PROPERTY NAME: Rimrock Mine
OTHER NAMES: 
MINERAL COMMODITY(IES): Hg
TYPE OF DEPOSIT: Opalite
ACCESSIBILITY: 
OWNERSHIP: 
PRODUCTION: Small
HISTORY: Bailey and Phoenix (1944) describe this deposit.

DEVELOPMENT: Several adits (2 observed on this visit) plus one more about 700 m to the northwest. Also an ore bin and remains of a retort (photo). Probably no new workings since the 1940's. A fairly new bulldozer road leads to the S7 property.
ACTIVITY AT TIME OF EXAMINATION: None. There are recent claim stakes, and rumors that the district is being explored for gold.

GEOLOGY: Cinnabar occurs in a strataform opalite breccia unit about 6 m thick which overlies unsilicified tuffs. The fragments in the opalite breccia are probably silicified tuffs or tuffaceous sedimentary rocks, as unplaced quartz crystals or grains can be seen. The cream-colored tuffs below the opalite consist of 20-30 cm thick beds of tuff with "floating" lithic fragments and little evidence of bedding or graded bedding. They are vitric tuffs, probably of pyroclastic origin, although they do not appear welded. Some low-angle cross-bedding suggests base-surge deposits also. Fragments of wood float in these tuffs; it appears carbonized but not silicified (it is a light-brown color). The underlying beds and the opalite appear to have an attitude of N75W, 20 NE.

The opalite contains only a very few cavities with open-space textures (drusey quartz, botryoidal chalcedony, hyaline opal). Most of the body is solid opal, medium gray to white. Often the opalite consists of 0.5-3 cm fragments of gray banded opalite (replaced laminated tuffs?) in a cream, massive opalite. The fragments also may exhibit replacement features; for example, cream opalite concave into the fragments, etc.

The origin of the deposit is speculative. I believe the brecciation and opalization took place as the opalite was "deposited", possibly in shallow water. The underlying tuffs are probably subaerial. Mercury may be fairly late in the mineralizing process, and it occurs in cavities and cracks, in part. The opalite breccia may have formed in shallow water (lake) by explosive hydrothermal activity. This activity may have brecciated tuffaceous and unopalized tuffs. These fragments were deposited and completely cemented by opal. The feeder for the silica-rich solutions could be some distance away, possibly near the margin of the lake. These sediments could well be intracaldera lake deposits. Rocks above the opalite are covered, but could be more tuffs and tuffaceous sediments. The property in S7 is similar to the above, except the opalite is apparently cut off by a probable post-mineral (unaltered) flow-banded intrusive?

REMARKS: Sample 467 is of opalite with cinnabar from open cut above retort. Photo G823-3 is of the retort.