The Cuprite district is located near U.S. Highway 95 about 19 km south of Goldfield. The district probably should be considered to include a few properties on the eastern part of Mount Jackson Ridge and in the southern part of the Goldfield Hills. The underground workings are shallow, usually less than 100 m in depth, and lateral workings are not usually extensive. Numerous shallow shafts are present in Cambrian rocks in several parts of the district.

The district was discovered in 1905. Production from the district is very small, probably a few small shipments totaling less than $10,000 (Ball, 1906; Hewitt, 1936). Most of the underground exploration for copper and silver was probably done in the early 1900's; very minor sulfur production is also reported during that time. Silica was produced from the Cuprite district in the period from 1914-18 (Fulton and Smith, 1932). Also, in 1960 an attempt was made to mine and process silica from the district (Olson, 1964, p. 245). There has been little activity in the district since that time although recent claim staking suggests that the hydrothermally altered areas in Tertiary rocks are being evaluated for their precious metal potential.

The Cuprite mining district contains mineralization of two different types and ages. The younger, which has affected rocks as young as 7 m.y. (Ashley and Abrams, 1980) is characterized by acid-sulfate alteration that has converted Cambrian siltstones and Tertiary tuffs, flows, and volcanic sedimentary rocks to silicified, opalized, and argillized rocks. Mineral production associated with this alteration includes only minor amounts of sulfur, silica, and clay.

Potential for substantial discoveries of commercial sulfur and clay is low, for silica the potential is high, and for gold and mercury it is low to moderate. Alunitic rock exists, but its tonnage is too small and its mineralogy too unfavorable for exploitation by presently contemplated commercial processes (Ashley, 1978). The silicification is concentrated in the central part of the 10 km2 altered area. Most of the remaining altered rocks are opalized, but argillized.
rocks appear locally near the margins of the altered area. Several sulfur prospects and silica quarries are located along the contact between silicified and opalized rocks, and possible gold prospects are located within the silicified zone. Alumite is abundant locally in the opalite. The alteration and the associated precious-metal mineralization probably are localized along northerly trending faults that are prominent in surrounding unaltered rocks (Ashley, 1977).

The older mineralization at Cuprite consists of base-metal veins (mainly copper-lead) with minor precious metal values (mainly silver) in unaltered to locally hornfelsic Cambrian siltstones. This mineralization is probably Mesozoic in age, associated with a buried pluton (Ashley, 1978). This mineralization occurs at scattered mines and prospects over 15 km apart. The veins contain chalcopyrite with lesser amounts of pyrite and galena. The gangue is chaledonic and vitreous quartz, and calcite. The sulfide minerals occur as seams and lens-shaped masses along faults. The upper portions of the veins are oxidized to a gossan containing oxide copper minerals (Ball, 1906, 1907). Picked ore from one mine was reported to contain 7 oz/ton gold, 230 oz/ton silver and 19% copper (Ball, 1906).

In addition to the above described properties, manganese and barite properties in the southern Goldfield Hills was included in the Cuprite district. The Gaillac manganese property appears to be a vein-like deposit. The Congress barite occurrence consists of a 0.9 m vein of white barite in limestone of probable Cambrian age. The vein trends northerly and has a high angle (K. Papke, written communication, 1983).

REFERENCES - Cuprite District