160 0006	Esmenolda County
PROPERTY NAME: Coaldale Prospect	County Esmeralda Jam /8
OTHER NAMES: locality no. 181 (Garside, 1973); Larry claims	Gilbert? (Coaldale) Mining District:
MINERAL COMMODITY(IES): U	AMS Sheet: Tonopah Goudfield
TYPE OF DEPOSIT: Stockworks	Quad Sheet: Rhyolite Ridge 15'
THE OF DEPOSIT.	C
ACCESSIBILITY:	Sec. 33 , T 2N , R 37E
OWNERSHIP: Paul Burkett (Goldfield); sold to Pacific Gold and	Coordinate (UTM):
Uranium, 10880 Wilshire Blvd., Suite 105, Los Angeles, CA	North 4 2 0 4 2 5 0 m
PRODUCTION: None.	East 0 4 2 3 9 7 5 m
HISTORY:	Zoně +11
DEVELOPMENT: 6 or more rotary drill holes drilled, probably in 1	1981.
The drill holes were all drilled in the lowrelief a	area to the south of the main
radioachtve locality on the low hill.	
ACTIVITY AT TIME OF EXAMINATION: None.	
GEOLOGY: Anomalous radioactive and minor amounts of yellow 6-	-valent uranium minerals occur
in association with dark gray silica (chalcedony)-filled	
tuff. The rhyolite welded tuff is in fault contact with T	fertiary sedimentary rocks
about 100m to the northeast. The fault separating these t	
known to be radioactive, and is somewhat sinuous, possibly	
faults. Chalcedony and calcite in horizontal slickensides	s along one of these cross faults
200 m north of the main radioactive locality are anomalous	sly radioactive (400cps, backgroun
100 cps for the rhyolite, 80cps for the sedimentary rocks)). Thus, it is possible that
mineralization is younger than the main north-south fault a	as well as the cross faults
which appear to displace it.	
The main radioactive area (radioactivity up to 4800 o	
75m in diameter on the side of a small hill of welded tuff	
chalcedony from 4mm to 2cm in width and up to several meter	
numerous directions. A major direction is N10-20W; also N	
of N80E and N50W are also noted. Most are near vertical.	The highest radioactive readings
are nearly always associated with these veinlets; however	
absent or rare at many radioactive spots. When noted, the	yellow uranium mineral occurs
as partial fillings in holes once occupied by feldspars (v	
clay (smectite?) - in the tuff at this locality. Also, the	
as fracture coatings, and sometimes as a thin (1mm) sel	
veinlets. There are specks of iron-oxide minerals (probab	
in the tuff outwards from the siliceous veinlets. The amo	
minerals can not account for the amount of radioactivity a	
obvious answer is that hypogene (4-valent?) uranium minera	als are present as very fine
WANKEX disseminations in the siliceous veinlets. This should h	oe checked with a micro-probe.
Not all veinlets are strongly radioactive. The most radio	pactive may have black quartz
phenocrysts (smoky quartz) in the tuff for up to 10cm away	y from the veinlet.
Many of the veinlets are obviously silic-cemented hyd	drothermal breccia zones; but
some are mostly replacement features from a narrow fracture	re (quartz phenocrysts can still
be seen in some chalcedonic veinlets. A very few hydrothe	ermal breccia zones are still
partly uncemented; the cavities are lined with very fine of	
mineral is probably secondary. Siliceous veinlets pinch &	
anastamosing network or stockwork. Hydrothermal breccias	are not limited to the radioactiv
area, but are much more common there. Veinlets occur from	
apart.	
EXPRIMEXX	
Sample 459 is select veinlet matter that is the most radio	
rences: Garside, L.J.(1973) Radioactive mineral deposits of MEXAMINER:	Nevada: Nevada Bureau of Mines ar DATE VISITED: Bull.#81
L.J. Garside	13 Tu1 82