GOLDSTRIKE—GOLD

Ore body names: Long Lac deposit, Bazza (past open pit); Goldstrike No. 6, Goldstrike No. 9, Pan Cana No. 1, E. P. No. 1, E. P. No. 2

LOCATION-OWNERSHIP

County Eureka.
Mining district Lynn.
Elevation 1,700 m.
Topography Hill.
Domain BLM administered.

GEOLOGY

Type of ore body Disseminated.
Origin Hydrothermal.
Shape of ore body ... Tubular to elongated lensoid.
Ore controls Faulting, fracturing-brecciation, lithification.
Strike of mineralised zone N 55° W.
Age of mineralisation ... Cretaceous (78 million yr).
Mineralised area average dimensions (estimated), m: Length 2,100.
Width 1,400.
Thickness 75 to 170.
Depth 10.
Principal minerals ... Pyrite (sulfidic), marcasite (sulfidic), quartz, sericite, kaolinite, montmorillonite, goethite.
Other Chalcopyrite, scheelite, hematite, garnet, diopside, tremolite, calcite, barite, jarosite, variscite, chalcedony, alunite, stilbite, aragonite, realgar, orpiment, arsenopyrite, sphalerite.

Host formation Vinini Formation (most favorable); skarn, latite, dike, granodiorite.
Geologic age Rock relationships.
Argillites (carbonaceous), fractures contain ore.
Shales (sometimes carbonaceous), fractures contain ore.
Siltstone, fractures contain ore.
Quartzites (minor), near ore, gangue.
Chert (minor), near ore, gangue.
Limestone (rare), gangue.
Granodiorite-to-diorite stock, contains ore (Early Cretaceous).
Quartz latite and latite dikes, contains ore.
Skaara (sensitith in diorite stock) contains ore.
Jasperoid, above ore, near ore.
Silification, argillite, sericite.

Alteration Small.
Size Small.

DEVELOPMENT

Current status Active-producer.
Type of operation Surface.
Mining method Open pit.
Initial production 1976-77 (by Pan Cana Industries).
Past production About 230 kg Au (1979) (132).
Road requirement None, existing to the site.
Mill location On-site.
Mill status Active.
Milling method Cyanide heap leach.
Process rate Unknown.

PUBLISHED RESERVES-RESOURCES

No published reserve-resource information.

REFERENCES

122, 182, 183, 460, 593, 890.

USGS quad maps Elko, 1:250,000.
USGS sequence number ... 0220110165.
Mid number 2601089.

Comments: Best mineralization occurs at intersection of high-angle structures and following low-angle structures. About 4 to 5 areas or zones of gold mineralisation occur in the mine area. Northwest-trending high-angle faults (pre-mineral) have dominant control over mineralisation. Individual mineral zones are 60 to 300 m in length with northwest elongation and 15 to 80 m in width. Both oxide and unoxidised ore exists. Oxide ore is known to exist up to 90 m in depth. Unoxidized sulfide ore has been as shallow as 20 m.
Principal Deposits of Strategic and Critical Minerals in Nevada

By N. T. Lowe, Russell G. Raney, and John R. Norberg