MACKAY SCHOOL OF MINES

"A School of Mineral Resources"

01/100000

UNIVERSITY OF NEVADA RENO, NEVADA 89507

Office of the Dean

July, 28, 1977

Mr. Arvin Boerlin, President Nevada Agricultural Foundation P. O. Box 8828 University Station Reno, Nevada 89557

Dear Mr. Boerlin:

I am returning to you herewith the appraisals of the patented mining claims in Nye County owned by Mr. William B. Golden. I have studied the appraisals and reviewed the literature concerning the individual properties as well as inspecting the Golden Arrow and Roberts Placer claims in the ground. I am acquainted with the Round Mountain and Berlin districts from earlier work and both appraisers considered the Elk claim to have no mineral value, so I did not inspect these parcels.

All of the parcels must be considered as prospects, since they are not in active operation and have no blocked out ore reserves in the technical usage of the term. Any estimate of their mineral value, then, can only be based on an interpretation of the known geology of the deposits plus assumptions as to the economics of mining that will prevail in the future when the deposits might be further explored and mined.

The general approach that both appraisers took in establishing their valuations is the same approach that I have taken in similar situations and that other geologists of my acquaintance take. Although their appraisals of the value of the individual parcels very, they are in the same range that I would estimate for these parcels.

The two appraisals represent a fair valuation for the property as a whole.

Yours truly

Arthur Baker III

Dean

ABIII:sc

Enc.

Dave:

Copy for your files. The whole deal has been accepted by the powers that be. I hear that the assorted Deans already are planning development.

Steve.

William B. Golden

Various Patented Claims

Northern Nye County

Nevada

ZAFTTZAGES
RECURITEN

EXPLORATION POSSIBILITIES

AN ANALYSIS

David LeCount Evans

Consulting Geologist

Reno, Nevada

June 1,1977

DAVID LE COUNT EVANS

1700 ROYAL DRIVE
TELEPHONE (702) 747-4101
RENO, NEVADA 89503

June 2, 1977

Mr. William B. Golden, 14210 Rim Rock Drive, Virginia Foothills, Reno, Nevada 89511.

Dear Mr. Golden:

Please find attached an analysis of your six patented claims or groups of claims, all in northern Nye County, Nevada. The six occur in five different mining districts. An original and five copies are provided.

As indexed and bound, the study consists of five separate analyses, namely, Gold Bar, Roberts, Round Mountain, Adams and Elk.

Each is accompanied by an Index Map and individual Plate of the property and its environs, at the end of each text. Survey Plats for each Patent are in the pocket affixed to the report cover.

Analyses conform to your request that I reach an exploration value for each of the properties. This, therefore, is not the precise analysis one attempts when evaluating proved, probable and possible ore reserves. It is what one might expect if, after a study of a district's history, the district's geology and possible projections and some check sampling of ore, matters work out.

Fair market value, relying on an assumed royalty, is shown for each property and repeated under "Conclusions".

Fair market values total \$381,000.

This opportunity to be of help has been greatly appreciated.

GOLDEN ARROW GROUP

Patented Claims

Golden Arrow District
Nye County, Nevada

EXPLORATION POSSIBILITIES

FOREWORD:

With reference to attached Index Map A., these properties, 37 miles southeast of Tonopah, were examined on April 30. 1977.

Further reference is made to Plate B, a 1000 scale study showing group outlines, indicated structural controls and samples taken during the course of examination.

Geological interpretation has, in part, depended on Kral's "Mineral Resources of Nye County" (Nevada Bureau of Mines ± 1950), as well as personal interpretation.

PURPOSE OF REPORT:

Purposes are as follows:

- 1- to suggest structural controls;
- 2- to estimate the grade and amount of material mined and shipped:
- 3- to evaluate opportunities for continued exploration, target tonnages and grade and an exploration value;
- 4- to determine a fair market value for the property.

CONCLUSIONS

1- Indicated is structural continuity from the

Sample Results

North End

Sample #	Type	Ounces/Ton	Ounces/Ton	<u>Comments</u>
1	Grab	0.16	1.37	Golden Bar dump; selected sulphide quartz specimens from dump.
3	Grab	0.11	0.15	Summit dump; grab of quartz pieces from dozer cut.
4	Grab	0.18	1.10	Golden Bar dump; mixture of grabs from piles of course, medium and fine "ore" piles.
5	Grab	0.29	0.83	Desert Shaft; selected quartz from dump.
South End	es t			
2	Grab	0.04	1.52	Stockpile of quartz at King of All Shaft & dump.

Values for the above on the basis of today's precious metal prices, ie: \$145/ounce gold and \$4.75/ounce silver, amount to:

Location	Oz/T Au	Oz/T Ag	\$ Gold	\$Silver	<u>Total</u>
Golden Bar	0.17	1.24	\$ 24.65	\$ 5. 89	\$30.54
Summit	0.11	0.15	15.95	0.71	16.67
Desert	0.29	0.83	42.05	3.94	45.99
King of All	0.04	1.52	5.80	7.22	13.02

EXPLORATORY POTENTIAL:

Approximately 40,000 to 50,000 tons appear to have been mined from these properties. Mining has been from the obvious from outcrop areas, relying on simple vein interpretation, et cetera.

It is believed that today's more detailed geological mapping and geophysical tools will develop additional vein structure and mineralization by continued extension of Desert and Summit shaft areas, exploration on the untried Lucky Strike segment, and, the Papoose-Apache partially-tested trend.

The four targets, lettered A through D, on accompanying Plate B, are listed below:

Unit :	<u>Name</u>	I	<u>L</u>	D	Tons	\$/Ton	Gross Value	\$ 7½% ORI
A	Desert	2.5	300	300	17300	45.99	797,845	60,000
В	Lucky Strike	2.5	250	300	14400	30.54	441,015	33,000
C	Summit	2.5	300	200	11600	16.67	192,095	14,500
D	Papoose	2.5	1400	50	13700	13.02	179.045	13,500
	<u>A11</u>	a.c.			57,000	28.25	1,610,000	121,000

Note: T = thickness; L = Length; D = depth; ORI - royalty.

TARGET MINERALIZATION:

The above has been a matter of analyzing exploration possibilities, using broad regional "tie-ins", with grade determined by sampling stockpiled materials. Figures represent inferred reserves.

A precise analysis of cost of operation, net smelter returns, et cetera, is an impossibility. Therefore, a rough overiding royalty interest, in this case $7\frac{1}{2}\%$ of indicated gross value, is employed.

FAIR MARKET VALUE:

The fair market value is determined to be \$ 121,000.

Respectfully submitted,

ROBERTS PLACER

Patented Claim

Belmont Mining District
Nye County, Nevada

EXPLORATION POSSIBILITIES

FOREWORD:

Considering Index Map A, the property lies 44 miles northeast of Tonopah, Nevada, or 1 mile southeast of Belmont. The examination was completed on May 1, 1977.

Attached 2000 scale Plate C shows the position of claim, 1000 feet due east of the main Belmont mined area.

Geological description is as described by Kral in his "Mineral Resources of Nye County" (Nevada Bureau of Mines ± 1950).

The distribution of detrital gravel is as observed and marked by the writer.

PURPOSE OF REPORT:

Purposes have been:

- 1- to delineate the gravel area;
- 2- to evaluate the possibilities of developing a placer property;
- 3- to determine a fair market value for the property.

CONCLUSIONS:

1. The close position of detrital accumulations with respect to the highly mineralized and productive Belmont Kral's publication date of 1950 infers \$35 gold and a value, therefore, of 66ϕ per yard on today's \$145 gold.

EXPLORATORY POTENTIAL:

To summarize, this analysis considers the exploration possibilities to have some merit, because of

- 1- the block's position, adjacent to and directly down slope from exceptional mineralization and production;
- 2- the indication of testing before patent application;
- 3- the evidence that gold placers occur adjacent to similar mineralization in Antone and Meadow canyons; and the fact that after downgraing reported values could be worked;
- 4- the Total target (there are no positive, probable or possible reserves) which is 520,000 yards and which at 66¢ per yard would provide a gross value of \$343,200.

A precise analysis of true value, cost of operation, fineness of gold, contingency factors, et cetera cannot be provided. Therefore, a rough overriding royalty interest, in this case $7\frac{1}{2}\%$, is used.

FAIR MARKET VALUE:

The fair market value is determined to be \$26,000 (rounded).

Respectfully submitted,

William B. Golden's

ROUND MOUNTAIN PLACER PATENTED CLAIMS

Round Mtn. Mining District
Nys Co., Nevada

EXPLORATION POSSIBILITIES

FOREWORD:

Index Map A shows the position of this property at Round Mountain, 45 miles north of Tonopah, Nevada.

Attached Plate D, a 2000 scale study of the Round Mountain area, provides the distribution of the placer source (a rhyolite intrusive or welded tuff), area of underground mining, old placer pits, nearest placer cuts to property in the northeast quarter of section 24, and the William B. Golden patented block.

The property was examined was examined on May 1, 1977. Pits were examined but not sampled, since surficial or near-surficial materials would not represent the 20 feet of possibility, considered in this analysis.

The geological detail which follows is taken from (1) "Placer Mining in Nevada" (University of Nevada Bull.XXX,Ne.4, May 1936) by William O. Vanderburg of the U.S.Bureau of Mines, and, (2)Kral's "Mineral Resources of Nye County", a Nevada Bureaumof Mines release of about 1950.

PURPOSE OF REPORT:

Purposes of report are:

1- to establish the position of the Golden 80 acres with respect to the migration of detritus and associated

- gold from the Round Mountain extrusive or intrusive sources;
- 2- to accept values, provided by Vanderburg, for placers 1000 feet from the source, and to establish a speculative but fair value for gravels, fed by finer-flour gold, 8000 feet from the source;
- 3- to determine a fair market value for the property.

CONCLUSIONS:

- 1- the source of the placer gold is the free gold accompanying the rhyolite intrusives or welded tuffs, of Tertairy age, in the main Round Mountain lode area. The unit is the source, despite questions as to its proper classification;
- 2- similar but smaller centers of gold mineralization and
 the continuation of the unit to the north and northeast
 from Round Mountain could be contributory to placer gold
 distribution:
- 3- there is drainage continuity from the Round Mountain mined area into section 24 and at least the south half of section 13; from the continuation of the unit to the north and northeast, there is this other possible source which could feed into the NE/4 of section 13;
- 4- fair market value is estimated at \$116,000.

LOCATION:

Claims lie in the northeast quarter of section 13, Township 10 North, Range 43 East, Nye County, Nevada. Round Mountain is the mining district.

Indicated is an abrupt increase in value starting at 20 feet and, then, accelerating enrichment towards bed rock. Suggested is an evenness of values in the upper 20 feet, with an average of \$0.217/yard on 1936 prices or \$0.90 on today's market.

Assuming the premise that the much lower value in the 20 feet represents finely-divided or "flour" gold, transportable over greater distance, and, discounting the value by 33%, because of distance from source, this report suggests 60¢ per yard as an exploration-target value per yard.

EXPLORATORY POTENTIAL:

The NE/4 of section 13 has no positive, probable or possible ore reserves.

But the section does have an exploratory potential; that is to say, yardage and values that might be developed if:

- 1- loose material does represent a continuation, northwesterly, of richer residual placer, adjacent to Round Mountain lode mineralization;
- 2- lower values in the top 20 feet of section, because of "flour" characteristics or through solution and reprecipitation, can extend out to greater distances.

TARGET MINERALIZATION:

The 80 acres represent 3,484,800 square feet which, with 20 feet of thickness, would represent 2,581,333 cubic yards.

At \$0.60 per cubic yard, cubic yardage represents a gross of \$1.548.800.

Since this is a <u>target</u> figure, to be verified, increased or decreased by standard exploratory techniques, no proceedures exist, at this time, to provide a precise evaluation.

Value in dollars, as a prospect, is therefore, resorted to by using some sort of overriding royalty interest. In this, case, used is $7\frac{1}{2}\%$ of the gross value.

FAIR MARKET VALUE:

The fair market value is determined to be \$116,000.

Respectfully submitted,

ADAMS LODE

Patented Claim

Berlin Mining District
Nye County, Nevada

EXPLORATION POSSIBILITIES

FOREWORD:

With reference to the attached regional map, Plate A, the Adams Lode is in the northwest corner of Nye County, at Berlin, which falls about five miles south of Ione. The property was examined on May 2, 1977.

Attached Plate E shows (1) the position of the Adams

Patent with respect to the old Berlin mine (2) the Berlin mine

and limits of mining and its vein patterns (stippled) (3) vein

structures adjacent to and east of the Adams property and (4)

samples taken during the course of examination.

Two sources have been of assistance in developing geological understanding, namely:

- (1) Kral; "Mineral Resources of Nye Courty"; Nevada Bureau of Mines, carca 1950;
- (2) Ellsworth Daggett; "The Extraordinary Faulting at the Berlin Mine, Nevada"; Transactions, American Institute of Mining Engineers; 1908

PURPOSE OF REPORT:

Purposes are as follows:

(1) to assemble Berlin mine details, especially, structural controls with their significance and bearing on the adjoining Adams property;

Values for samples 6 and 7, on the basis of today's precious metal prices, ie: \$145/oz Au and \$4.75/oz Ag, amount to:

Location	Oz/T Au	Oz/T Ag	\$ Gold	\$ Silver	\$ Total
Shaft Dump Sample 6	0.41	0.10	59.45	0.48	59.93
Tun. Dump Sample 7	0.12	9.81	17.40	46.60	64.00

EXPLORATORY POTENTIAL:

Listed are the following significant facts, estimates and observations:

- 1-The Berlin mine, mining to within 250 feet of the west line of the Adams Patent, produced 85,000 tons, with a per ton value of \$86 on 1977 markets. Production was from northeast trending structures;
- 2-structure east of the patent, explored to the patent's east line; average thickness of vein was $3\frac{1}{2}$ feet, strike length of the development was 150 feet; our one sample indicates a value per ton of \$59.93; Berlin produced to 360 feet of vertical depth; dimensions east of the patent and similar depth would represent 14,500 tons;
- 3-Berlin's 85,000 tons were taken from a mining area of 14.5 acres. The Adams Patent represents 17.5 acres;
- 4- Kral's 1950 reactions, to wit:" the maps indicate large virgin areas that may, with proper geologic guidance, be found to have segments of commercial ore", are concurred with."

TARGET MINERALIZATION:

Neither positive, probable nor possible ore reserves can be listed for the property. However, the Adams patent, without any exploration or development would merit exploration.

What would be the size of the target?

Any one of several approaches might be considered, ie:

- 1- acre for acre the areas are about equal;

 Berlin produced 85,000 tons; therefore the

 Adams Patent should approach such a figure;
- 2- Berlin production at 85,000 tons and an estimated reserve to 326 feet for the small shaft area of 14,500 tons, if averaged would provide a 49,750 tons figure;
- 3- were one to assume continuation of the 150 feet across the full 800 foot width of the Adams patent, 77,500 tons would be developed for 326 feet of vertical depth.

Any one of the three approaches might be permissible. But the Adams Patent remains a prospect, subject to many contingencies.

Therefore this analysis lowers its sights to about one third of the average of the above, and uses 25,000 tons for a prospect—target figure; with grade of \$59.93, as indicated by our sample #6.

Gross values would, therefore, be \$ 1,498,250.

Reiterated that this is a target figure.

A precise analysis of true value, cost of operation, net smelter returns, et cetera is an impossibility. Therefore, a rough overriding royalty interest, in this case, $7\frac{1}{2}\%$ of the gross value is employed.

ELK LODE

Patented Claim

Phonolite or Bruner Mining District

Nye County, Nevada

EXPLORATION POSSIBILITIES

FOREWORD:

With reference to attached Index Map A, the property lies $15\frac{1}{2}$ miles, on a N26°E line from Gabbs, Nevada, on the west flank of the Paradise Range.

Reached by some 15 miles of gravel and jeep roads from Ione through Penelss, the property was examined on May 2, 1977.

Attached Plate F, a 2000 scale study of the Bruner district, shows the distribution of the few properties and the position of the Elk Lode.

The district is a small one with only one good property, the Penelas. The small amount of available detail has been provided by Kral's "Mineral Resources of Nye County", a Nevada Bureau of Mines bulletin of about 1950.

PURPOSE OF REPORT:

Purposes are as follows:

- 1- to describe the Bruner mining district:
- 2- to evaluate the Elk Lode patent and its position in the district;
- 3- to determine a fair market value for the property.

Ore production on one property, the July lode, mined brecciated rhyolite, occurring in a chimney, with 14 by 8 feet dimensions.

-35-

Elk Lode surface consists of massive, glassy, gray lava, weathering to a smooth, polished, rounded surface. Absolutely no vein, pipe or other structure was observed; nor was there any suggestion of mineralization. In short, the Elk Lode surface is without promise.

DEVELOPMENT:

Except for a few barren cuts, there is no development. Nearest old prospect shafts and tunnels lie 2000 to 3000 feet to the southeast.

SAMPLES:

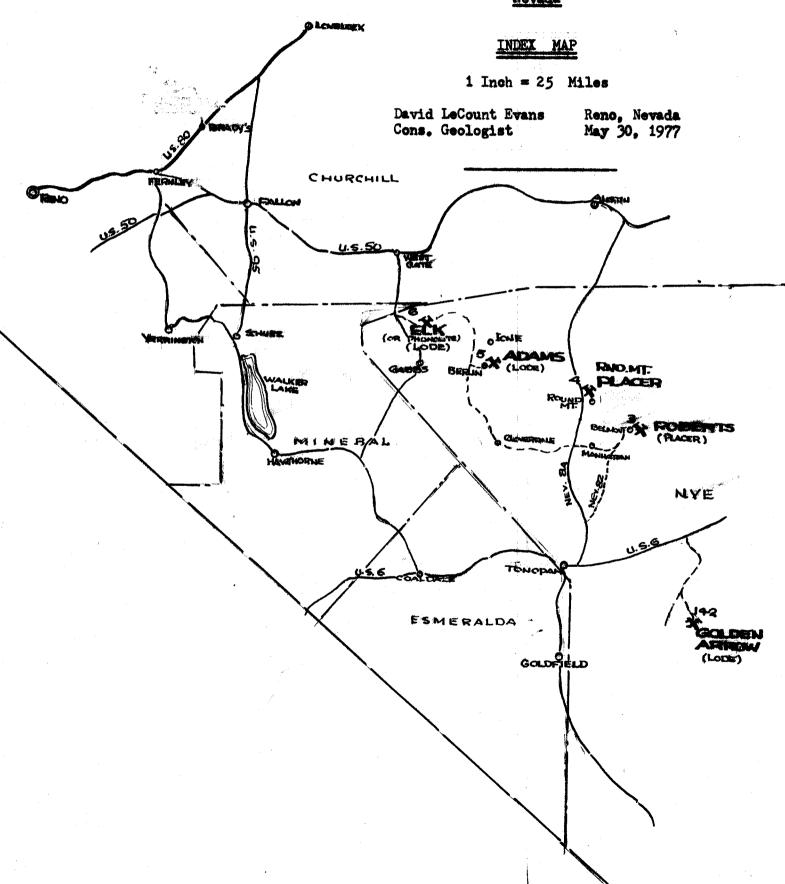
Considering the barren surface, no samples were taken during the course of examination.

EXPLORATION POTENTIAL:

The 20 acres are without promise and exploration would be ill-advised.

FAIR MARKET VALUE:

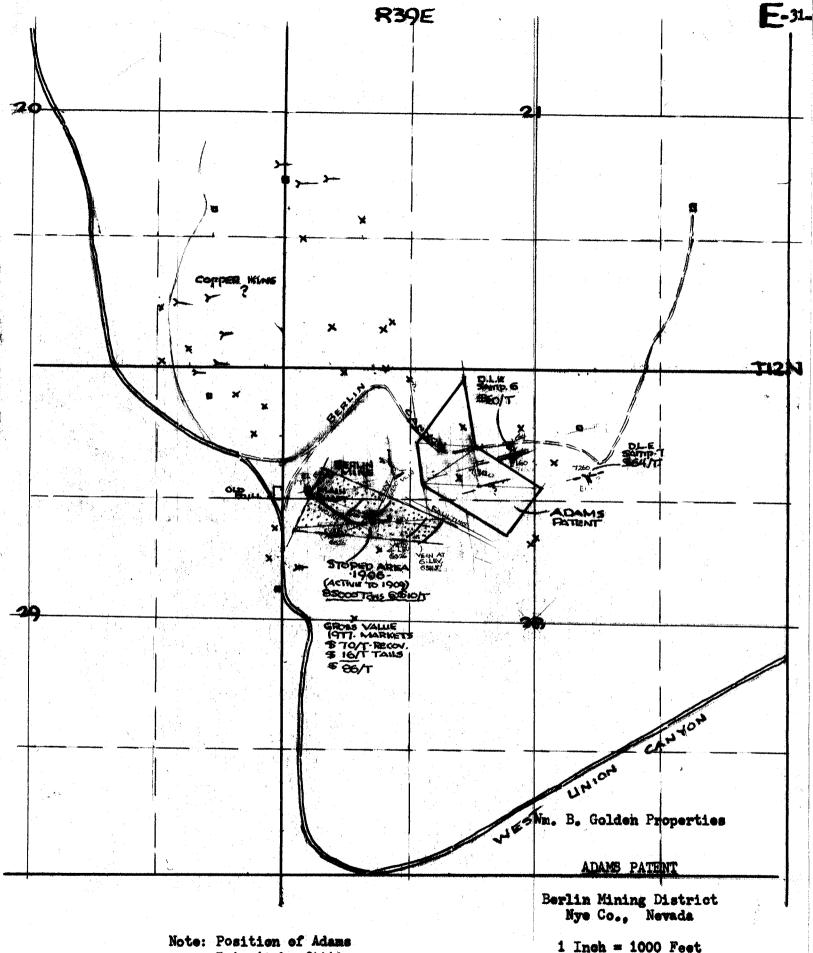
In view of the above, must be determined on land value, in this case \$300 per acre.


Fair market value is, therefore, placed at \$6000 (rounded).

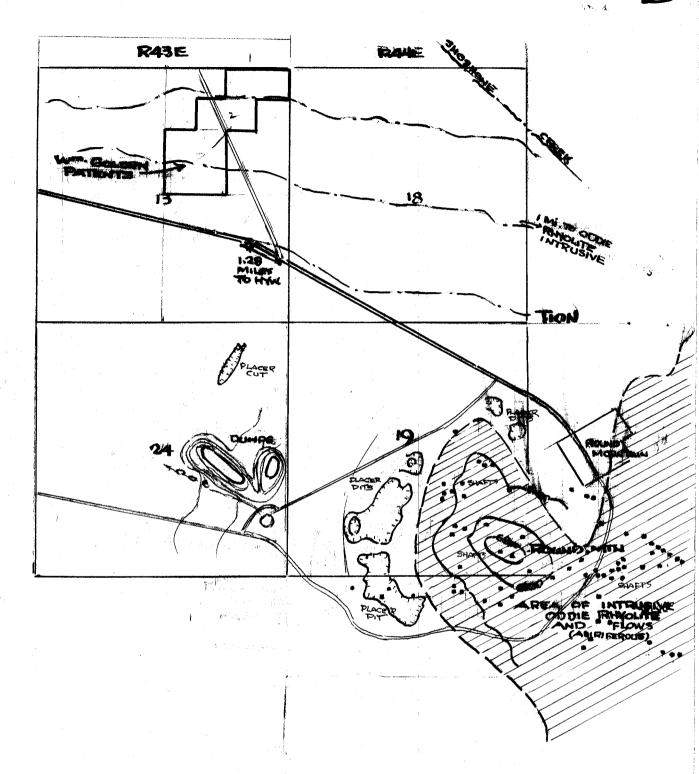
Respectfully submitted,

Wm. B. Golden Properties

Analyses of Various Patented Claims


Eplosticum digita Gounty as Novada

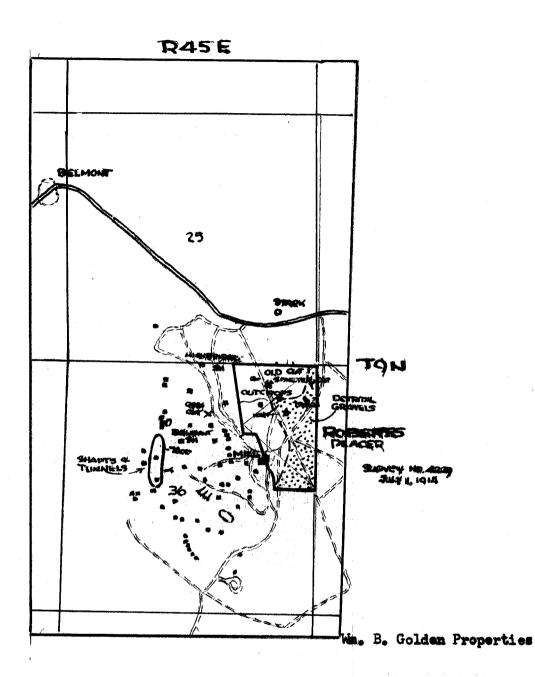
Phonolite Maning District Nye Co., Nevada


1 Inch = 2000 Feet

David LeCount Evans Cons. Geologist

Note: Position of Adams
Patentm by fitting
to Berlin Canyon
meander.

David LeCount Evans Cons. Geologist

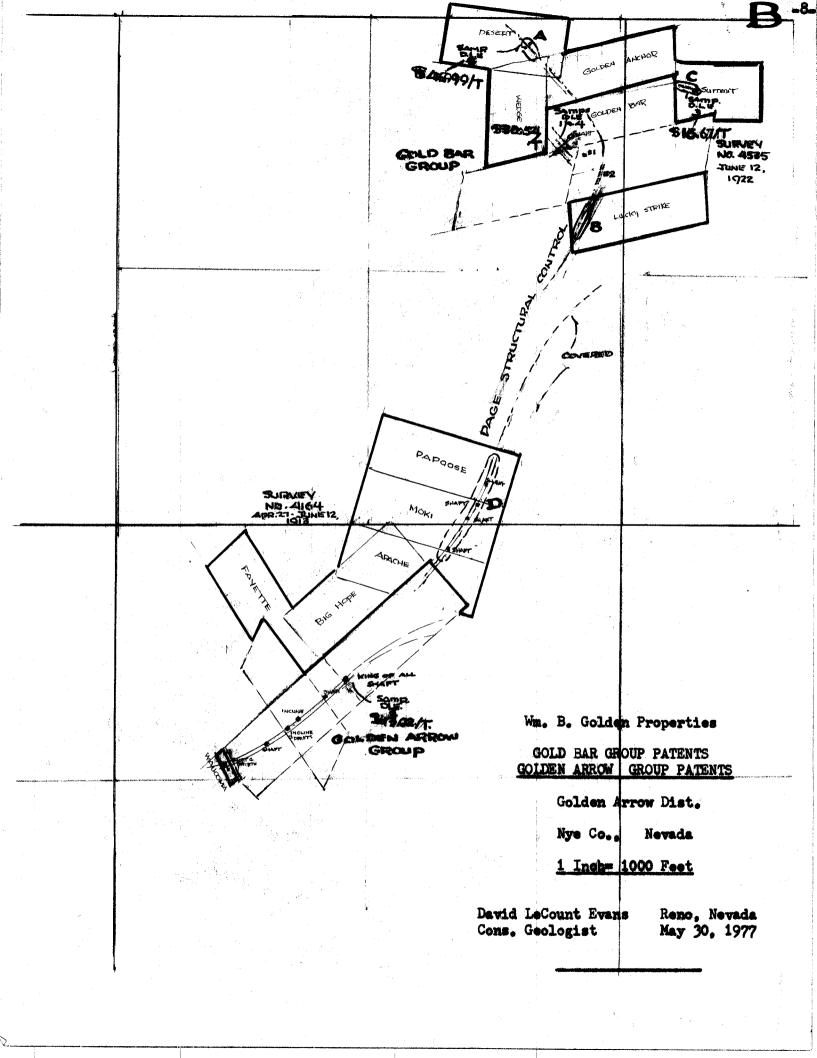

Wm. B. Golden Properties

ROUND MOUNTAIN PATENTS

Round Mtm. Mining District Nge Co., Nevada

1 Inch = 2000 Feet

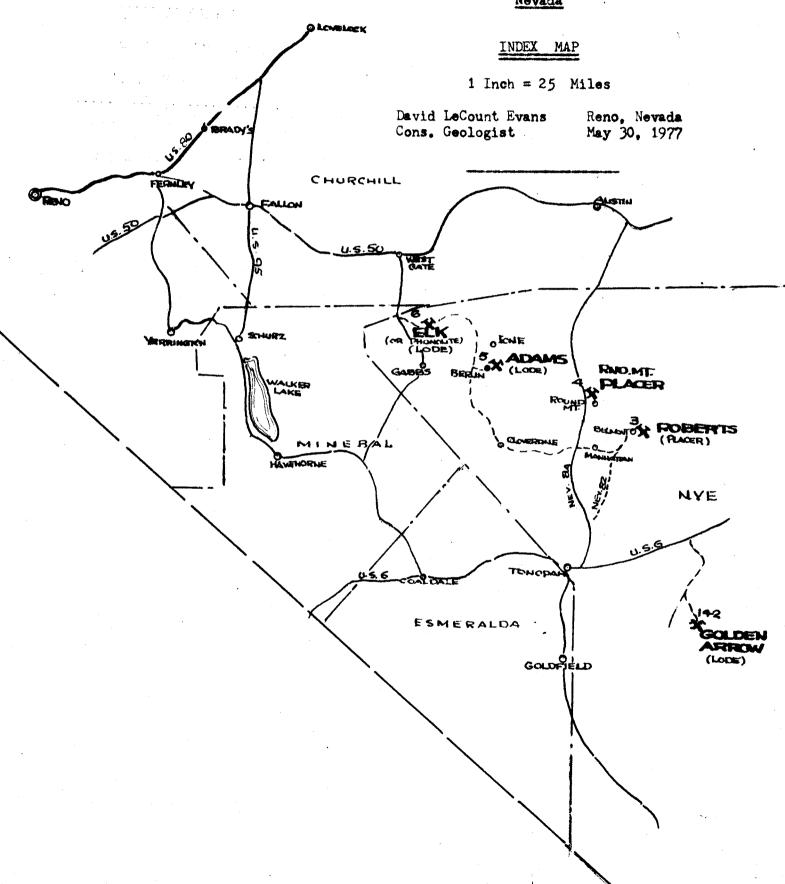
David LeCount Evans Cons. Geologist



ROBERTS PATENT

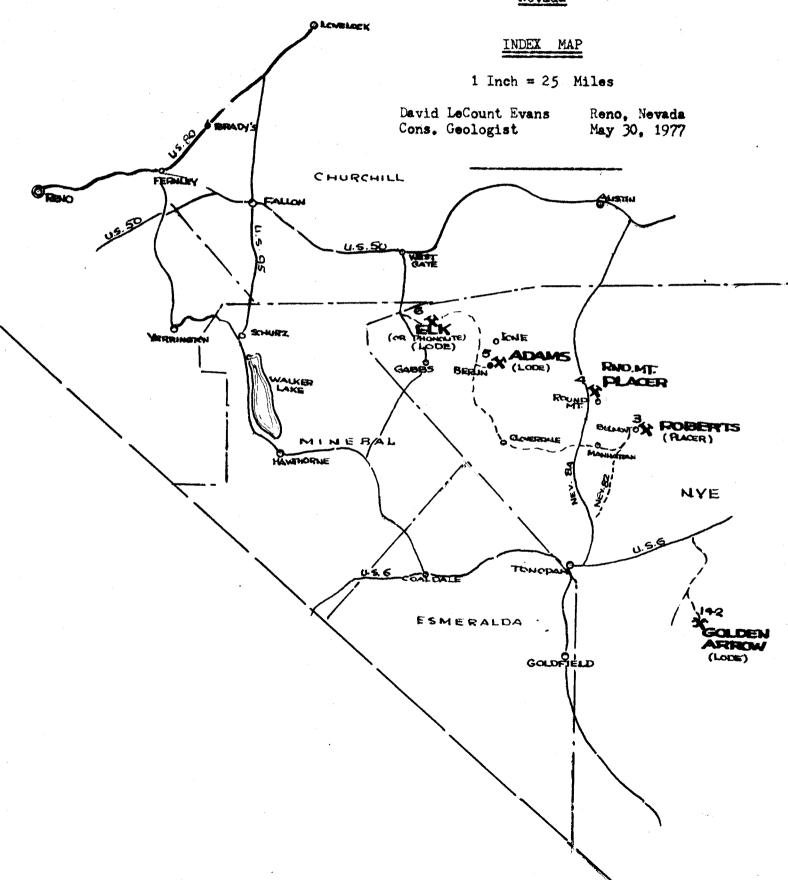
Belmont Mining District Nye Co., Nevada

1 Inch = 2000 Feet


David LeCount Evans Cons. Geologist Reme, Nevada May 30, 1977

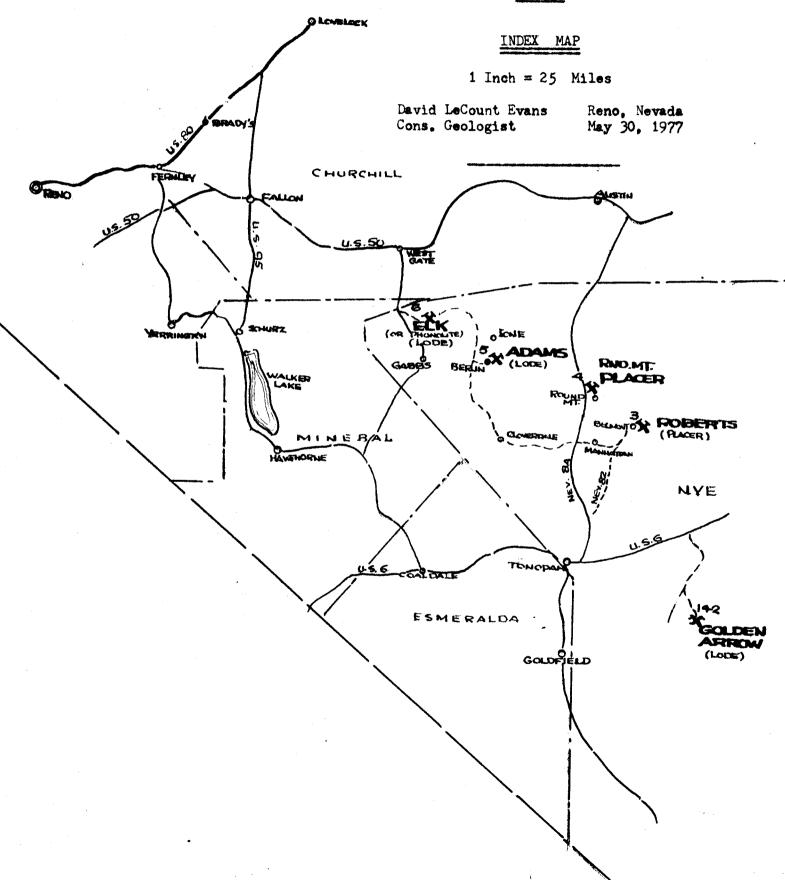
Wm. B. Golden Properties

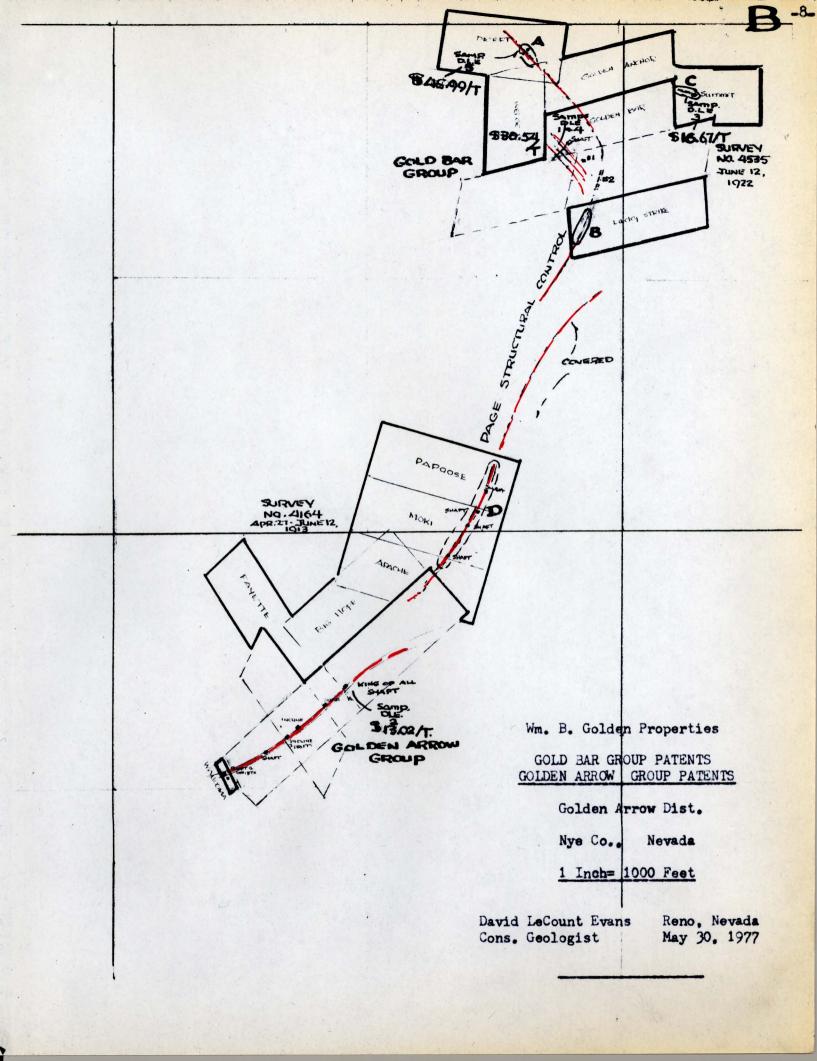
Analyses of Various Patented Claims

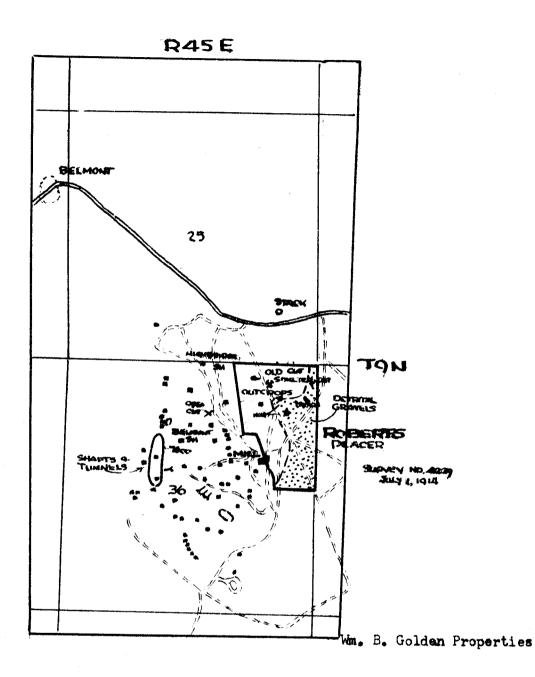

Northern Nye County Novada

Wm. B. Golden Properties

Analyses of Various Patented Claims

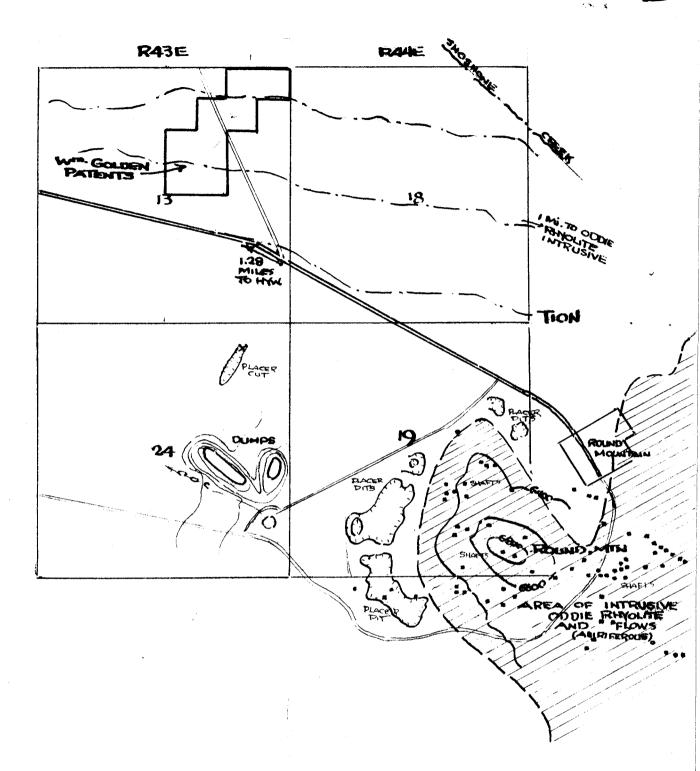

Northern Nye County Novada




Wm. B. Golden Properties

Analyses of Various Patented Claims

Northern Nye County Nevada

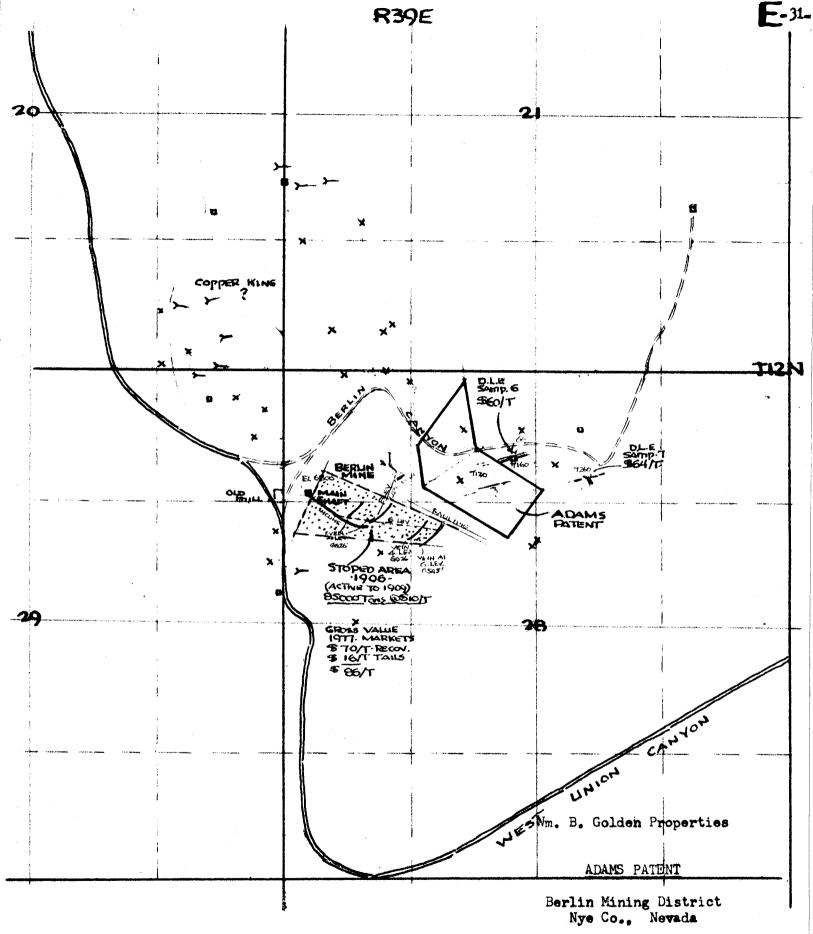


ROBERTS PATENT

Belmont Mining District Nye Co., Nevada

1 Inch = 2000 Feet

David LeCount Evans Cons. Geologist


Wm. B. Golden Properties

ROUND MOUNTAIN PATENTS

Round Mtn. Mining District Nye Co.. Nevada

1 Inch = 2000 Feet

David LeCount Evans Cons. Geologist

Note: Position of Adams
Patent by fitting
to Berlin Canyon
meander.

1 Inch = 1000 Feet

David LeCount Evans Cons. Geologist

PATENT ELK LODE

Phonolite Mining District Nye Co., Nevada

1 Inch = 2000 Feet

David LeCount Evans Cons. Geologist

METALLURGICAL LABORATORIES, INC.

CHEMISTS • ASSAYERS • SPECTROGRAPHERS

1142 HOWARD STREET

SAN FRANCISCO, CALIFORNIA 94103

AREA CODE 415 863-8575

REPORT OF ASSAY

Submitted by

Mr. David LeCount Evans 1700 Royal Drive Reno, Nevada 89503

Date May 9, 1977

Sample of Minerals

P. O. No.

Lab. No.

6136

O. 140.		Lαb. No. 0130							
SAMPLE MARK	GOLD, PER TON OF 2,000 LBS.		SILVER, PER TON OF 2,000 LBS.						
	TROY OUNCES	VALUE	TROY OUNCES	VALUE	Copper %	%			
#1	0.16		1.37						
2	0.04		1.52						
3	0.11		0.15						
4	0.18		1.10						
5	0.29		0.83						
6	0.41		0.10						
7	0.12		9,81						
8	000		0.04						
9	0.13 00v		o:48		5.38				
10	0.02		0.01						

METALLURGICAL LABORATORIES, INC.

Martin Daniel

DAVID LE COUNT EVANS

CONSULTING GEOLOGIST 1700 ROYAL DRIVE TELEPHONE (702) 747-4101 RENO, NEVADA 89503

June 2, 1977

Mr. William B. Golden, 14210 Rim Rock Drive, Virginia Foothills, Reno, Nevada 89511.

Dear Mr. Golden:

Please find attached an analysis of your six patented claims or groups of claims, all in northern Nye County, Nevada. The six occur in five different mining districts. An original and five copies are provided.

As indexed and bound, the study consists of five separate analyses, namely, Gold Bar, Roberts, Round Mountain, Adams and Elk.

Each is accompanied by an Index Map and individual Plate of the property and its environs, at the end of each text. Survey Plats for each Patent are in the pocket affixed to the report cover.

Analyses conform to your request that I reach an exploration value for each of the properties. This, therefore, is not the precise analysis one attempts when evaluating proved, probable and possible ore reserves. It is what one might expect if, after a study of a district's history, the district's geology and possible projections and some check sampling of ore, matters work out.

Fair market value, relying on an assumed royalty, is shown for each property and repeated under "Conclusions".

Fair market values total \$381,000.

This opportunity to be of help has been greatly appreciated.

Cy alles

Mr. William B. Golden, 14210 Rim Rook Drive, Virginia Foothills, Reno, Nevada 89511.

Dear Mr. Golden:

Please find attached an analysis of your six patented claims or groups of claims, all in northern Nye County, Nevada. The six occur in five different mining districts. An original and five copies are provided.

As indexed and bound, the study consists of five separate analyses, namely, Gold Bar, Roberts, Round Mountain, Adams and Elk.

Each is accompanied by an Index Map and individual Plate of the property and its environs, at the end of each text. Survey Plats for each Patent are in the pocket affixed to the report cover.

Analyses conform to your request that I reach an exploration value for each of the properties. This, therefore, is not the precise analysis one attempts when evaluating proved, probable and possible ore reserves. It is what one might expect if, after a study of a district's history, the district's geology and possible projections and some check sampling of ore, matters work out.

Fair market value, relying on an assumed royalty, is shown for each property and repeated under "Conclusions".

Fair market values total \$381,000.

This opportunity to be of half has been greatly appreciated.

Yours very truly,

Telephone	363-3302
- 1 Total	
	200

Reno, NV

Hand Sample Serial 9148-9156

ASSAY REPORT

UNION ASSAY OFFICE, Inc.

W. C. WANLASS, President L. G. HALL, Vice President G. P. WILLIAMS, Treasurer GERALDINE A. WANLASS, Secretary

Mine E.L. Stephenson 1701 Lander St

P. O. Box 1528 Salt Lake City, Utah 84110 RESULTS PER TON OF 2000 POUNDS May 6, 1977 GOLD SILVER INSOL. ZINC SULPHUR IRON LIME LEAD COPPER Per Cent Per Cent NUMBER Per Cent | Per Cent Ozs, per Ton Ozs. per Ton Per Cent Per Cent Per Cent Per Cent Per Cent 0.035 0.8 0.025 0.170 0.3 0.8 0.020 2.1 0.025 0.1 0.010 1.2 0.010 0.2 0.120 0.4 4.939

NOT Sout in

58.00

METALLURGICAL LABORATORIES, INC.

CHEMISTS •

ASSAYERS •

1142 HOWARD STREET

SAN FRANCISCO, CALIFORNIA 94103

AREA CODE 415 863-8575

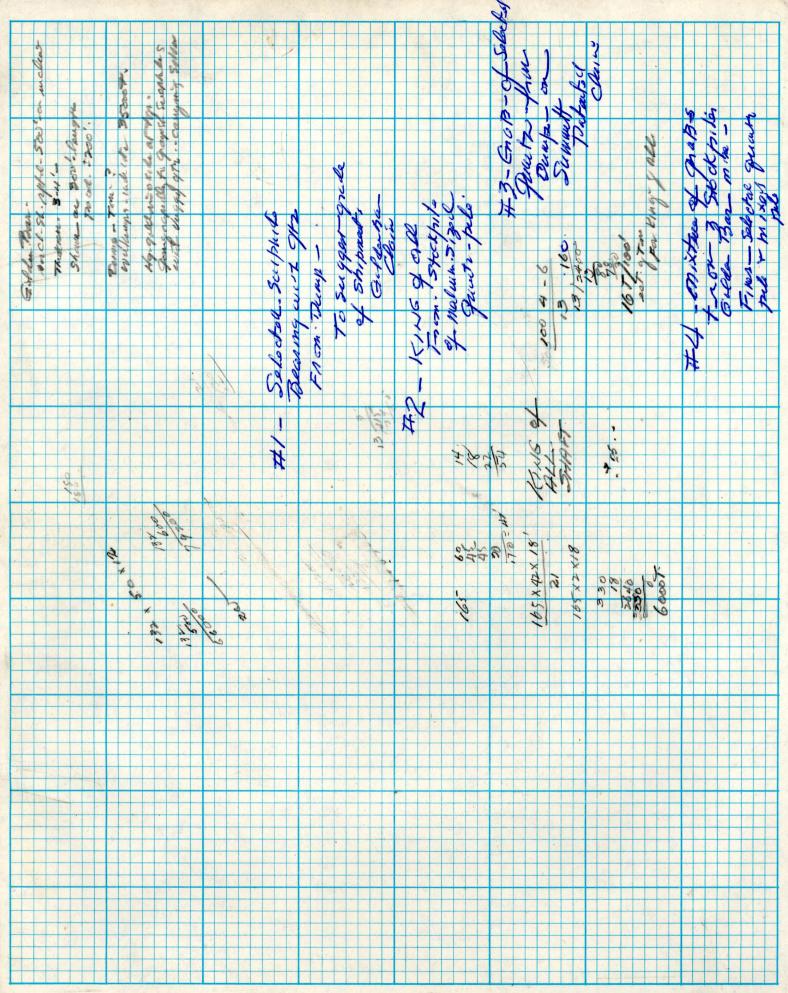
REPORT OF ASSAY

Submitted by

Mr. Edgar L. Stephenson 1701 Lander Street Reno, Nevada 89509

Date May 24, 1977

Sample of


Pulps

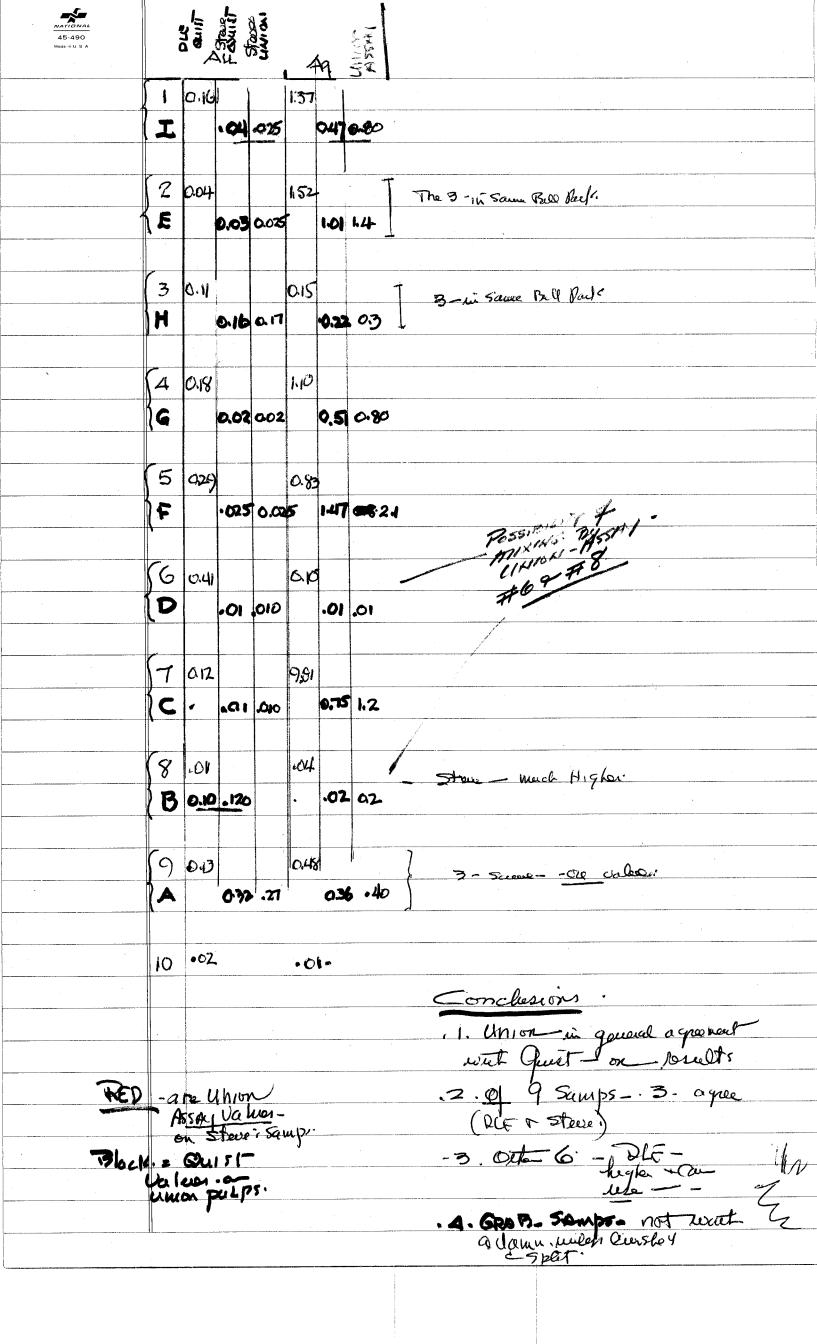
lah No

6247

P. O. No.				La	b. No. 62	47	
SAMPLE MARK	GOLD, PER TON	OF 2,000 LBS.	SILVER, PER TON	OF 2,000 LBS.			•
SAMPLE MARK	TROY OUNCES	VALUE	TROY OUNCES	VALUE	%	%	. 9
A	0.32		0.36				
В	0.10		0.02			·	
C	0.01		0.75				
D	0.01		0.01				
E	0.03		1.01	-			
F	0.025		1.47				
G	0.02		0.51				
н	0.16		0.22				
I	0.04		0.47				
							-

METALLURGICAL LABORATORIES, INC.

11 2 (mon) 12 (mon) 12 (mon) 13 (mon) 14 (mon) 15 (mon) 1	SAMPS STREBALL KIDGE	Shelman elga Shelman Make Com at all Mana Vois at a 16 Mana Salgalia y exceptual	SAM) 9 " " 127 844 - 17191 N. SWAFT. DR. CRUSTATI T F. AULTO	8246 59446 - 570p 23.	.10. STAR - From Marson	Mu. Bush
	9 6					
	The state of the s	Ja Shirt				


1225E: 1356 5-15+ workery-on Soul-Sil Jangu Colute Spega math. 942- Stocker windly leat 120 r (-) Pass. Vair. 520° E. Mota Mais - + 1500'-AT 425 UN COOK - 158- to 5 WD on Sope-Dump, ADT CAVED-Assans Lode Belle Gayon 150-500-741-150-500-7400mt 150-500-7000mt - Sootan Bolu Cai

		2 2	1 14	a way	
\$ 0.	18191	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Dem weath - Soul.	\$ 0	
X Zam	N		. 1 3 0	i de la	
		613	\$ 46 ch	ž i	
to x d		20%	المقاو	ÿ r:	
3			See See	9 1	
N		3 +1	The Lound Man County Sand Man Grand Sand Grandlen Grandle	1 Makon -	
		ô	8 19 21 1		
			R		
P 9					
2000 000					
2					
*					
	W				
	E 1 (500-00 to contract				
		2 2 2 2			

Pinal-Reput Bill 9 copies - Good New aggies copy new State keek copy ERIC BILL Bill any gogie Hove any DE apy Patent-Plats -- 70 copies - 52 . - Stove ducy

Ther _ ule me

Set-necessary. to 90 rest

. M	47 2 ·	•			VALUES -	PASSA OI Halm	_
PRODERTY:	<u>Junier</u>	- MOT. TO	ST FED		- AST.	DAI THE	
SOLDEN-ARROW				₩			
MORTH MAIL			×	_ X			
SOUTH BLOCK	'	1	×	×			
RODERTY. FRACE			×		37 %	×	
Rowa mt PLACER	- X		1	×			
(PERUN CAN)			*	*(3)			
(INONOLITE) -		×			×		
FIREDALL			×		×		
(2). With	502.0 on 624.0	000-on 35 80 on 1977-us 800-=113%	4.				
(3) 60.5Am	- 20 (S Rpr. 70 (1	۵.)			J-4	lancer of the second

A - INITIAL REACTIONS

PERLIN

85

110015h. x 1000 TEAS
Truch
15003x6

20,000 TONS @ 59.93 = 1,198,600 - Thun 7% 83,902 71/2

25000 T@ 59.93: 1,498,250 91022 71/596 1121369

ESTIMATED - VALUE 121,000 / Golden arrow M9 627 121,000 BERLIN - ADAMS 89 895 charge. 112000 V 90,000 26.000 / ROBERTS PLACER 81,900 26,000 116000 V ROUND- MTN-142,000 378,536 87.120 379 000 (May 20.) 6000 381.000 STRICTLY A MATTER of ANALYZING. Noture of ANALISIS. EXPLORATION - POSSIBILITES - PER PROPERTY— BASED -ON - BROAD VALUEY - ARE NOT

MEGIONIAL - IN DICATTIMS - WITH -KESERVES - EVEN . TO SSIPLE; GRADES - DETERMINED - BY SAMPLING -"ORE MATERIALS" - OR AREAS DAST TRODUCTION THEY ARE "TARGET" UALUES - AN ORJETIVE RECORDS. WHICH-MIGHT BE FOUND-ASSUMING -ALL - WHAT WOULD BE THE ... 171 CARERIL - GEOLOGITAL GROSS UALLES- JER PROPERTY -- THE "TAKE OWNER - USING A SIMPLE 11/2% OPI GES PHYSIM L PROCES DURE

WATIONAL 45-490	· Wm. 73: GOLDEN- PROPERTY - ANALYSET
Made in U. S. A.	
-: Cover	
PER. PAR	DEPM-HEADINGS:
·	INTRODUCTION: —
	P
	TERPOSE of KEPORT.
	DATE OF EXAMINATION - "EARY IN MAY-1917 - WITH -
	TRAFTING - GANGELITE!
	Concrusions:
	- Lecation: -
	LEGAL TITLE: - PROPERTY - CONSISTING. 4 ACRES
	IN PATENTED CLAIMS - 13 HELD BY
	MR. WILLIAM B. GOLDEN - OF FEHO THE CLAIMS .
	AGE AS FOLLAUST
	NAME - ACR
	4
EXPLORATION	THISTORY OF TROPERTY - DISTRICT:
UALUE-TO	
DUNGR!-	Grelogy -
CHAME - TENT	DEVELOPMENT
90 71/2% ORV-	SAMPLES:
	PURPOSE + HOW TAKEN - ASSAUSO 134 - WITH RETURNS AT FOLLOWS -
	RESERVES:
	CUMHOUT PROVEN - RESERVES EXPLORATION -
\	POSSIBILITIES. DO EXIST _ FOR REMANDS
T6N5	COMP. AS FOLLOWS: ~;
SUGGESTED - TO DISTRICTS REC	
DISTRICTS RECLUBELL AS PERSON	ADL SAMPLIE OFRERING. A TARGET TOWNAGE OF
with its person	C C C C C C C C C C C C C C C C C C C

A5-490

JAMPLES- POPL MAND DLE - ASSAYS

GOLDEN-ARROW-

	AREA							
MORTH	END-							
SAMI	# WHERE	. Oz	Ha	OZA9	5Au (145)		3AA TOT	
YI I	Golden Par	0	.16	1.37				
/H 3.	SUMMITT	0		0.15				
~ G . A.	Golden PA	B , O	18	1.10.				
✓ F · 5.	DEREKT	0	29	0.53	_			
	ALL	0,	185	0.86	26·8	32 4	4.09 530	71
	OR							
· .	Golden BAR	0.0	7	1,24	24.66	5 5	89 30.5	4
	JUMMIT	0.1	1 (015	15.9	5 9	71 15.67	
	DESERT	0.2	9		42.0	5 3.9	4 45.99	
					recombina paracular .		3 75	<u> </u>
E JOHN .	KING OF ALL	0.04	1,	52	5.80	7.22	13.02.	
		50.77 +17.02						
		152	-		2	1 21.5	<i>.</i>	
•		234						
/D 6	A DAMS	04	4 0.10 S).		59.45	0.48	59.93	
√c 7	LODE	0.12	9.81		17:40	46.60	<u>ल्</u> संक्षं	
_		0.26	4.96		38.42	23.54	61.96	
	,							
1				,		^		
B 8	FIREBALLCL.	101	· 04		1.45	0.19		
A/9	FIREBALL SH.	.13	.48	. '	7770	٠,		
1 10	FIREBALL GAI	u .02	.01		2.90	.07		
J								
7 L	T REPAIL CLAIM		.015 .025		7 01	ν	52.29	
673	WAS 2102							Y
utto	a.D.SH.	113	.48	18.8	5 2.2	8	21.13.	
	mat-mileo	MATIMILED TO CU & 5.38 -					72	
				л± © 67		93.13		
Constant of								

BILL GOLDENI ASSAY

5 towns. GALDENI ARROW TST 349 S Au 02.19 where or Au-5 amp 5 0.80 GULLABA 0.035 030 0.170 SUMMIT-2 ECTION BAS. 0.050 080 4 DESERT 0.025 2.1. 5 OR. 7.79 GOLVEN BAR: 0.0175 ~3A9 3.80 0.80 1.42 26.08 24.65 086 0,170 JUMMIT 13.60 9.98 3.62 2.1 DESERT 0,02 5 315.82 OF ALL 2 KING 3.62 6.65 10,27 1.4 0.025 15.82 +10.27 : 13.05.