(b) Property: No. 14 MINERAL HILL MINE

(1) The property is located in the Mineral Hill Mining District, Eureka County about 55 miles via road northerly from Eureka, Nevada. The first 50 miles is on paved State Highway No. 20, then 5 miles easterly on an unpaved road. Snow may block the road for the last mile or two for a few weeks during the winter.

(2) Siskon Corporation owns a contiguous group of 9 patented lode mining claims containing about 75 acres, 7 unpatented lode mining claims containing about 92 acres, 160 acres of patented land and miscellaneous water rights. Part of the above holdings are subject to a 10% net production royalty until a total of $10,000 is paid to a former owner.

The unpatented claims are held by completing at least $100.00 per claim of assessment work per year totaling at least $700.00, and the assessment work is current to date. The patented claims and land are held by the payment of taxes which are current to date.

Siskon Corporation obtained the property, as follows: 3 patented claims, 160 acres of land and the water rights by a deed, dated November 15, 1966, from the Security Industrial Corporation; and, 2 patented claims by a deed, dated January 9, 1967, from Thomas W. & Eleanor Miller; and, 4 patented claims by a deed, dated April 17, 1968, from Hugh M. Baldwin; and, one unpatented claim by a deed, dated April 17, 1968, from Mr. & Mrs. Ed. C. Leutzinger; and, 6 unpatented claims by a deed, dated July 20, 1969, from Chessher & Co.

(3) According to William H. Emmons in U.S.G.S. Bulletin 409, 1910, the total production of Mineral Hill, so far as it can be estimated from various reports, is probably a little more than $6,000,000, practically all of which is silver; however, on page 99 in Bulletin 64, Nevada Bureau of Mines, the production for 1938 and previously is reported to be $2,500,662. Two of the former operators were the Mineral Hill Silver Mining Co.
Ltd. and the Mineral Hill Consolidated Mining Co. The J. R.
Simplot Co. conducted exploration work on the property during
the period, 1962-1965.

(4) The main workings consist of numerous open cuts, shallow
stopes, shafts and adits from which the principal production
was limited to an area about 300 feet wide and 1500 feet
long. The open cuts are from 10 to 75 feet long and 20 to 40
feet wide and the stopes are up to 40 feet in width and as deep
as 150 feet below the surface. From the northerly end of the
mineralized area The Queen Adit extends some 720 feet southerly.
West of the area The Taylor Adit was driven some 600 feet east-
erly to connect with a winze from The Queen Adit. There are
no improvements, plants, or equipment on the property.

(5) Silver mineralization occurs in silicified north-south breccia
zone approximately 1200 feet long and 300 feet wide in steep-
ly dipping dolomites and limestones which have a maximum think-
ness of 350 feet and overlie thin bedded silicious shales r-
long a thrust-fault contact dipping about 20° W. Small, flat-
lying fault plates, jasperoidal chert breccias, tabular silici-
cified zones, and recrystallized dolomites laced with minute
quartz veinlets are seen at the southern portion of the minera-
lized zone.

Individual stopes within the breccia zone range from 10 to 50
feet wide and to 150 feet long. They are, in general, tabular
and dip at 20° to 40° east. The brecciation and accompanying
mineralization extend vertically downward to a depth of at least
150 feet, but at that depth less open space was developed and
individual mineralized zones are smaller. Within the old stopes
the only silver minerals seen are generally associated with white
to pink quartz, and although the quartz continued through some
vertical extent, the silver deposition was more localized.

Sampling of dumps and prospect pits on localized mineralized
zones, in general, has indicated an average assay value of a-
about $4 per ton, but extensive geochemical sampling away from
such deposition and outside the breccia zone have given ex-
fremely low assay results.
(6) Extensive geological studies and sampling of the mineral de-
position have been done by Siskon and others. No deposits of
commercial ore are presently known to exist. The property will
be held for further geologic evaluation, but Siskon has no dis-
tinct exploration plans at present.
Alluvium

Alluvial fans and stream sand and gravel, playa silt and clay in Diamond Valley

Older alluvium

Qoa, elevated and dissected alluvial gravel and sand Ql, lake beds in Pine Valley. Well bedded light gray to buff siltstone, white rhyolitic tuff, white clay-rich limestone, fine- to coarse-grained sand and some pebble conglomerate

Basalt

Dense, fine-grained, vesicular basalt, locally porphyritic

Volcanic and sedimentary rocks in Pine Valley

Tb, Olivine basalt, locally porphyritic and amygdaloidal and minor porphyritic rhyolite, and interbedded pebble conglomerate

Ts, Buff pebble to boulder conglomerate, white pumice and crystal lapilli tuff, and gray-brown fine- to medium-grained poorly bedded sandstone
Tv, Lavender porphyritic quartz latite, gray porphyritic rhyolite, rhyolitic crystal tuff, lithic vitric lapilli tuff, crystal vitric tuff, and minor tuffaceous sandstone

Andesite

Buff to red-brown coarse-grained andesitic tuff and breccia, andesitic crystal vitric lapilli tuff, lithic crystal tuff, and red-brown andesite of Diamond Valley. Age relations to Tv, Ts, and Tb in Pine Valley unknown

Intrusive rocks

Andesitic intrusive breccia and tuff. May be feeder for andesite of Diamond Valley

OVERLAP FACIES

Garden Valley Formation

Red-brown siliceous pebble to cobble conglomerate, clasts predominantly quartzite and chert, coarse-grained chert grit, and medium- to coarse-grained sandstone

Chainman-Diamond Pead beds

Coarse-grained brown sandstone, gray granular elastic limestone, gray shaly siltstone, and minor chert pebble conglomerate
Upper Plate of Roberts Thrust
(Western facies)

Ds
Shale and chert
tunalored (Crystalline Shale)
Gray fissile shale, dolomitic siltstone, and black and brown bedded chert

Bruffey Formation
Dbu, upper member, well bedded gritty limestone, chert and limestone conglomerate, gray limey shale, and minor sandstone
Db, lower member, black chert pebble to boulder conglomerate, well bedded gritty limestone
Db, Bruffey Formation, undivided

Pump Spring Formation
Limestone flatstone conglomerate, black and brown chert, gray shale, gray vitreous quartzite, and gray platy clastic limestone

Flynn Spring Formation
Gray platy graptolite shale, bedded black chert, gray vitreous quartzite, and gray-blue gritty limestone.
- - mappable chert beds, - - - mappable quartzite beds, - - - mappable limestone beds
Western facies, undifferentiated

Shale, chert, and quartzite of uncertain assignment

Lower Plate of Roberts Thrust
(Eastern facies)

\[\text{Dd} \]

Devils Gate Limestone

Gray and gray-blue, well bedded to massive stromatoporoid and "spaghetti" limestone

\[\text{Dt Dtl} \]

Telegraph Canyon Dolomite

Alternating light and dark gray, well bedded to finely laminated fine-grained mottled dolomite. Dtl, blue-gray, thin-bedded limestone tongue, locally cherty.

\[\text{Du} \]

Union Mountain Formation

Gray to light brown quartzose dolomite, gray crinoidal dolomite, vitreous medium to coarse-grained quartzite, and light gray coarsely crystalline dolomite

\[\text{Dm} \]

McColley Canyon Formation

Gray medium to thick bedded limestone and dolomitic limestone, locally quartzose, and thin bedded and platy...
Lone Mountain Dolomite

Dlu, upper member, alternating gray-brown
finely crystalline dolomite

Dlm, middle member, light gray to cream-colored coarse-grained, poorly bedded crystalline dolomite

Dll, lower member, gray to gray brown, thin to medium bedded silty dolomite

Roberts Mountains Formation

Thin bedded to platy silty limestone, gray limey siltstone, and minor medium-grained clastic limestone

Hanson Creek Formation

Ohu, upper member, light-gray to buff, well bedded, medium-to coarse-grained dolomite

Ohl, lower member, chocolate-brown to dark gray medium-to coarse-grained dolomite, generally massive

Oh, Hanson Creek Formation, undivided

Eureka Quartzite

White to buff medium-grained vitreous quartzite, generally
Undifferentiated Paleozoic rocks

Gray and gray-brown, fine-grained, non-bedded dolomite, generally brecciated. Probably principally Lone Mountain and Hanson Creek Formations on west side of Sulphur Springs range, Telegraph Canyon Formation on east side of Sulphur Springs range.
Contact
Dashed where approximately located, all alluvial contacts dashed
\[D \]
\[U \]
Normal or reverse fault, showing dip
Dashed where approximately located, dotted where concealed. \(U \), upthrown side, \(D \), downthrown side
\[40^\circ \]
Thrust fault, showing dip
Dashed where approximately located, dotted where concealed. Saw-teeth on upper plate

Scarp
Fault scarps in Pine Valley, Beach
scarp in Diamond Valley

Anticline
Showing trace of axial surface, Dashed where approximately located

Overturned anticline
Showing trace of axial surface, Dashed where approximately located

Syncline
Showing trace of axial surface, Dashed where approximately located

Overturned syncline
Lake beached of Diamond Valley

Inclined Overturned Vertical Approximate Crenulated

Strike and dip of beds

Approximate Inclined Vertical

Volcanic flow banding

Geology mapped in 1953-54, 1962 under support by the University of California