLUMN TO A COLUMN TO
PROJE LOCAT HOLE T	67.0', qtz + adularia (?) vein				484		0.00	0.0
	77.5', dk gray qtz vein			-	485		0.00	0.0
Payne 108	81.5', qtz + adularia vein	-	100		486		0.001	0.0
	86.5-95.0', parallel qtz veining				487		0.003	BE
Coates NO M. H.					488	4	0.003	0.1
S ON E TE TO THE STATE OF THE S					489		0.002	0.0
					490	-	0.004	0.0
ë ; = [=904]					491		0.002	BC
CONTRACTOR: CORE SIZE: COGGED BY: SCALE: TITITITI			61		192		0.001	0.0
8 8 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1	193		0.002	0.1
CONTRA CORE SI LOGGED SCALE:	95.0-102.3', altered, welded, coarsely lithic tuff.		-	1	194		0.002	0.0
	Mottled It grn-gray and red-brn. Localized silic			1	195		0.210	1.0
E100	and minor granular, vuggy gtz veins 95-97' and		27	1	196		0.007	0.3
E	101.6-102.7'. Py variable and inc where veins occur		- 1	14	97		0.002	0.1
E E E E E E E E E E	102.7-148.3', bleached, altered, welded, coarsely		100	4	98		0.001	0.2
22.	lithic tuff. Scattered, wk. atz veins filling		100	4	99		0.003	0.0
-58	parallel fracts @ 105.8-106.9', 108.7-109.6',			5	00		0.018	4.8
# # F 110	114.1-128.8', 132-133, 139.2-144.0', and 146.5- 148.3'. Narrow zones of wk to str qtz stkwk veining			. 5	01		0.004	0.0
BEARING: INCLINATION: TOTAL DEPTH	and localized silic on vein margins @ 102.7-103.31.		70	5	02		BD	BD
BEARING: INCLINAT TOTAL DE	108.1-108.7', 117', 144.0-146.5'. Otz veins are			5	03		0.001	BD
BEARIN INCLIN	white to med gray, vuggy, broken. Dissem py incr	t		5	04		0.002	0.0
	with intensity of qtz stkwk. 120', vuggy qtz + py vein containing small amounts			5	05		0.001	0.1
120	of a metallic, dk steel-gray, cubic sulfide with	_	100_	_ 5	06		0.004	0.1
78	poor cleavage, possibly digenite (Cuas) or strom-	_		5	07		0.001	0.0
	eyerite (CuAgS)?. Zones of shearing @ 121.7-123.01		93	5	80		0.002	0.0
16.5	and 144.0-146.5' 143.5', fault	_	1	5	09		BD	0.0
E = 9-2	144.0', fault			5	0		0.017	0.0
â <u>a</u> 130			10Q_	5	1		0.001	0.1
		_		51	2		0.001	BD
STARTED: 9-2 COMPLETED: TITITITIES: BE THE STARTED OF THE START				51			0.001	0.2
Z Z COFF			90	51	4		0.001	BD
.3		_	95	51			0.022	BD 0.16
140		1	1	51	61		0.001	0.16

150 148.3-165.4', med gray, altered, welded, coarsely 11thic tuff. Less than 1% dissem py. 148.0-151.8', why gray, waxy clay veining. 151.8-163.1', mod stawk veining a) vuggy, white to 1t gray, granular qtz + py ± barite, b) thin, qtz + hem + py veins, c) clay > qtz veins, up to 1'', minor brecc'n. 163.1-165.4', shear zone, clay gouge with chunks of gray chalced qtz 165.4-214.2', med gray, altered, welded, coarsely 165.4-214.2', med gray, altered, welded, coarsely 165.4-214.2', med gray, altered, welded, coarsely 166.1-178.1', dk gray, str silic, brecciated w/ mod qtz stawk, 1% dissem py 166.1-178.1', wk stawk of granular, vuggy qtz + py + barite, minor brecc'n of wall rocks and silication of silication breccin of wall rocks and silication of silication breccin of wall rocks and silication of silicati	— = —		_	L	1				CORES	MPLE	IN.
156 148.3-165.4', med gray, altered, welded, coarsely 111 116	7	z <u>z</u>	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	MATED			Į.
148.3-165.4', med gray, altered, welded, coarsely lithic tuff. Less than 18 dissem py. 148.0-151.8', wk gray, waxy clay veining. 151.8-163.1', mod stkwk veining a) vuggy, white to lt gray, granular qtz + py ± barite, b) thin, qtz + hem + py veins, c) clay y qtz veins, up to 1'', minor breec'n. 163.1-165.4', shear zone, clay gouge with chunks of gray chalced qtz 170 180 180 180 180 180 180 180	Pa Wa		7			517			0.002		0.
148.3-165.4', med gray, altered, welded, coarsely lithic tuff. Less than 18 dissem py. 148.0-151.8', wk gray, waxy clay veining. 151.8-163.1', mod stkwk veining a) vuggy, white to lt gray, granular qtz + py ± barite, b) thin, qtz + hem + py veins, c) clay y qtz veins, up to 1'', minor breec'n. 163.1-165.4', shear zone, clay gouge with chunks of gray chalced qtz 170 180 180 180 180 180 180 180	F 0 0			95		518			0.002		0.
148.3-165.4', med gray, altered, welded, coarsely lithic tuff. Less than 18 dissem py. 148.0-151.8', wk gray, waxy clay veining. 151.8-163.1', mod stkwk veining a) vuggy, white to lt gray, granular qtz + py ± barite, b) thin, qtz + hem + py veins, c) clay y qtz veins, up to 1'', minor breec'n. 163.1-165.4', shear zone, clay gouge with chunks of gray chalced qtz 170 180 180 180 180 180 180 180	CAT CAT					519			0.001		0.
148.3-165.4', med gray, altered, welded, coarsely lithic tuff. Less than 1% dissem py. 148.0-151.8', well of thin, qtz + hem + py veins, c) clay yet zero, up to lithic tuff. Less than 1% dissem py. 148.0-151.8', we gray, waxy clay veining. 151.8-163.1', mod stkwk veining a) vuggy, white to lt gray, granular qtz + py ± barite, b) thin, qtz + hem + py veins, c) clay yet zero, up to l'', minor brecc'in. 163.1-165.4', shear zone, clay gouge with chunks of gray chalced qtz 170 180 180 180 180 180 180 180	P R HOI					520			0.001		0.
veining a) vuggy, white to lt gray, granular qtz + 524 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		150 148.3-165.4', med gray, altered, welded, coarsely								1	0.
veining a) vuggy, white to lt gray, granular qtz + 524 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ayr	lithic tuff. Less than 1% dissem py. 140.0-151.0',		100		522			0.001		В
Shear zone, clay gouge with chunks of gray chalced qtz 160	S	wk gray, waxy clay veining. 151.8-163.1', mod stkwk									0.
Shear zone, clay gouge with chunks of gray chalced qtz 160	ate	by ± barite. b) thin, qtz + hem + py veins, c) clay							******		0.
Shear zone, clay gouge with chunks of gray chalced qtz 160	S & E	> qtz veins, up to 1", minor brecc'n. 163.1-165.4",	-						Low many		0.
lithic tuff, dk grn-gray where silic. 165.4-166.1', dk gray, str silic, brecciated w/ mod qtz stkwk, 1% dissem py 166.1-178.1', wk stkwk of granular, vuggy qtz + py + barite, minor brecc'n of wall rocks and silica- flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 205.25 331 0.001 532 0.001 533 0.001 535 0.001 537 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.001 0.003 0.001 0.003	11 11	104 883 883 XX		71		11.00		. 22			0.
lithic tuff, dk grn-gray where silic. 165.4-166.1', dk gray, str silic, brecciated w/ mod qtz stkwk, 1% dissem py 166.1-178.1', wk stkwk of granular, vuggy qtz + py + barite, minor brecc'n of wall rocks and silica- flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 205.25 331 0.001 532 0.001 533 0.001 535 0.001 537 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.001 0.003 0.001 0.003	CTO	qtz qtz							Control of the contro		В
lithic tuff, dk grn-gray where silic. 165.4-166.1', dk gray, str silic, brecciated w/ mod qtz stkwk, 1% dissem py 166.1-178.1', wk stkwk of granular, vuggy qtz + py + barite, minor brecc'n of wall rocks and silica- flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 205.25 331 0.001 532 0.001 533 0.001 535 0.001 537 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.001 0.003 0.001 0.003	7 2 5 ::		-	37	1					1	0.
lithic tuff, dk grn-gray where silic. 165.4-166.1', dk gray, str silic, brecciated w/ mod qtz stkwk, 1% dissem py 166.1-178.1', wk stkwk of granular, vuggy qtz + py + barite, minor brecc'n of wall rocks and silica- flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 205.25 331 0.001 532 0.001 533 0.001 535 0.001 537 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.001 0.003 0.001 0.003	AL OCG		-								В
165.4-166.1', dk gray, str silic, brecciated w/ mod qtz stkwk, 1% dissem py 166.1-178.1', wk stkwk of granular, vuggy qtz + py + barite, minor brecc'n of wall rocks and silica- flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 194 100 100 100 100 100 100 100	8 8 3 8		900			23 77 / - 50			CONTRACTOR OF		В
mod qtz stkwk, 1% dissem py 166.1-178.1', wk stkwk of granular, vuggy qtz + py + barite, minor brecc'n of wall rocks and silica- flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½" thick with baring filling vugs 100					1				* ***	1 1 1 1 1 1	0.
+ barite, minor brecc'n of wall rocks and silica- flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½" thick with baring filling vugs 194 196 100 534 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.003		mod qtz stkwk, 1% dissem py					-	ia ai			0.
flooding. Locally stkwk becomes mod. Py decreases with depth. 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 535 0.001 537 538 BD 0.001 0 541 BD 0 04541 BD 0 040 040 040 040 040 040 0			-			533					_B
178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia 537 538 80 0.002 80 541 80 0.001 0 541 80 0.002	5 . 0			100						- 1	В
178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½'' thick with baring filling vugs 178.1-181.1', wk yellow or tan clay vlets 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia 537 538 80 0.002 80 541 80 0.001 0 541 80 0.002	226 226 27 27	EMPRIME 0001000 1000 N N N 1				535			0.001		0.
What to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½" thick with baring filling vugs 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia + py ± hem ± tan clay veins up to ½" thick with baring filling vugs 181.1-214.2', zone of qtz stkwk veining, range from wk to strong, gray to white granular, qtz + adularia 538 BD 0.001 0.00	711	186 178.1-181.1', wk yellow or tan clay vlets	-								-
199 S41 BD 0	0 O da			1		538					0.
199 S41 BD 0	I A A										0.
199 S41 BD 0	EAR CLI	DOC (100 (-								0.
3 d	Alem Mark Control		-		100	Transition I	-				0
8 8 L		194		94	-	542			0.002		0.
1 1 Programme (2000 MARK 2010 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	78			,					0.002		0.1
3	3 2 2				1	544					0.0
545 0.001	9 6					545					BI
545 0.001 0.001 0	M m				1	546					0.
9 9 100 547 BD 0	, DRO			100	9	547			BD	The state of the s).(
00 3 47 BD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 9 9				1	548					B[
000 547 BD 0.001 0 549 549 0.001 0 650 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AR AR								0.001		0.1
	글 호 호 이				9	550		200	BD).(
98 551 BD O	.5	210		98	1	551		1	BD	10).(

228 229 214.2-232.9', altered, welded, coarsely lithic tuff. Med gray, to dk gray @ 229.5'. Gray gouge zone (fault) and sheared tuff 223.7-225.0'. Wk qtz + clay stkwk stringers @ 218.7-220.2'. 221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins	214.2-232.9', altered, welded, coarsely lithic tuff. Med gray, to dk gray @ 229.5'. Gray gouge zone (fault) and sheared tuff 223.7-225.0'. Wk qtz + clay 556 0.001 218-222.7', wk clay > qtz veins 221.8-222.7', wk clay > qtz veins 225.0-225.7', wk clay > qtz veins 229.8'. 2/8''. clay > qtz + bem vein 559 0.002 559	0
214.2-232.9', altered, welded, coarsely lithic tuff. Med gray, to dk gray @ 229.5'. Gray gouge zone (fault) and sheared tuff 223.7-225.0'. Wk qtz + clay stkwk stringers @ 218.7-220.2'. 221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins 229.8', 3/8" clay > qtz + hem vein 232.9-233.5', unaltered black basaltic dike 233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 100 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone	214.2-232.9', altered, welded, coarsely lithic tuff. Med gray, to dk gray @ 229.5'. Gray gouge zone (fault) and sheared tuff 223.7-225.0'. Wk qtz + clay stkwk stringers @ 218.7-220.2'. 221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins 229.8! 2/8!! clay > qtz + bem vein	
Med gray, to dk gray @ 229.5'. Gray gouge zone (fault) and sheared tuff 223.7-225.0'. Wk qtz + clay stkwk stringers @ 218.7-220.2'. 221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins 229.8', 3/8" clay > qtz + hem vein 232.9-233.5', unaltered black basaltic dike 233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone	Med gray, to dk gray @ 229.5'. Gray gouge zone (fault) and sheared tuff 223.7-225.0'. Wk qtz + clay stkwk stringers @ 218.7-220.2'. 221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins 229.8! 2/8!! clay > qtz + bem vein	0
(fault) and sheared tuff 223.7-225.0'. Wk qtz + clay stkwk stringers @ 218.7-220.2'. 221.8-222.7', wk clay > qtz veins 225.0-225;7', wk clay > qtz + hem vein 232.9-233.5', unaltered black basaltic dike 233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16'' red hem + clay veinlet 266.1-266.7', gouge zone	(fault) and sheared tuff 223.7-225.0'. Wk qtz + clay stkwk stringers @ 218.7-220.2'. 221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins 229.81 2/81 clay > qtz + bem vein	
221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins 229.8', 3/8" clay > qtz + hem vein 232.9-233.5', unaltered black basaltic dike 233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone	221.8-222.7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins 229.81 2/81 clay > qtz + hem vein	-
225.0-225:7', wk clay > qtz veins 229.8', 3/8" clay > qtz veins 229.8', 3/8" clay > qtz + hem vein 232.9-233.5', unaltered black basaltic dike 233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone	225.0-225:7', wk clay > qtz veins 225.0-225:7', wk clay > qtz veins	
229.8', 3/8" clay > qtz + hem vein 232.9-233.5', unaltered black basaltic dike 233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone		
233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 100 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone	100 555	0
233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 100 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone		
233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone		-
233.5-254.5', dk gray, welded, coarsely lithic tuff. Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers 89 100 254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone	232 9-233 51 unaltered black basaltic dike	
254.5-272.0', sharp gradation to red-brn, welded, coarsely-lithic tuff. Tr dissem py 263.5', 1/16'' red hem + clay veinlet 266.1-266.7', gouge zone	Localized mod to strong patches of silic up to 4" in diam. Wk calcite stringers	
coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 266.1-266.7', gouge zone	. 100	
	coarsely-lithic tuff. Tr dissem py 263.5', 1/16" red hem + clay veinlet 92	
	100	

	1		ERA		_1	-		CC NTS 'E. C	-		_		_		ORE	PLE	
4	NO			١١	URING	0		REC'Y/HOLE:	ING VAL	ERED	E E	ER	N.Y.	ESTI-			
P-84-5	SECTION	SILIC.	ARGILL	PROPYL	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	*	Au opt		
SHEET 1	01							Set casing with tri-cone bit - no recovery		0							
M. H. Payne 10'							4	11.0-29.5', It gray-grn, bleached, welded, coarsely lithic tuff with dk gray silic, angular frags and propyl lithic frags to 15.8'. Sheared tuff to 29.2'. Gray gouge zone to 29.5'		66							
SCALE: 1" =	0-									99	-1					7	
3 %										100	-	500			0.001		
1 30	0-{_					***		29.5-32.2', massive white qtz, broken w/ clay + limon		ł	_	592	-		0.001		1
I	**	*				****	1	+ goeth on fracts, str silica-flooding on vein margi 32.2-37.5', lt blue-grn tuff. Sheared 32.2-35.6',	ns	-		593 594	-		0.003		1
- E						Ļ	11	gray, glassy qtz veins w/ wk patchy silic on borders		77	_	595	-		0.001		1
266	1	2					2	Wk, irreg qtz stkwk 35.6-37.5', wk limon on fracts		-		_	-		0.001		H
						77	23	37.5-41.2', gray gouge zone. Wk pervasive limon +	\dashv	66		596 597			0.001		1
HI DEPTH	7					90	33	jaros stain	\dashv			598		_	BD BD		H
TOTAL DEPTH						\otimes	7	41.2-47.1', olive-grn to med gray-grn tuff. Wk to mod	\dashv	1		599			0.001		1
3 7						$\widetilde{\gamma}$	33	stkwk of white, granular qtz veins to 43.6'. Sheared	\dashv	93	_	600		-	0.007	_	F
			_[[]	#		\otimes		gouge zone 43.6-44.1' with 2-3% py.	\neg	77	_	601			0.002		r
		П					8	47.1-50.3', bright blue-grn, silic tuff; mod stkwk, 1-3% py, str limon + jaros on fracts	-			602			0.001		1
50			m			\otimes	1	50.3-71.2', Med gray-grn, altered, welded, coarsely		80		603			0.002		(
1 1						\otimes		lithic tuff. Zone of qtz stkwk veining, wk to str;	\neg			604			0.025	,	ľ
3-84							1	vuggy, granular, with vug-filling barite or gypsum,	\neg	t	_	605			0.002		(
101						\otimes		up to $\frac{1}{2}$ ". 60.0-68.1', qtz + clay veins. 68.1-71.2',		89		606	_		0.009		
F					₩	X		wk qtz ± barite ± clay veins. Wk limon + goeth on		1		607	_		0.004		C
# E 60				齫		1	4	fracts. 58.3-60.0', 1-3% dissem py in veins and walls. <1%				608			0.004		0
COMPLETE						1		py to 71.2'		- 1		609			0.001		0
T A						1		67.0', dk gray qtz vein cut by white qtz vein	-	oct		610			BD		0
2 3 1	1					1				86	_	611			0.007	,	0
1 L			10			77.				-,+		612	-		0.001		0

II	T	CC NTS 'E. C	_	L		. =	-	ORE	· (PLF	11
aiute ashoe Co. N -84-5 or 4 section section SILIC. ARGILL. PROPYL. PRACTURING	VEINING	DESCRIPTIVE GEOLOGY	DRILLING	* CORE	CORE	SAMPLE NUMBER % REC'Y./	ESTI- MATED			A lo
		71.2-72.7', sharp irreg contact to tan tuff w/ 2% py		76		613		BD		0.
Ü Ö Ö E		72.7-76.2', bleached, lt grn-gray, altered tuff, wk				614		BD		0.
L F F F F F F F F F F F F F F F F F F F		granular qtz veining		1		615		BD		0.
PEDJECT: LOCATION: HOLE NO: SHEET 2		76.2-79.3', purple-brn, altered tuff. Tr propyl of		98		616		BD		0.0
	h	lithic frags. Minor white clay veins				617		0.001		BI
Payne 98	1 4	79.3-89.7', sharp gradational contact to lt grn-gray,				618		BD		BI
e le		bleached, altered, welded, lithic tuff. Mod fract'g. Wk clay veining		95		619		BD		BI
se : E		wk clay verning				620		0.001		BI
0 - 10 - H					_	621		BD		BI
CO N N N N N N N N N N N N N N N N N N N					-	522		BD		0.0
COMITRACTOR: Coates CORE SIZE: NQ LOGGED BY: M. H. SCALE: 1" = 10' TITITITITITITI		89.7-92.2', zone of massive, yellow-grn clay, locally		92		523		BD		ВІ
CONTRACTO CORE SIZE; LOGGED BY SCALE; 1' TITITITI		shows shearing 92.2-106.0', sharp, gradation to dk purple, mod				524		0.001		0.0
		altered tuff. Wk propyl of lithic frags. Bleached				525		0.001		0.0
CORT		remnants of biotite flakes				526		BD		BI
Eroa I		96.0-96.8', sharp irregular contacts to olive-grn	_		_	527		BD		0.0
F'04		str altered tuff with high clay content		91	_	528		BD		BI
				ויפ		29		0.001		0.0
-	V					30		BD		0.0
266	N	106.0-119.5', It gray, bleached, mod altered, welded,				31		BD		0.0
10 - 1		coarsely lithic tuff, with yellow-grn propyl lithic		1		32		BD		0.0
# # F F 1 9	1	frags. Bleached remnants of biotite flakes in tuff		81		33		BD		0.0
RING: INATION AL DEPT		matrix		٠. ا		34		0.001		0.0
BEARING: INCLINATION: TOTAL DEPTH:	11	111.5', cream-colored clay veinlet		1		35		0.001		0.0
BEAL BELL						36		BD		BE
				İ		37		0.001	10111	0.2
E120	4	119.5-125.0', sharp contact, med gray, wkly altered		99		38		0.001		BC
4 4 5	1	tuff. Slightly bleached biotite flakes. Minor yellow		1	6	39		0.001		0.1
3 8 8 1	. 3	clay veins, tr red, clay + hem veins		1		40		0.001		0.0
9-3-84	12 13	125.0-126.3', sharp contacts, fault, hem clay gouge 126.3-149.8', med gray, mod alt'd, welded, coarsely			_	41		0.001		0.0
Z W 3900\$3700	13	lithic tuff. Wk propyl of lithic frags. Wk qtz stkwk				42		0.003		0.0
STARTED: COMPLETED: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1	veining to 141.5', granular, colorless qtz ± limon	\neg	. 1		43		0.001		0.0
STARTED: COMPLETI	13	± chlorite. 136-141.5', qtz + clay veins with granul		84		44		BD		0.0
\$ 3 g -	1	text. 136-149.8', clay veining increases, massive		1		45		BD		0.0
- z z 5 SF	1/4	soapy, gray veins. 141.5-149.8', decreasing alter'n and appearance of gray bleached remnants of biotite	_			46		BD		BD
5 E. 110	141	flakes	-	100	and the same of the same	47		BD		BD

	_	-			1	- E1		-	1	I		COENTS		1	- 1					ORF	APLT	T
ø	e Co. N	2	4	SECTION			Γ.	١.	FRACTURING	VEINING		REC'Y/HOL	E: 071	INTERVAL	* CORE	CORE	SAMPLE	SAMP. INT.	ESTI- MATED	Au		,
Painte	Washoe	-84-	OF		SILIC.	ARGILL	PROPYL	PYRITIZ	FRA	VEIN		DESCRIPTIVE GEOLOGY	2	Z	REC		SA	SAM		[opt]		10
	3	Φ.	2	140		6886	***		84	1			_	\Box			648			BD		В
PROJECT:		HOLE NO:	SHEET											1	00							
		Payne	-	150		888			888	77,	100	149.8-151.6', sharp contacts, fault, gray gouge zone	_	1	1		653			0.001		В
S		Pa	1			ast t	7000		BR886			151.6-152.8', med gray, altered tuff, minor qtz	_	7			654			0.001		0.
Coates		÷	_	-								152.8-174.6', It gray, bleached, altered, welded,					655			BD		0.
Coa	NO	ΰ								1		coarsely lithic tuff 152.8-154.2', wk clay veining			1		656			BD		0.
			"							'		154.2-159.2', wk yellow and red, clay + qtz + py +			98		657			BD		Bi
101	ü	ä	= 18	160								FeOx veins			70		658			BD		0.
CONTRACTOR	CORE SIZE:	_	- 10									159.2-162.1', tr qtz + clay, chalcedonic veins 165.9-174.6', wk, thin clay + FeOx veins		-	-							
200	COR	LOG	SCALE:												87							
				170						1				+	\neg							
			IE											1	00							
-			- 1	-		9000					1	174.6-186.0', med gray, wkly altered, welded, coarsel	у				665			BD		BI
5370	1640	28°	266				₩			1	14	lithic tuff. Becomes med gray-grn at 179.2-186.0'.			_		666			BD		0.
5	-	1	#	180			##			1		Wk clay + hem/clay/calcite + adularia veinlets at			93		667			BD		0.0
;		O	all			###			*		1	186.0'. 1/32" thick, granular qtz veins, 184.0-186. 178.0', calcite + adularia vein	"_		_		668	1		BD		0.0
EVATION:	ق	AT	3							1	14	183.0', calcite + adularia vein			92		669			BD		0.0
>	2	- X	3	-					쮎	1				1			670			0.001		0.
ELE	BEA	Z	2						##	OX		186.0-187.3', bleached to lt gray color;	-	1			671			0.005	2	0.0
			it	190						₩		187.3-188.3', sharp contact, fault, gray gouge 188.3-208.7', med gray, str altered, welded, coarsely	-	4			672			0.014	*	0.1
			1	. , ,			m			₩		lithic tuff. Str qtz stkwk and bx filling. Qtz +	_	_	53		673			BD		0.0
	95	_	-		1					***		adularia + py, glassy, chalcedonic to 197.0'. Qtz	_	_		_	674	_		0.001		0.1
K		9-3-84	9-3-84							***		stkwk decreases to mod at 197-198.3'. Fault with	_	_			675			0.001		0.1
7		73	7							\boxtimes		gray gouge 198.3-198.6'. Tiny calcite veinlets	_	_	88		676			0.003		0.1
5	w	01	اة	200								198.6-208.7'.	-	_	00		677			0.001		0.0
C003		ED:	ETE								4			-	\dashv							
COLL X R COORDINATES	z	STARTED:	COMPLETED:											1	00							
्र	_		11-	210							P	208.7-211.7', sharp gradational contact to (cont'd)	-	1					1		l	

>		TER	-	-												COR.	. MPL.	
Mashoe Co. NV P-84-5 oF 4	SILIC.		PROPYL.	PYRITIZ.	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	Y/HOL E:	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	ESTI- MATED %	Au opt		
Payne Hole No. Payne Hole No. Payne Hole No. Payne No. P	0	A	4	d.		1	4 000	dk red-brn, altered, welded, coarsely lithic t 211.7-220.6', same as 188-208, except no veining local, dk gray patches of silic.	g. Wk		100							-
M. H. Pa								<pre>220.6-228.2', dk red-brn, mod altered, welded, c lithic tuff with wk propyl of lithic frags. At a 1" wide yellow, white and red qtz + clay ± h limon vein, vuggy, glassy, chalcedonic</pre>	225.1		92		690			BD		
¥ 01-		alani.						228.2-246.41, mde gray, str altered, wkly bleach	ned,		80							
SCALE: 1"								same as 188-208', except no veining. Wk local, gray silic patches 2-3" wide. Wk clay veining	, dk		97							
88. 1999 1999	9						1				100							
INCLINATION: -58° TOTAL DEPTH: 266	0						4	246.4-266.0', dk red-brn, mod altered, welded li tuff same as 220-228'. Bleached remnants of bi flakes. 262', minor calcite veinlet	thic otite		7							
3-84	D																	
STARTED: COMPLETED:																		The second secon

; -	_11	_		RA		1	-	1	CI NTS	/E. C	-	_		-		,	ORE .	IPLE	
	NOI				Z.	URING	9		R	REC'Y/HOLE:	LING	ERED	E E	LE	Y.	ESTI-		7	
a)	O SECTION	01118	ARGILL	PROPYL	PYRITI	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY		DRILLING	* CORE	CORE	SAMPLE	* REC'Y./ SAMP. INT.	*	Au [opt]		lot
LOCATION: Washoe Payne HOLE NO: P-84-6	NHEET 10	>							Set casing with rock bit - no recovery			0							
R: Coates NQ M. H.	F 20							1	13.0-22.8', It gray, altered, welded, coarsel tuff, with wk propyl of lithic frags. Wk Mr limon on fracts. Sheared from 21.3-22.8'.			90							
CONTRACTOR: CORE SIZE: LOGSED BY:		8888						Q	22.8-30.2', grades to pale blue-grn, soapy-te altered tuff. Wk limon on fracts. Local sil	lic and		93		717			0.001		0.1
0 0 1 3	F 30						\otimes		wk qtz veining at 25.8-26.1'. Fault, gray g 26.1-28.0'	gouge at				718 719			0.018		0.1
	JE IL				-000e		\bigotimes		30.2-32.6', sheared, It gray, bleached tuff, 32.6-37.5', same as 28-30' except tr py, wk j		\dashv	94		720 721			0.001		0.1
5370' 164° -26° 215'	E								stain on fracts	Jarosite	_	-		722			0.001		0.1
÷	- - 40			灦		X	X	i	37.5-38.6', It grn-gray, sheared, alter'd tuf			00		723 724			0.007		0.3
ELEVATION: BEARING: INCLINATION:									38.6-62.5', bright blue-grn, altered, welded, lithic tuff, becomes It blue-grn with depth	n, alter-	\dashv	98		725	-		0.001		0.0
EARING: CLIMATI									nating wk to mod qtz stkwk veining, very vu white, granular qtz.		7	-		727	1		0.011		0.1
ء ۲ م س	E 50					888	X	B	38.6-42.6', heavy clay + lim + hem on fracts 42.6-45.1', qtz veins up to 5/8' thick			00		728			0.008		0.0
48	1					***	$\frac{1}{8}$		51.1', white qtz vein w/ dk grn chlorite in 54.6-59.2', sheared tuff	clusions	-	00		730	-		0.001		0.1
1-84 1-84 1-84	F						\otimes		59.2-61.9', minor qtz veins, up to 1" wide		二	_	7	732			0.002		0.1
F - 1	E		t to the second		░.	2200	×	1		-	\dashv	-	- 7	733	+		BD 0.004		0.0
D: 7.50	60											94	7	35			BD		0.0
LLAR LOBIN N STARTED: COMPLETE							Z.	1	62.5-72.2, med grn-gray, alt'd, welded, coars		-	_		36			BD		0.0
ST X Z	E					Š			lithic tuff, becomes gray-grn at 70.9'. 64. and 69.1-70.9', str bx & silic assoc w/ stk		1	00		37	-		BD		0.0
3	1						7	2	70.9-72.2, wk clay & hariline qtz veins			89		38	-	-	0.001		0.4

	N N		1		1	ER,		T	T	V	Comments.	VE. CURE			1				CORE	MPLE	INTE
Paiute	o	9-48-	0F 4	SECTION	SILIC.	ARGILL.	PROPIL.	FRACTURING	VEINING		DESCRIPTIVE GEOLOGY	C'Y/HOL E:	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	ESTI- MATED %	Au loptl		V
	Was	P-8	1	70			#	18						00		740			BD		0.0
Ë	O	Ö	1				攤	22			72.2-82.1', gray-grn sheared tuff. Wk to mod 1	imon on	-1	89		741			BD		0.0
PYCJECTE	Y	W 1	ויייןייי								fracts. Bleached to lt gray at 78.0-80.2'. St					742			BD		0.0
	00,	HOI.	7								silica-flooded 79.4-80.2'. Fault w/ sheared of	gray		100		743			BD		0.0
			11	80							gouge at 80.2-82.1'	Í				744			BD		0.0
		Payne	L	804	П					3				78		745			BD		BE
10		Pa	1							25	82.1-93.7', sharp contact to med gray to med gr	rn-gray,		, 0		746			BD		0.0
Coates		Ŧ.	111							6	altered, welded, coarsely lithic tuff. Sheare					747			BD		0.0
Coa		M.			- 1			0 888		1	w/ sharp contacts 85.7-87.5'			83		748			BD		0.1
ä	_	_ 11	11	90	1						87.5-91.5', qtz veins, 3/8'', w/ silic assoc, 91.5-93.7', mod goeth and limon on fracts	tr py				749			0.001		0.1
ن	ü	5 = 5	15	٦							31.5-33.7 , mod goeth and rimon on tracts			91		750			0.001		0.0
:	CORE 27	103653	יייין	20		#		251		1	93.7-96.3', Fault. Lt grn-gray, bleached, weath massive clay, mod to hvy lim + goet + Mn02 on 96.3-99.0', med gray tuff, same as 82.1-93.7' s at 97.5-98.3' w/ mod lim + goet + Mn02 stain	n fracts sheared			-						
			1-	P						7	99.0-110.5', grades to bleached, It grn-gray tu limon on fracts. Wk clay veining. Wk stkwk w/		_	98							
			t	1	888			ZXXXX	1	4	silic on vein borders at 103.0-104.5. Vuggy,		_		-	756			BD		0.1
5370'	.491	-26°	\ <u>-</u>	-	888				7.		granular qtz. Single 3/8" gray qtz vein at 10 Tr py to 110.0".		-			757			0.001		0.C
		1: 2		10				.						97		759			0.001		0.0
7		<u> </u>			204				77		110.5-118.0', grades to lavender, altered, weld		-								-
.;	ABING:	TOTAL DIPTE	F		*					16	coarsely lithic tuff. Incr hem in matrix. Grainto bleached, It gray tuff with wk silic ass		_	89		761 762			BD		0.0
Sai.	4	7	F							1	clay > qtz stkwk veins at 112.3-118.0'	SOC W/							BD		0.0
ű	42	i C	F		**				7	1			-		-	763	-		BD		1
			F1:	20	1						118.0-128.8', sharp contact to lavender, altere		-1	98		764	-		0.004 BD		0.0
			1	1						1	welded, coarsely lithic tuff. At 119.1' become bleached gray tuff, w/ pervasive wk limon on		-			/05			80		10.0
	ā	78.	1				1				119.1-121.3', minor clay + qtz veins		1	73		1					1
	-	9-4-84	-								121.3', pink alunite (?) patch		-		-	768			0.001		0.0
1	w (-						70	1 1	121.3-128.8', wk clay vein, 127.8', wk qtz vei					769			0.008		0.0
		1. D.:	-1	30					\bigotimes	X !	128.8-135.1', same bleached, gray tuff as 119-1			I		770			0.003		0.1
172		11 U	11-	-						1	except silic and bx assoc w/ mod granular qtz to 131.3'. 1-2% dissem py in walls and veins	Z STKWK		94		771			0.001		0.1
r		4.4	-	17	773			***	\Rightarrow	1	NAMES OF THE PARTY OF THE CONTROL OF THE PARTY OF THE STREET OF THE STRE					772			0.002		0.0
*	7	2	F			j		BOOK	X		135.1-147.5', same bleached, gray tuff, abrupt ance of glassy, chalced qtz veins rather than	appear-				773			0.003		0.0
2			F.,	ام					11	1	lar whom of 135 1-136 8! 1-29 discom ov	(contid)		100	1	774			BD		0.1

ż		~ · · ·	RA		. 1		CO (TS:	i	_					DRE	PLE	
Co.,	z	SILIC.	T		SING	VEINING	REC'Y/HOLE:	DRILLING	* CORE	CORE	SAMPLE	SAMP. INT.	ESTI- MATED	Au [opt]		A:
LOCATION: Washoe HOLE NO: P-84-6 SHEET 3 OF		SIL	PRC	PYR	FRA	VEI	DESCRIPTIVE GEOLOGY		×							
Ma P-	-140					11	Wk brecc'n and silic assoc w/ mod qtz stkwk				775	_		BD		0.0
7 NO:							140.5', veining becomes weaker				776			BD		0.0
HOLE NO:	-						143.8-147.5', pervasive limon stain on fracts 145.8', 2" thick massive clay seam				777			0.001		0.0
LOCAT HOLE SHEET	E					\bowtie			100		778			0.001		0.0
The Same Call		2123	*		***	T	147.5-173.0', same gray, bleached tuff. Wk limon on				779			0.001		0.0
Payne	150					M	fracts. Qtz is vuggy, granular type to 160.4'. Qtz ± hem ± limon at 160.4-164.5'				780			0.001		0.1
Pa	-						164.5-173.0', bleached remnants of biotite flakes				781			0.006		0.0
NQ M. H.	-					M					782			0.003	_	0.1
NO. H	-										783			0.002		0.0
	1					M			88		784			0.001		BD
;: :	-160					M					785	-		0.001		0.0
37.E	E										786			BD		0.0
CORE 97E: LOGGED BY: SCALE: 1" =	E								55		788			0.001		0.0
	E170															-
	F	- 3					173.0-181.3', Fault. Lt gray gouge zone to 178.1'.			_	791	_		BD		0.0
	1					1	1% dissem py. Sharp contact. 178.1-181.3', dk gray,			_	792		-	0.001		0.0
164° -26° 215'	1- 1		١.				variably silic, mod bx, str stkwk veined zone w/		62	_	793			0.001		BD
1. 2. 1.	1-180					****	2% py.			_	794	_	-	0.004		0.0
ON:	1-100				4	***	181.3-201.3', unaltered dike, sharp contact, fine-		_	_	795	-		0.001		0.0
Z Z Z					The same of		grained, black basaltic dike, str fracts with mod limon stain. Limon becomes heavy on fracts and		40							
0 1 0	E						pervasive in rock at 184.1-192.5'. 184.0', white calcite amygdules and thin vlets		-	1	1		1			
	E190	-	-				192.5-201.3', dike unstained, fresh		75							
9-4-84	1.1.1								80							
w	-200	1		-				1-	_	-	805	1	1	BD		0.0
STARTED:	יחיקיי	988				\boxtimes	201.3-207.7', dk grn-gray, altered, welded, coarsely lithic tuff w/ propyl of lithic frags. 201.3-202.6, mod qtz + hem stkwk veins w/ wk bx		100							
7 5 6	14-11						textures 207.7-211.4', sharp gradation, med gray, alt'd (cont'd)	1	98	3		1	1 44		47+	

EXTINCE CONTINCE CONTINCE AND AND CONTINCE CONTINCE AND CONTINUE AND C	· " ' - TTE								CC NTS					工 -		-	ORE		CORE	CAMPLE INTE	
welded, coarsely lithic tuff w/ wk limon on fracts 70. Control of the coarsely lithic tuff w/ wk limon on fracts 71. I	· · ·	z		ER	^	SNI			CCNTS	- Samuel Barbara		REC'Y/HOLE:	VAL	ERED	E S	EBE	NT.	ESTI-			
welded, coarsely lithic tuff w/ wk limon on fracts 1.00 1.		SECTIO	ILIC.	ARGILL.	PROPYL.	PARITIZ.	VEINING		7	DESCRIPTIVE	GEOLOGY		DRILL	RECOV	SIZ	SAMP	SAMP.	*	The state of the s		
1370' COMIRACTOR: Coates 164° CORE SIZE: NQ 215' SCALE: 1" = 10' TITITITITITITITITITITITITITITITITITITI	T: Pa i	210			7	- 8		-	welded, coa 211.4-215.0',	grades into red	f w/ wk limon brn, fresh,	on fracts welded, otite flakes		98							J 4 .
3370' COMIRACTOR: Coates -26° LOGGED BY: N. H. Payne -215' SCALE: 1" = 10'	PROJEC LOCATI HOLE N	ТО		***					coarsely II	thic turi wy brad	ck undit o bi										
164° CONTRACTOR: COA 164° CORE SIZE: NQ 226° LOGGED BY: M. 215' SCALE: 1" = 10' 111 111		E .									*										
164° CORE SIZE: -26° LOGGED BY: 215' SCALE: 1" = 1" 1" 1" 1" 1" 1" 1"	oates 10 1. H. F	E							6 12												
2370 - 26° 215' 111 - 11	ا من	·IE .						-											-		
2370 - 26° 215' 111 - 11	HIRAC	IC																			
COLLAR COOKUMATES. BEARING: 164° N TATED: 9-4-84 INCLINATION: -26° COMPLETED: 9-4-84 TOTAL DEPTH: 215′ TITITITITITITITITITITITITITITITITITIT	3 8 3 9																				
COLLAR COORUMATES. BEARING: 164 N	5	E																			1
STARTED: 9-4-84 INCLINATION STARTED: 9-4-84 INCLINATION COMPLETED: 9-4-84 TOTAL DEPTITITITITITITITITITITITITITITITITITITI	5370 164° 4: -26°	31																			
STARTED: 9-4-84 INCL COMPLETED: 9-4-84 INCL COMPLETED: 9-4-84 TOTA TOTAL	ATTON:	1																		1	1
COLLAR CCORUMATES. N E STARTED: 9-4-84 COMPLETED: 9-4-84 THILLITITITITITITITITITITITITITITITITITI	BEAF						,														
STARTED: 9- COMPLETED: 9- TOWNLETED: 9- TOWN	18-4	10-4-04					1														
STARTED: COUNTETED TOWNETED	E 9-	TE .																			
STAB STAB	CCORU	TTTT	1				1														
	COLLAR	COM																			

APPENDIX II

RECEIVED

AUG 29 1983

DENISON MARKES (U.S.) INC. DENVER OFFICE

PAIUTE PROPERTY

Washoe County, Nevada

August 1983 Dennis Forsberg

For

DENISON MINES (U.S.) INC. Denver, Colorado

TABLE OF CONTENTS

		Page
Summary and Recommendations	•	1
Introduction		2
Location and Access		3
Property	•	3
Previous Work	•	4
1983 Exploration		4
Regional Geology		5
Stratigraphy	•	6
Structure		10
Geochemistry		12
Alteration and Mineralization		13
Proposed Work		15
References		20
Table 1: List of gold and silver geochemical anomali on the Paiute fault in section 18	es	17
Table 2: List of gold and silver geochemical anomali on the Paiute fault in section 17	es	18
Table 3: List of gold and silver geochemical anomali on the northwest trending fault system in section 17	es	19

APPENDICES

Appendix 1 Geochemical Results

Appendix 2 Sample Descriptions

Maps

Plate A: Alteration/sample location map/cross-section of part of the Paiute fault in section 17

Plate B: Alteration/sample location map of northwest trending fault system in section 17

Plate C: Alteration/sample location map of a northeast striking fault in section 17

Plate D1: Claim map 1 of 2 (1'' = 500') in pocket

Plate D2: Claim map 2 of 2 (1" = 500') in pocket

Plate E: Geologic map (1" = 1000') in pocket

Plate F: Sample Location Overlay (1" = 500') in pocket

Plate G: Gold and Silver Geochemistry (Detail Area) (1" = 200") in pocket

SUMMARY AND RECOMMENDATIONS

The Paiute Claims are located on the east flank of the Pah Rah Range approximately thirty miles north of Reno, Nevada. The area is underlain by a thick sequence of felsic to basic volcanic rocks of the Hartford Hill Rhyolite and Pyramid Formation. Gold and silver mineralization on the Paiute property occurs in silicified and argillized tuffs associated with east-west trending and northwest trending faults.

Exploration work conducted during the 1983 field season on the Paiute claim block consisted of geologic mapping and a reconnaissance geochemical survey. The results of this work have outlined two areas with the potential of widespread low grade gold and silver mineralization.

The first area, the Paiute fault zone, is a roughly east-west trending fault that can be traced on the ground for approximately 4,000 feet.

In section 17, the intersection of the Paiute fault and northwest trending structures form a pod of argillized and silicified tuffs several thousand feet long and up to six hundred feet wide.

The second area is located on the north ridge of Big Mouth Canyon in section 17. Several parallel northwest trending faults form an argillized and silicified zone in the tuffs approximately 500 feet on a side. Most of the zone is covered.

Both areas are characterized by good structural preparation and by significant gold and silver geochemical anomalies.

Proposed work for 1984 consists of detailed geologic mapping and a 100-foot centered geochemical survey in both areas. A reconnaissance survey of all the gold propsects on the east flank of the Pah Rah Range should be conducted during 1984.

INTRODUCTION

Denison's Paiute claim block is located approximately thirty miles northeast of Reno, Nevada, in Washoe County.

The initial literature search and associated ground reconnaissance of the Pyramid Lake area indicated the potential for large scale precious metal deposits in the altered rhyolite tuffs that underly the area. Several grab samples from prospect pits in Big Mouth Canyon and Secret Canyon contained significant gold and silver anomalies. The ground was open and claim staking commenced in September 1981. Ninety-seven lode claims were staked, covering approximately three square miles.

In 1982, an airborne photogrammetric survey was flown over the area by Denison. Exploration work conducted in 1983 consisted of geologic mapping and a geochemical survey. The work was done by Dennis Forsberg of Spokane, Washington.

The purpose of this report is to summarize the exploration work and results to date and to make recommendations for future work.

LOCATION - ACCESS

The Paiute claim block consists of 97 contiguous lode claims located in sections 7, 8, 9, 16, 17, 18 and 19, T22N, R23 E, Washoe County, Nevada. The claims lie on the east flank of the Pah Rah Range about thirty miles northeast of Reno.

Access from Fernley, Nevada is by Nevada State Highway 34 to Pyramid Lake. Three miles of dirt road connect the Paiute property to Highway 34.

The claims and access roads are covered by the USGS Dixon $15\frac{1}{2}$ -minute quadrangle.

PROPERTY

The Paiute claims were staked by Robert N. Caldwell as Agent for Denison Mines. Claim staking commenced on Aug. 12, 1981 and was finished by Sept. 15, 1981.

A total of 97 lode claims were staked, covering approximately three square miles. The claims are 100% owned by Denison.

A list of claims and their respective BLM serial numbers follow this section.

			RECORDING					R 2	22 N 23 E
CLAIM NAME	LOCATION DATE	DATE	RECEP. NO.	BOOK	PAGE	BLM	SERIAL NO.	4	SEC.
Paiute #1	8/29/81	11/5/81	767218	1689	356	N MC	221311	SW NW	20 29
Paiute #2	8/29/81	11/5/81	767219	1689	357	N MC	221312	SW	20
Paiute #3	8/28/81	11/5/81	767220	1689	358	N MC	221313	SW NW	20 29
Paiute #4	8/28/81	11/5/81	767221	1689	359	N MC	221314	SW	20
Paiute #5	8/27/81	11/5/81	767222	1689	360	N MC	221315	SW NW	20 29
Paiute #6	8/27/81	11/5/81	767223	1689	361	N MC	221316	SW	20
Paiute #7	8/29/81	11/5/81	767224	1689	362	N MC	221317	NW SW	20 20
Paiute #8	8/29/81	11/5/81	767225	1689	363	N MC	221318	NW	20
Paiute #9	8/29/81	11/5/81	767226	1689	364	N MC	221319	NW SW	20 20
Paiute #10	8/29/81	11/5/81	767227	1689	365	N MC	221320	NW	20
Paiute #11	8/12/81	11/5/81	767228	1689	366	N MC	221321	NW SW	20 20
Paiute #12	8/12/81	11/5/81	767229	1689	367	N MC	221322	NW	20
Paiute #13	8/30/81	11/5/81	767230	1689	368	N MC	221323	SW SE	18 18
Paiute #14	8/30/81	11/5/81	767231	1689	369	N MC	221324	SW SE NW NE	18 18 18
Paiute #15	8/30/81	11/5/81	767232	1689	370	N MC	221325	SE	18
Paiute #16	8/30/81	11/5/81	767233	1689	371	N MC	221326	SE NE	18 18
Paiute #17	8/30/81	11/5/81	767234	1689	372	N MC	221327	SE	18
Paiute #18	8/30/81	11/5/81	767235	1689	373	N MC	221328	SE NE	18 18
Paiute #19	8/30/81	11/5/81	767236	1689	374	N MC	221329	SE	18
Paiute #20	8/30/81	11/5/81	767237 -2.1-	1689	375	N MC	221330	SE NE	18 18

	LOCATION DATE	DATE	RECORDING	DATA BOOK	PAGE	RIM	SERIAL NO.		22 N 23 E SEC.
CLAIM NAME	LOCATION DATE	DATE	RECEP, NO,	DOOK	I AGE	DEM	JERIAL NO.		
Paiute #21	8/30/81	11/5/81	767238	1689	376	N MC	221331	SE	18
Paiute #22	8/30/81	11/5/81	767239	1689	377	N MC	221332	SE NE	18 18
Paiute #23	8/30/81	11/5/81	767240	1689	378	N MC	221333	SW	17
Paiute #24	8/30/81	11/5/81	767241	1689	379	N MC	221334	SW NW	17 17
Paiute #25	8/31/81	11/5/81	767242	1689	380	N MC	221335	SW	17
Paiute #26	8/31/81	11/5/81	767243	1689	381	N MC	221336	SW NW	17 17
Paiute #27	8/31/81	11/5/81	767244	1689	382	N MC	221337	SW	17
Paiute #28	8/31/81	11/5/81	767245	1689	383	N MC	221338	SW NW	17 17
Paiute #29	9/2/81	11/5/81	767246	1689	384	N MC	221339	SW	17
Paiute #30	9/2/81	11/5/81	767247	1689	385	N MC	221340	SW NW	17 17
Paiute #31	9/1/81	11/5/81	767248	1689	386	N MC	221341	SE SW	17 17
Paiute #32	9/1/81	11/5/81	767249	1689	387	N MC	221342	SE SW NE NW	17 17 17 17
Paiute #33	8/31/81	11/5/81	767250	1689	388	N MC	221343	SE	17
Paiute #34	8/31/81	11/5/81	767251	1689	389	N MC	221344	SE NE	17 17
Paiute #35	8/31/81	11/5/81	767252	1689	390	N MC	221345	SE	17
Paiute #36	8/31/81	11/5/81	767253	1689	391	N MC	221346	SE NE	17 17
Paiute #37	9/1/81	11/5/81	767254	1689	392	N MC	221347	SE	17
Paiute #38	9/1/81	11/5/81	767255	1689	393	N MC	221348	SE NE	17 17
Paiute #39	9/1/81	11/5/81	767256	1689	394	N MC	221349	SE	17

CLAIM NAME	LOCATION DATE	DATE	RECORDING RECEP, NO,	DATA BOOK	PAGE	BLM	SERIAL NO.	T R	22 N 23 E SEC.
Paiute #40	9/1/81	11/5/81	767257	1689	395	N MC	221350	SE NE	17 17
Paiute #41	9/1/81	11/5/81	767258	1689	396	N MC	221351	SW	16
Paiute #42	9/1/81	11/5/81	767259	1689	397	N MC	221352	SW NW	16 16
Paiute #43	9/1/81	11/5/81	767260	1689	398	N MC	221353	SW	16
Paiute #44	9/1/81	11/5/81	767261	1689	399	N MC	221354	SW NW	16 16
Paiute #45	9/1/81	11/5/81	767262	1689	400	N MC	221355	NW	18
Paiute #46	9/1/81	11/5/81	767263	1689	401	N MC	221356	NW SW	18 7
Paiute #47	8/30/81	11/5/81	767264	1689	402	N MC	221357	N E NW	18 18
Paiute #48	8/30/81	11/5/81	767265	1689	403	N MC	221358	NE NW SE SW	18 18 7 7
Paiute #49	8/30/81	11/5/81	767266	1689	404	N MC	221359	NE	18
Paiute #50	8/30/81	11/5/81	767267	1689	405	N MC	221360	NE SE	18 7
Paiute #51	8/30/81	11/5/81	767268	1689	406	N MC	221361	NE	18
Paiute #52	8/30/81	11/5/81	767269	1689	407	N MC	221362	NE SE	18 7
Paiute #53	8/30/81	11/5/81	767270	1689	408	N MC	221363	NE	18
Paiute #54	8/30/81	11/5/81	767271	1689	409	N MC	221364	NE SE	18 7
Paiute #55	9/3/81	11/5/81	767272	1689	410	N MC	221365	NW	17
Paiute #56	9/3/81	11/5/81	767273	1689	411	N MC	221366	NW	17
Paiute #57	8/30/81	11/5/81	767274	1689	412	N MC	221367	NW	17
Paiute #58	8/30/81	11/5/81	767275	1689	413	N MC	221368	NW SW	17 8

CLAIM NAME	LOCATION DATE	DATE	RECORDING RECEP, NO,	DATA BOOK	PAGE	BLM S	SERIAL NO.		22 N 23 E SEC.
Paiute #59	8/30/81	11/5/81	767276	1689	414	N MC	221369	NW	17
Paiute #60	8/30/81	11/5/81	767277	1689	415	N MC	221370	NW SW	17
Paiute #61	8/31/81	11/5/81	767278	1689	416	N MC	221371	NE NW	17 17
Paiute #62	8/31/81	11/5/81	767279	1689	417	N MC	221372	NE NW	17 17
								SE	8
Paiute #63	8/31/81	11/5/81	767280	1689	418	N MC	221373	NE	17
Paiute #64	8/31/81	11/5/81	767281	1689	419	N MC	221374	NE SE	17
Paiute #65	8/31/81	11/5/81	767282	1689	420	N MC	221375	NE	17
Paiute #66	8/31/81	11/5/81	767283	1689	421	N MC	221376	NE SE	17
Paiute #67	8/31/81	11/5/81	767284	1689	422	N MC	221377	NE	17
Paiute #68	8/31/81	11/5/81	767285	1689	423	N MC	221378	NE SE	17 8
Paiute #69	8/31/81	11/5/81	767286	1689	424	N MC	221379	N E NW	17 16
Paiute #70	8/31/81	11/5/81	767287	1689	425	N MC	221380	NE SE NW	17 8 16
Paiute #71	9/1/81	11/5/81	767288	1689	426	N MC	221381	NW	16
Paiute #72	9/1/81	11/5/81	767289	1689	427	N MC	221382	NW SE	16 8
Paiute #73	9/1/81	11/5/81	767290	1689	428	N MC	221383	NW	16
Paiute #74	9/1/81	11/5/81	767291	1689	429	N MC	221384	NW SW	16
Paiute #75	9/2/81	11/5/81	767292	1689	430	N MC	221385	SW	8
Paiute #76	9/2/81	11/5/81	767293	1689	431	N MC	221386	SW NW	8

CLAIM NAME	LOCATION DATE	DATE	RECORDING RECEP. NO.	DATA BOOK	PAGE	BLM S	SERIAL NO.		2 N 3 E SEC.
Paiute #77	9/2/81	11/5/81	767294	1689	432	N MC	221387	SW SE	8
Paiute #78	9/2/81	11/5/81	767295	1689	433	N MC	221388	NW SW	8
Paiute #79	9/2/81	11/5/81	767296	1689	434	N MC	221389	SE	8
Paiute #80	9/2/81	11/5/81	767297	1689	435	N MC	221390	NE SE NW SW	8 8 8
Paiute #81	9/2/81	11/5/81	767298	1689	436	N MC	221391	SE	8
Paiute #82	9/2/81	11/5/81	767299	1689	437	N MC	221392	NE SE	8
Paiute #83	9/2/81	11/5/81	767300	1689	438	N MC	221393	SE	8
Paiute #84	9/2/81	11/5/81	767301	1689	439	N MC	221394	NE SE	8
Paiute #85	9/1/81	11/5/81	767302	1689	440	N MC	221395	SE	8
Paiute #86	9/1/81	11/5/81	767303	1689	441	N MC	221396	NE SE	8
Paiute #87	9/1/81	11/5/81	767304	1689	442	N MC	221397	SE	8
Paiute #88	9/1/81	11/5/81	767305	1689	443	N MC	221398	NE SE	8
Paiute #89	9/1/81	11/5/81	767306	1689	444	N MC	221399	NE	8
Paiute #90	9/1/81	11/5/81	767307	1689	445	N MC	221400	NE	8
Paiute #91	9/14/81	11/5/81	767308	1689	446	N MC	221401	NE SE	8 5
Paiute #92	9/14/81	11/5/81	767309	1689	447	N MC	221402	SW	20
Paiute #93	9/14/81	11/5/81	767310	1689	448	N MC	221403	SW NW	20 20
Paiute #94	9/14/81	11/5/81	767311	1689	449	N MC	221404	SE SW	20 20

			RECORDING	DATA					22 N 23 E
CLAIM NAME	LOCATION DATE	DATE	RECEP. NO.	BOOK	PAGE	BLM	SERIAL NO.	1	SEC.
Paiute #95	9/14/81	11/5/81	767312	1689	450	N MC	221405	SE SW	20 20
Paiute #96	9/15/81	11/5/81	767313	1689	451	N MC	221406	SE	20
Paiute #97	9/15/81	11/5/81	767314	1689	452	N MC	221407	SE	20

8/31/83

/jg

PREVIOUS WORK

The geology of the Pah Rah Range is covered in the Nevada Bureau of Mines Bulletin 70, Geology and Mineral Deposits of Washoe and Story Counties, Nevada, by Harold F. Bonham. The geologic map that accompanies the bulletin is scaled at 1:250,000. The gold-siver prospects in Big Mouth Canyon and Secret Canyon are briefly mentioned on page 75.

1983 EXPLORATION

The exploration program for 1983 consisted of geologic mapping and a reconnaissance geochemical survey.

A total of eighteen days were spent in the field. The Paiute property was mapped on a scale of 1:6,000 (Plate E). One hundred sixty-nine rock chip samples were collected on the claims. The sample locations were plotted on the map by topography and the use of an altimeter. Three areas within the claim block were mapped and sampled on a scale of 1:1200 (Plates A, B, C).

REGIONAL GEOLOGY

The Paiute project is located on the east flank of the Pah Rah Rnage, five miles south of Pyramid Lake. Pah Rah Range displays a northeast trend and is complexly faulted.

Small exposures of metamorphic rocks and granodiorite of Mesozoic age are exposed on the west flank of the range. The majority of the mountains are underlain by a thick sequence of volcanic rocks of Tertiary age. The volcanic formations range in age from Oligocene through Pliocene and vary in composition from basalt to rhyolite. Four volcanic formations have been mapped in the project area (Bonham).

The Pah Rah Formation outcrops to the north in Coal Creek Canyon and consists of andesites and mudflow breccias.

The Hartford Hill Rhyolite covers most of the project area. It consists predominately of ash fall and ash flow tuffs of rhyolitic composition.

Basalts and andesites of the Pyramid Formation overlie the Hartford Hill Rhyolite on the eastern boundary of the Paiute property and extend eastward.

The Kate Peak Formation consists of volcanic flows and breccias of felsic to intermediate composition occurs south of the claim block.

A small rhyolite intrusive outcrops in Coal Creek Canyon.

STRATIGRAPHY

The oldest rocks exposed on the Paiute claim block are a thick sequence of tuff and epiclastic rocks of the Hartford Hill Rhyolite. On the property the Hartford Hill Rhyolite has been divided into three members. The lower member consists of moderately welded lithic tuff and lapilli tuff. The middle member consists predominately of crystal tuff and the upper member is composed of welded lapilli tuff and agglomerate. The Hartford Hill Rhyolite is thought to be lower Miocene in age.

Basalt and andesite flows of the Pyramid Formation unconformably overlie the tuffs on the eastern side of the property.

Hartford Hill Rhyolite

Nearly all of the Paiute property is underlain by the Hartford Hill Rhyolite. Lithic tuffs of the fomration are the host rocks of the gold and silver mineralization in the Olinghouse Mining District located about ten miles south of the Paiute claims.

On the Paiute claim block, the Hartford Hill Rhyolite can be divided into three members. The lower member consists of a monotonous sequence of moderately welded, grey to blue-gray, lapilli tuff and lithic tuff of rhyolite composition with intercalated volcanic sandstone and conglomerate. Thin beds of volcanic derived sandstone and conglomerate outcrop in the SW_4^1 section 17 and near the section line between sections 17 and 18 at 6200 feet in elevation.

The grey tuffs of the lower member contain various amounts of quartz, sanadine and biotite. These tuffs have undergone prevasive propylitic alteration. The biotite and rock fragments in the tuffs have been replaced by chlorite and the sanadine feldspars are frequently altered to clay.

Fine-grained tuff of rhyolite composition outcrops in Secret Canyon in the SE_4^1 section 20 and appears to be intercalated in the lower member.

Approximately 700 feet of tuffs of the lower member are present on the Paiute claims. The bottom of the unit is not exposed in the project area.

The middle member of the Hartford Hill Rhyolite consists of two units. The lower unit is a welded grey crystal tuff of rhyolite composition. These tuffs contain at least 50% crystals of quartz, sanadine, and biotite and form-resistant outcrops. Additionally, this unit is usually bleached, argillized and goethite-stained. The effect of the alteration is a white silicous rock in which the feldspars are altered to clay. The rock is heavily fractured and the fractures are goethite-stained. Many rock samples were collected from these altered tuffs. None of the samples contained anomalous amounts of gold or silver. The crystal tuff is approximately 140-160 feet thick in the area.

Overlying the crystal tuff, the upper unit of the middle member of the Hartford Hill Rhyolite is a purple lapilli tuff with rock clasts up to

l½-inches in diameter. This unit contains few crystals and frequently is heavily altered like the crystal tuff beneath it. When both the upper and lower units are heavily argillized and iron-stained, they are hard to distinguish from each other. However, the upper unit is usually less altered from the crystal tuff. The lapilli tuff is usually bleached and argillized along fractures and as blotches, even though the crystal tuff beneath it may be completely argillized. The lapilli tuff is approximately four feet thick. The total thickness of the middle member is approximately 200 feet.

In the project area, the upper member of the Hartford Hill Rhyolite is comprised predominantly of purple welded lapilli tuffs and agglomerate with intercalated lithic tuff. All are rhyolitic in composition and are unaltered. Approximately 500 feet of the upper member is exposed on the claim block. The top of the unit lies west of the claims and the total thickness of the upper member is greater than 1,000 feet.

Uncomformably overlying the Hartford Hill Rhyolite in the project area are basalt and andesite flows to the Pyramid Formation of upper Miocene age. The Pyramid Formation outcrops on the far eastern edge of the Paiute claim block in the SE $_{4}^{+}$ section 17, the W_{2}^{+} section 16, the SW $_{4}^{+}$ SW $_{4}^{+}$ section 9, and the NE $_{4}^{+}$ SE $_{4}^{+}$ section 8. The rocks are essentially unaltered in the project area and have a maximum thickness of 500 feet.

Generalized Stratigraphic Column

<u>Thick_(ft</u>)	Formation	Symbol	
	Quaternary Alluvium	Qal	
	Hartford Hill Rhyolit	e	
500+	upper member	Thu	
200+	middle member	Thm	
700+	lower member	Thl	
300+	Pyramid Formation	Tsv	

STRUCTURE

Two major fault systems are present in the Pah Rah Range, an east-northeast trending system and a northwest trending system. The northwest system may be the structural elements of the Walker Lane fault zone (Bonham, page 51). The Teritary rocks in the range generally strike northwest and dip southwest.

The prominent structural feature on the Paiute property is a roughly east-west trending fault that dips to the north approximately 70°.

It can be traced from the center of section 18 to the center of section 17. In this report, it will be referred to as the Paiute fault.

The fault splits into three roughly parallel structures in section 17.

The lithic tuffs between the faults are argillized and display varying amounts of silicification. The fault plane is silicified and explored by prospect pits and tunnels along its entire length (Plate E). The crystal tuffs on the north side of the Paiute fault have been dropped nearly 400 feet compared to the same unit on the south side of the fault. The Paiute fault is terminated by a northwest striking fault in the center of section 17.

The northwest trending faults in section 17 have silicified fault planes and display right lateral movement on the order of a few tens of feet.

The northwest trending fault mapped in section 20 does not have a silicified fault plane and its movement is approximately 600 feet left lateral.

Many east-west trending and northwest trending faults cross the ridge in the center of section 17. There are no marker horizons there, so movement cannot be determined with certainity. Each of these faults has a narrow silicified zone associated with it.

An east-west trending fault in the S_2^1 section 8 crosses the crystal tuff of the Hartford Hill Rhyolite and exhibits about 300 feet of lateral movement.

The property is cut by many northeast trending faults and lineaments. The northeast trending fault in the SE4 section 18 has displaced the crystal tuffs 200 feet vertically and 800 feet laterally. Another northeast trending fault in the SW4 section 17 has dropped the crystal tuffs on the east side of the fault approximately 400 feet below the tuffs on the west side of the fault. Several of the northeast trending faults in section 17 have silicified and argillic zones associated with them.

The geologic mapping on the property indicates that the northeast trending faults are the oldest. They have been offset by the east-west trending faults and the northwest trending faults. The northwest trending faults offset the east-west trending faults and are probably the youngest structures on the property.

The volcanic units on the claim block display various strikes and dips, but from the geologic map, it is obvious that they trend northwest and dip southwest about 10-20°.

GEOCHEMISTRY

During this year's program, one hundred sixty-nine rock chip samples were collected on the Paiute property. The samples were analyzed for gold and silver by Barringer Resources in Sparks, Nevada. Sample 168 is reported missing on the Barringer Lab report.

Anomaly thresholds for the samples were figured using the mean plus twice the standard deviation. Values representing obvious anomalies (silver >2 ppm, gold >.5 ppm) were not considered in this evaluation.

Gold (values <.5 ppm)	158 samples	
mean	standard deviation	anomaly threshold
.045 ppm	.077 ppm	.20 ppm
Silver (values <2 ppm)	131 samples	
mean	standard deviation	anomaly threshold
.29 ppm	.31 ppm	.91 ppm

All samples collected during this program were reconnaissance samples, about two pounds in weight, and were biased in favor of quartz vein material.

ALTERATION - MINERALIZATION

Two types of alteration are associated with the faults on the Paiute property, argillic alteration and silicification. Silicified rocks along the faults grade outward into a zone of argillic alteration, then into unaltered tuffs. Argillic alteration also occurs along north-northeast trending faults where no silicification is present. The width of the altered areas varies from one foot to several hundred feet.

The argillic altered tuffs on the property appear white because the feldspar in the rocks has been altered to clay and the biotite has been destroyed. The altered tuffs weather brown due to the various amounts of goethite in the rocks. Narrow calcite veins occur in northeast trending structures in two localities, at the tunnel located in the $SE_{\frac{1}{4}}$ section 17 (samples 77 and 78) and the $NE_{\frac{1}{4}}$ section 17.

On the Paiute claims, silicification occurs as stockwork quartz and quartz-pyrite veinlets in argillized tuffs and less frequently as silica replacement of the tuffs. All of the gold and silver geochemical anomalies on the Paiute claim block occur in silicified tuffs and in the argillized rocks adjacent to the silicified tuffs.

Section 18

The Paiute fault in section 18 is silicified and explored by several prospect pits. Rock samples from the dumps of these pits contain

significant gold and silver geochemical anomalies. The silicified zone at the fault consists of stockwork quartz veins and silica replacement of the tuffs and varies from four feet (sample 103) to several hundred feet thick (samples 94-99). On one area, the argillic zone widens to approximately 140 feet and contains some quartz veinlets (sample 106). Table 1 contains a list of the gold and silver geochemical anomalies of the Paiute fault in section 18.

Section 17

The Paiute fault splits into three roughly parallel structures in the center of section 17. The altered zone associated with these faults is several thousand feet long and up to 600 feet wide. This zone contains many significant gold and silver geochemical anomalies, particularly on the west end (Plate A), where several northwest trending and northeast trending faults intersect the Paiute fault. This structural intersection forms a pod of silicified tuffs 600 feet long and 150 feet wide. All of the rock samples from this zone were geochemically anomalous in gold and silver (Table 2). The Paiute fault is cut off on the east, in the center of section 17, by a northwest trending fault.

The rock chip samples from many of the northwest trending faults that cross the north ridge of Big Mouth Canyon contained gold and silver anomalies. In one area the faults are close enough together to form a zone of silicified and argillized tuffs approximately 500 feet long by

500 feet wide (Plate E). Most of the zone is covered. Table 3 is a list of gold and silver geochemical anomalies from this zone.

Further up the ridge to the southwest, other east-west trending and northwest trending faults with narrow silicified zones outcrop. Rock chip samples from these zones also contained gold and silver geochemical anomalies (samples 26, 137, 138, 139, and 140). However, the silicified zones are narrow and may be too far apart for this area of be of importance.

Prospect pits explore three north-south trending silicified faults on the south side of Big Mouth Canyon in the NE4SE4 section 17. Two high graded dump samples from the prospect pits contained gold and silver geochemical anomalies (Plate B). Sample 66, collected across the narrow silicified zone of one fault, contained 18.9 ppm silver and .02 ppm gold. Samples across the other faults did not have anomalous amounts of gold and silver.

PROPOSED WORK

Geologic mapping and reconnaissance geochemical sampling conducted during 1983 on the Paiute claims have outlined two areas with the potential of widespread low grade gold and silver mineralization. The first area is the Paiute fault zone in sections 17 and 18. The second area is the northwest trending system on the northern ridge of Big Mouth Canyon in section 17.

The proposed work consists of detailed geologic mapping at a scale of 1:2400 coupled with a 100-foot center geochemical survey over both areas, and a general reconnaissance of the precious metal prospects on the east flank of the Pah Rah Range.

If a new topographic base map of the claim block can be made from the 1982 photogrammetric survey flown over the area, it should be done. If not, then the grid for the proposed geochemical surveys would provide an adequate base for geologic mapping.

A ground reconnaissance of all the gold prospects on the east flank of the Pah Rah Range should be conducted. Other prospects with the potential for widespread gold and silver mineralization may exist in the rugged terrain of the Pah Rah Range.

PAIUTE FAULT - SECTION 18

Gold and Silver Geochemical Anomalies

TABLE 1

Sample Number	Ag PPm	Au PPm	Description
94	2.2	.14	Silica stockwork in argillized tuffs, pyrite on fractures, goethite-stained, 20-ft grab
95	2.2	.04	Same as #94
96	5.6	<.02	Same as #94
98	1.4	<.02	Same as #94
99	.9	<.02	Same as #94
101	2.3	<.02	Dump, silicified tuffs
102	1.1	.02	Silica breccia, goethite-stained, 8-10 ft grab
103	5.5	3.45	Dump, silicified tuffs
105	4.0	1.91	Dump, silicified tuffs
106	4.0	2.32	Argillized tuffs with silica veins, 140-ft wide, geothite-stained, grab sample

TABLE 2

Gold and Silver Geochemical Anomalies

PAIUTE FAULT - SECTION 17

Sample	Ag	Au	
Number	ББШ	55 <u>m</u>	Description
108	33.5	. 56	Quartz-pyrite stockwork, 15-ft grab
109	9.8	<.02	2-ft silicified zone above adit
110	2.0	<.02	Dump, silicified-argillized tuffs
111	7.7	.16	Same as #108
112	22.8	.38	Silicified, goethite-stained tuffs
113	18.7	.28	Same as #112
114	28.0	.74	Same as #112
115	2.4	.44	Dump, argillized tuffs
116	4.6	4.24	Heavily argillized, goethite-stained tuffs, some quartz veins
120	2.7	<.02	Stockwork quartz veins, intersection Big Mouth Canyon fault and northwest trending fault
122	44.0	.48	Dump, argillized tuffs, some quartz veins
123	1.5	.36	Quartz stockwork, geothite-stained
124	4.7	.04	Dump, quartz stockwork, goethite-stained
125	5.1	.08	Quartz stockwork, by adit
130	1.9	.06	Intersection Big Mouth Canyon fault and northeast trending fault, quartz stockwork
142	4.1	<.02	Argillized tuffs with some quartz veins, 50-ft wide, grab sample
143	2.5	<.02	Same as #142, zone is 20-ft wide, grab sample
144	2.2	<.02	Same as #142, dump of prospect pit
148	164.0	1.54	3-ft quartz vein, goethite-stained
151	38.5	.54	100-ft-plus quartz stockwork in argillized tuffs, grab sample
154	13.1	.04	Hanging wall Big Mouth Canyon fault, quartz stockwork in argillized tuffs
155	2.2	<.02	Same as #154, less quartz
156	2.2	<.02	Same as #155
157	30.6	.22	20-ft quartz-pyrite stockwork zone
160	1.9	<.02	Quartz-pyrite stockwork in argillized tuffs

NORTHWEST TRENDING FAULT SYSTEM - SECTION 17
Gold and Silver Geochemical Anomalies

Sample Number	Ag PPm	Au PPm	Description
33	15.4	3.2	Silicified-argillized tuffs on northwest trending fault
80	4.8	.04	12-ft zone, argillized tuffs with quartz stockwork
81	6.2	6.33	Same as #80
83	1.1	<.02	Same as #80, zone is 200-ft wide, grab sample
84	46.5	2.67	Same as #83

REFERENCES

Bonham, Harold F., 1969, Geology and Mineral Deposits of Washoe and Story counties, Nevada: Nevada Bureau of Mines and Geology, Bulletin 70, 140 pp. APPENDIX 1

Geochemical Results

BARRINGER RESOURCES INC.
OFFICES & MINERALS
LABORATORY:
1455 DEMING WAY, SUITE 15
SPARKS, NEVADA 89431
PHONE: (702) 358-1158

BARRINGER RESOURCES

AUTHORITY: DENNIS FORSLY

12-AUG-83 PAGE: 1 OF 4 COPY: 1 OF 2

DENISON MINES, INC. 1776 LINCOLN ST. DENVER, CO 80203

ATTN: DENNIS FORSLY

WORK ORDER: 1430R-83

*** FINAL REPORT ***

	TYPE: ROCK	AG	AU	
MPLE	NUMBER	PPM	PPM	
83:	1 -PS	0.1	<0.02	
831	2 -PR	<0.1	<0.02	
831	3 -PR	<0.1	<0.02	
83:	4 -PR	0.1	<0.02	
83:	5 -PR	<0.1	<0.02	
83:	6 -FR	0.1	<0.02	
831	7 -PR	0.4	<0.02	
83:	8 -PR	0+1	<0.02	
831	9 -PR	0.1	<0.02	
83:	10 -FR	<0.1	<0.02	
83:	11 -PR	0.1	<0.02	
831	12 -PR	0.1	<0.02	
831	13 -PR	0.1	<0.02	
831	14 -PR	0.1	<0.02	
831	15 -PR	<0.1	<0.02	
83:	16 -PR	0.2	<0.02	
831	17 -PR	<0.1	<0.02	
831	18 -PR	0.1	<0.02	
83:	19 -PR	<0.1	40.02	
831	20 -PR	0.1	<0.02	
83:	21 -PR	0.1	<0.02	
831	22 -PR	<0.1	<0.02	
931	23 -PR	0.1	<0.02	
83:	24 -PR	0.3	<0.02	
83:	25 -PR	0 - 1	<0.02	
831	26 -PR	0.6	0.32	
834	27 -PR	0.1	<0.02	
831	28 FPR	0.9	0.22	
83:	29 '-PR	1.0>	<0.02	
83:	30 -PR	7.2	0.08	

BARRINGER RESOURCES

AUTHORITY: DENNIS FORSLY

12-AUG-83 PAGE: 2 OF 4 COPY: 1 OF 2

DENISON MINES, INC. 1776 LINCOLN ST. DENVER, CO 80203

ATTN: DENNIS FORSLY

WORK ORDER: 1430R-83

*** FINAL REPORT ***

	YPE: ROCK	AG	AU	
AMPLE	NUMBER		PPM	
	11 - 11 - 11			
83:	31 -PR	0.3	<0.02	
831	32 -PR	0.3	<0.02	
83:	33 -PR	15.4	3.2	
83:	34 -PR	0.3	<0.02	
83:	35 -PR	0.3	<0.02	
			Supervision of the second	
831	36 -PR	0.1	<0.02	
83:	37 -PR	0.1	<0.02	
83:	38 -PR	<0.1	<0.02	
831	39 -PR	0.1	<0.02	
93:	40 -FR	<0.1	<0.02	
831	41 -PR	<0.1	<0.02	
83:	42 -PR	<0.1	<0.02	
83:	13 -PR	0.1	0.02	
83:	44 -PR.	<0.1	<0.02	
83:	15 -PR	<0.1	<0.02	
831	46 -PR	<0.1	<0.02	
83:	47 -PR	0.1	<0.02	
831	48 -PR	<0.1	<0.02	
83:-	49 -PR	0.1	<0.02	
83:	50 -FR	0.2	<0.02	
831	51 -PR	<0.1	<0.02	
831	52 -PR	0.1	<0.02	
83:	53 -PR	0.2	<0.02	
831	54 -FR	0.1	<0.02	
831	55 -PR	0.1	<0.02	
83:	56 -PR	0.1	<0.02	
83:	57 -PR	0.1	<0.02	
831	58 -PR	0.1	<0.02	
83:	59 -PR	0.8	0.1	
83:	60 -PR	0.7	<0.02	

BARRINGER RESOURCES INC.
OFFICES & MINERALS
LABORATORY:
1455 DEMING WAY, SUITE 15
SPARKS, NEVADA 89431
PHONE: (702) 358-1158

BARRINGER RESOURCES

AUTHORITY: DENNIS FORSLY

12-AUG-83 PAGE: 4 OF 4 COPY: 1 OF 2

DENISON MINES, INC. 1774 LINCOLN ST. DENVER, CO

ATTN: DENNIS FORSLY

WORK ORDER: 1430R-83

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

SAMPLE TYPE:	ROCK	NAME OF THE OWNER, OWNE	
		AG	AU
SAMPLENU	MBER	PPM	PPM
83: 9	1 -PR	0.1	<0.02
83: 9	2 -PR	0.1	<0.02
83: 9	3 -PR	0.2	<0.02
83: 9	4 -PR	2.2	0.14
831 9	5 -PR	2.2	0.04
83: 9	5 - FR	5.6	<0.02
83: 9	7 -PR	0.7	<0.02
	B -PR	1.4	<0.02
	9 -PR	0.9	<0.02
) -FR	<0.1	<0.02
		200 0 0	2 W. S. 3C Ac.

SIGNED:___

James R. Lee: LABORATORY MANAGER

FOOTNOTES:

P=QUESTIONABLE PRECISION; *=INTERFERENCE; TR=TRACE; ND-NOT DETECTED; IS=INSUFFICIENT SAMPLE; Na=NOT ANALYZED; MS=MISSING SAMPLE

BARRINGER RESOURCES INC. OFFICES & MINERALS LABORATORY: 1455 DEMING WAY, SUITE 15 SPARKS, NEVADA 89431 PHONE: (702) 358-1158

BARRINGER RESOURCES

AUTHORITY: WILLIAM MITCHELL

18-AUG-83 PAGE; 1 OF 3 COPY: 3 OF 3 C: D P Y

DENNIS FORSBERG

1924 WEST NORA SPOKANE: WASHINGTON

WORK DRDER: 1453R-83

*** FINAL REPORT ***

SAMPLE	E TYPE: ROCK		SCHOOL STATE	
- FILTE LA	- TIPLS NOCK	AG	AU	
AMPL	ENUMBER	PPM	PPM	
831	101 -PR	2.3	<0.02	
831	102 -PR	1.1	0.02	
834	103 -PR	5.5	3.45	
83:	104 -PR	0.2	<0.02	
831	105 -PR	4.0	1.91	
83:	106 -PR	4.0	2,32	
83:	107 -PR	0.4	<0.02	
83:	108 -PR	33.5	0.56	
831	109 -PR	9.8	<0.02	
83:	110 -PR	2.0	<0.02	
071	111 00			
831	111 -PR	7,7	0.16	
831	112 -PR	22.8	0.38	
931	113 -PR	18.7	0.28	
831 831	114 -PR	28.0	0.74	
00.	115 -PR	2-4	0.44	
831	115 -PR	4.6	P. P. L. P.	
831	117 -PR	0.4	0.04	
831	118 -PR	0.7	0.04	
831	119 -PR	0.6	0.04	
83:	120 -PR	2.7	<0.02	
83:	121 -PR	0.7	0.08	
831	122 -PR	44.0	0.48	
831	123 -PR	1.5	0.34	
831	124 -PR	4.7	0.04	
83:	125 -PR	5.1	0.08	
100 mm a				
83:	126 -PR	0.3	0.02	
834.	127 -PR	0.2	<0.02	
83:	128 -PR	0.6	<0.02	
831	129 PR	0.9	<0.02	
831=	130 -PR	1.9	0.04	

BARRINGER RESOURCES

AUTHORITY: WILLIAM MITCHELL

18-AUG-33 PAGE: 2 OF 3 COPY: 3 OF 3 C O P Y

DENNIS FORSBERG

1924 WEST NORA SPOKANE, WASHINGTON

WORK ORDER: 14538-83

*** FINAL REPORT ***

MPLE TYPE: ROCK			
	AG	AU	
MPLENUMBER	FPM	PPM	
83: 131 -PR	0.6	<0.02	
83: 132 -PR	0.2	<0.02	
83: 133 -PR	0.2	60.02	
831 134 -PR	0.2	<0.02	
83: 135 -PR	0.1	<0.02	
		NAC WA	
83: 136 -PR	0.7	0.08	
83: 137 -PR	3.3	<0.02	
83: 138 -PR	2.7	0.08	
83: 139 -PR	1.4	<0.02	
831 140 -PR	13.5	0.48	
83: 141 -PR	0.4	0.08	
831 142 -PR	4.1	<0.02	
83: 1/3 -PR	2.5	<0.02	
83: 144 -PR	2.2	<0.02	
831 145 -PR	0.1	<0.02	
931 176 -PR	0.8	<0.02	
83: 147 -PR	-0.4	<0.02	
83: 148 -PR	164.0	1.54	
83: 149 -PR	0.3	0.04	
831 150 -PR	0.4	<0.02	
831 151 -PR	38.5	0.54	
83: 152 -PR	0 . 3	<0.02	
83: 153 -PR	0.9	<0.02	
83: 154 -PR	13.1	0.04	
831 155 -PR	2.2	<0.02	
		(N 0 M	
83: 156 -PR	2.2	<0.02	
834 157 -PR	30.6	0.22	
B3: 158 -PR	0.6	<0.02	
831 159 -FR	0.2	₹0.02	
831 160 -PR	1.9	<0.02	

AUTHORITY: DENNIS FORSLY

12-AUG-83 PAGE: 3 DF 4 COPY: 1 DF 2

DENISON MINES, INC. 1776 LINCOLN ST. DENVER, CO

ATTN: DENNIS FORSLY

WORK DRDER: 1430E-83

*** FINAL REPORT ***

SAMPLE TYPE: ROCK			
	AG	AU	
SAMPLE NUMBE	R PPM	PPM	
93: 61 -PR	0 v 4	0,12	
83: 62 -FR	81.0	2.12	
83: 63 -PR	0.7	<0.02	
93: 64 -PR	2.9	0.28	
83: 65 -PR	0.8	0.06	
83: 66 -PR	18.9	<0.02	
83: 67 -PR	0.2	<0.02	
83: 68 -PR	<0.1	<0.02	
83: 69 -FR	0.1	<0.02	
931 70 -PR	0.1	<0.02	
83: 71 -PR	0.1	<0.02	
83: 72 -PR	0.3	0.08	
83: 73 -PR	2.0	0.08	
83: 74 -PR	0.4	0.08	
83: 75 -PR	<0.1	<0.02	
83: 76 -PR	<0.1	<0.02	
83: 77 -PR	0.4	0.12	
83: 78 -FR	0.2	<0.02	
83: 79 -PR	1.2	<0.02	
83: 80 -PR	4.8	0.04	
83: 81 -PR	612	6.33	
83: 82 -PR	0.7	<0.02	
83: 83 -PR	1,1	<0.02	
83: 84 -FR	46.5	2.67	
8Z: 85 -PR		<0.02	
83: 86 -FR	0.2	<0.02	
83: 87 -PR	0.1	<0.02	
83: 88 +PR	0.1	<0.02	
83: B 89 -PR	<0.1	<0.02	
83: 90 -FR	<0.1	<0.02	

BARRINGER RESOURCES INC. OFFICES & MINERALS LABORATORY: 1455 DEMING WAY, SUITE 15 SPARKS, NEVADA 89431 PHONE: (702) 358-1158

BARRINGER RESOURCES

PAGE: 3 OF 3 COPY; 3 OF 3

DENNIS FORSBERG 1924 WEST NORA SPOKANE, WASHINGTON

WORK DRDER: 1453R-83

*** FINAL REPORT ***

GEOCHEMICAL LABORATORY REPORT

SAMPLE TY	PE: ROCK	1 (1) SOL (1) - 15	
SAMPLE	NIIMPED	AG	AU
	W P II D F W	FFE	PPM
83:	161 -PR	0.4	<0.02
831	162 -PR	<0.1	<0.02
83:	163 -PR	<0.1	<0.02
83:	164 -PR	0.2	<0.02
83:	165 -PR	<0.1	₹0.02
831	166 -PR	0.2	<0.02
831	167 -PR	<0.1	<0.02
83:	148 -PR	MS	MS
831	169 -PR	0.1	<0.02

SIGNED! James R. Lasy LABORATORY MANAGER

ORIGINAL TO: DENISON MINES, INC.

P-QUESTIONABLE PRECISION; *=INTERFERENCE; TR=TRACE; ND=NOT DETECTED; IS=INSUFFICIENT SAMPLE; NA=NOT ANALYZED; MS=MISSING SAMPLE

APPENDIX 2
Sample Descriptions

SAMPLE DESCRIPTIONS

Sample Number	Sample Description
1	Soil above argillized rock, float is purple welded tuff
2	Transition zone - purple, blotchy, welded lithic tuff with argillized zones and rims around fractures, goethite on fractures
3	Bleached zone - welded lithic tuff, clasts to $1/2^{11}$, same as 2 only completely argillized, goethite on fractures
4	Same as 3 - slightly silicified
5	Same as 4
6	Bottom of argillized zone, slightly silicified, same rock as 2
7	Transition zone - same as 2, blotchy
8	Purple, lithic tuffs, platy, unaltered
9	Green-purple lithic tuffs, propylitic alteration, fine grained with 1/8" feldspar phenocrysts, feldspars are argillized
10	Same as 9
11	Bleached and silicified tuffs, goethite on the fractures
12	Same as 11, few 1/4' calcite veins along fractures
13	Welded tuffs, argillized (blotchy) zones along fractures with few 1/16" qtz veins, goethite stained
14	Same as 13, with calcite on some fractures
15	Welded tuff, bleached, argillized, slightly silicic, heavily fractured with goethite
16	Same as 15
17	Same as 15 only less altered
18	Same as 15
19	Argillized lithic tuff, clasts to 1/4"
20	Platy, grey lithic tuffs, friable, propylitic alteration, frags to $1/4" \rightarrow$ chlorite

Sample Number	Sample Description
21	Lithic tuff, argillized, goethite on fractures
22	Same
23	Same
24	Red grey platy lithic tuffs, jointed N30°E, 75°E, with green rock frags, 1/2 - 1 1/2", in very fine grained tuff matrix (agglomerate)
25	Grey lithic tuff
26	1-2' silicic ledge in saddle on NW fault, goethite stained
27	Same as 25
28	2-3' silicic zone, 8' argillic zone, N70°W, 4' pit, dump sample
29	Same as 25
30	Same as 28, silicic zone 1' wide
31	Argillized tuffs with few qtz veins $(1/8")$, goethite on fractures
32	Argillized-silicic tuffs N70-75°W faults
33	Same as 32
34	Argillized tuff on NW fault
35	Bleached argillized tuff on N15°E fault, some silica replacement
36	Same
37	Same
38	Same
39	Same
40	Same
41	Fault zone - spherulites forming
42	Argillized lithic tuffs
43	Same as 42, goethite on fractures
44	Same as 43

Sample Number	Sample Description
45	Slightly argillized, purple, welded tuffs
46	Lithic tuff, platy, argillized, goethite stained
47	Massive argillized, goethite stained tuffs
48	Same
49	Same
50	Same
51	White rhyolite tuffs, goethite on fractures
52	Purple lithic tuff, feldspars argillized
53	Same - on fault
54	Same, less altered
55	Lithic tuffs, propylitic alteration
56	Lithic tuffs, bleached, argillized, goethite on fractures
57	Same as 56, hematite and goethite - N30°W shear zone
58	Same as 57, strong N10°E-vertical, joints, pyrolusite on fractures
59	10' shear zone, N10°W-vertical, argillized, lithic tuffs, 2' zone of qtz stringers - This sample of qtz stringers
60	Same of argillized zone in 59
61	Argillized lithic tuff
62	Dump sample, qtz vein and breccia material in argillized tuffs
63	12' of silicic vein material on fault, goethite and pyrolusite, argillized tuffs w/ qtz veinlets
64	Dump sample, qtz vein material with goethite stains
65	Argillized tuffs above caved adit
66	4' sample across fault above caved adit in argillized tuffs, silicic zone 1' wide with goethite
67	Argillized tuffs, goethite on fractures
68	Bleached, argillized, lithic tuffs, geothite on fractures, feldspars → adularia

Sample Number	Sample Description
69	Purple lithic tuff
70	Lithic tuffs, argillized, goethite on fractures, strong N30°E, 75°E joint pattern
71	Same
72	Same
73	20' argillized tuffs with comb qtz, qtz veinlets, goethite stained
74	Same as 73, fewer veins
75	Argillized, lithic tuffs w/ goethite on fractures
76	Lithic tuffs
77	Dump - unaltered lithic tuffs with some calcite veinlets, some qtz vein material also on dump.
78	Above adit, several N17°E, 70°E fractures, with thin calcite veinlets
79	12' argillic tuffs with stockwork qtz veins, goethite stained along fault - some pyrite
80	Same
81	Same
82	Same
83	Silicic zone widens to 2001, same
84	Same as 83
85	Argillized tuff with qtz veinlet stockwork
86	Argillized lithic tuffs, heavily fractured with goethite
87	Same
88	Same
89	Slightly argillized tuffs
90	White bleached argillized tuffs, goethite on fractures
91	Same
92	Same

Sample Number	Sample Descrition
93	Same
94	20' grab, silicic stockwork zone in argillized tuffs, pyrite on fractures, heavy goethite stains
95	20' grab, same
96	20' grab, same
97	20' grab, same
98	20' grab, same
99	20' grab, same
100	Argillized tuffs, geothite on fractures
101	Dump - silicic tuffs, heavy goethite, comb qtz on fractures
102	8-10' across, silicic-breccia zone in fault plane, comb qtz and much goethite
103	Dump - 4' wide silicic, 8' argillic on fault
104	Argillized fault zone with qtz veins, goethite on fractures 8-12' wide
105	Dump - argillized and silicic rocks from fault zone
106	Grab 140' wide argillized zone, fractures with qtz and goethite
107	30' argillized zone, no qtz, goethite on fractures
108	15' wide silicic zone with qtz vein stockwork and pyrite
109	Above adit, 2' silicic zone with goethite
110	Dump - silicic vein material and argillized tuffs
111	Same as 108
112	Grab, silicic, goethite stained tuffs
113	Same
114	Same
115	Dump - argillized, silicified tuffs, goethite stained
116	Heavily argillized, goethite stained, some qtz veins

Sample Number	Sample Descriptions
117	Argillized tuff, goethite on fractures, stockwork qtz veins, pyrite with qtz
118	Same as 117, grab of talus
119	Strong N40°W, 80°N, Zone in silicic area, some qtz veins
120	Intersect E-W and NW fault, argillized tuffs with stockwork qtz veins
121	Same as 120
122	Dump - structure not evident, argillized and some silica veins, highly fractured, goethite on fractures
123	Grab, qtz stockwork in argillized tuffs with goethite on fractures
124	Dump - qtz stockwork in argillized tuffs, goethite on fractures
125	By adit, qtz stockwork in argillized tuffs, goethite on fractures
126	Dump sample, slightly argillized tuffs, some qtz veins, goethite stained
127	Argillized, goethite stained tuffs, in front of adit
128	Argillized, goethite stained tuffs
129	Same, from E-W fault
130	Intersection of NE fault and E-W fault, argillized, goethite stained lithic tuffs, some qtz veins
131	Argillized tuffs, hematite stained
132	Same
133	Same
134	Same
135	Same, prospect pit
136	Above adit, fault N50°W, dips south, $3^{\prime\prime}$ qtz vein with hematite
137	E-W fault, dips N-vertical, 6-8' silicic zone, qtz stockwork in argillized tuffs, 6' grab across silicic zone and N10°E conjugate set

Sample Number	Sample Description
138	Dump sample of the above, hematite, goethite
139	Silicified, stockwork zone, N45°W→N, 6-8' wide, goethite stained
140	3' silicified fault plane, E-W→N, prospect pit, dump sample
141	100' wide silicic zone with sporatic qtz stockwork, on E-W fault
142	50' wide, same as 141
143	Same fault as 142, zone is 20' wide, goethite stained
144	Same as 143, dump of prospect pit
145	150'+ zone argillized tuffs, goethite stained, very few qtz veins
146	20'+ argillized tuffs, goethite stained on E-W fault
147	50'+ argillized tuffs, some qtz veins, goethite stained
148	3' qtz vein in argillized tuffs, heavy goethite stained
149	20'+ N15°E→E, with stockwork qtz veins
150	100'+ qtz stockwork in argillized tuffs, heavy goethite
151	Same
152	Muck in back of adit, N30°W→S, argillized tuffs, some qtz veins, geothite stained
153	Dump of adit in 152
154	Grab of hanging wall, argillized tuffs, qtz stockwork + pervasive silicic alteration, goethite stained
155	Same, less silica
156	Same as 155
157	20' pyritized, qtz stockwork zone
158	Face of adit, qtz stockwork in argillized volcanics with goethite
159	Argillized, goethite stained tuffs
154 155 156 157 158	Grab of hanging wall, argillized tuffs, qtz stockw pervasive silicic alteration, goethite stained Same, less silica Same as 155 20' pyritized, qtz stockwork zone Face of adit, qtz stockwork in argillized volcanic with goethite

Sample Number	Sample Description
160	Pyritized, qtz stockwork in green chloritic, argillized tuffs, goethite stained
161	8' silicic E-W zone in argillic tuffs
162	Argillized and bleached tuffs
163	Same - hematite stained
164	Same - hematite stained
165	Same - hematite stained
166	Same - hematite stained
167	5' grab - N10°E fault, geothite stained, argillized, slightly silicic
168	12' grab near 167, calcite on fractures
169	Argillized tuffs on fault

Wasser norman dess

MAPS

