UNITED STATES
DEPARTMENT OF THE INTERIOR
OSCAR L. CHAPMAN, SECRETARY
DEFENSE MINERALS ADMINISTRATION

REPORT OF EXAMINATION BY FIELD TEAM
REGION III

M-1964, Marsen Enterprises, Inc.

Y-Sone Tungsten Property

Lander County, Nev.

R. N. Smith, Geologist
U. S. Geological Survey

E. J. Hatson, Mining Engineer
U. S. Bureau of Mines

January 16, 1952
The T-Bone tungsten property is located about 20 miles by road south of Austin, Nevada. Development work on the property consists of a 43-foot adit and a few small pits.

The area is underlain by mica schist which contains layers of actinolite-calcite rock; these rocks strike west and dip steeply south. They are intruded by granodiorite, and are locally faulted. The layers of actinolite-calcite rock generally contain scheelite; the average grade of the outcrops is estimated to contain about 0.2 percent WO$_3$, but higher grade shoots occur locally. One of these shoots has been explored in the 43-foot adit. A sample 2 feet wide was cut at the face of the adit and assayed 0.44 percent WO$_3$.

No ore has been shipped, but about 50 tons of ore estimated to contain 0.4 percent WO$_3$ has been stockpiled near the workings. The indicated ore reserves in the adit are about 100 tons containing 0.4 percent WO$_3$; the inferred reserves beyond the face of the adit are 1000 tons containing 0.4 percent WO$_3$.

The applicant applied for government aid to complete an elaborate exploration program. After the BPA examination, the exploration program was modified and approved by the applicant.
The ore reserves are small, but as the scheelite-bearing zone is extensive and little is known about the actual size of the ore bodies, it is believed that some exploratory work is warranted. If it is in the national interest to explore such deposits, it is recommended that the application be approved.

The total cost as submitted by the applicant is $15,000 with the Government participating in the amount of $11,250. The applicant based his cost on an average advance of 2.5 feet per shift. It is believed, however, that with competent miners, the advance per shift will be nearer 4.0 feet, thus reducing the actual cost of the work.

INTRODUCTION

The T-Bone tungsten property of the Marsam Enterprises, Inc., was examined on November 14 and 15, 1951 by a joint DIA field team 1\/ in regard to an application for aid for an exploration project pursuant to Mineral Order 5 under the Defense Production Act of 1950. The docket number of the application is DIA-1964 and the commodity is tungsten.

The field team was accompanied by F. R. Shuck, manager for the Marsam Enterprises, Inc.

LOCATION

The property is located in T. 17 N., R. 44 E., Lander County, Nevada. No section corners were found but it is believed to be in section 5 of the above township. It is reached by driving from Austin southeasterly on

U. S. Highway 50 (fig. 1), a distance of about 11 miles to the junction of State Highway No. 8A; thence traversing 4 miles southwesterly on State Highway No. 8A to a sign on the road reading Birch Creek. From the Birch Creek turn-off it is about 5 miles westerly to the mine. Both U. S. Highway 50 and State Highway No. 8A are paved. From the State Highway No. 8A, it is a sandy desert road with some steep grades within the last mile to the mine. Total distance from Austin to the property is about 20 miles. Austin is also the local supply center for supplies.

HISTORY

The property was located in 1942 by George W. Hong and Irma Hong, P. O. Box 15, Manhattan, Nevada. They located seven claims known as Gold Turkey, Hot Dog, Mamanegea, Fried Chicken, T-Bone, Pork Chop and Sow Belly. They did only the necessary assessment work required to hold the claims.

In October 1950 three of the claims (fig. 2) namely, Pork Chop, T-Bone, and Fried Chicken were leased with option to purchase by the Marsam Enterprises, Inc., 211 So. Beverly Drive, Beverly Hills, California. Samuel Weiler is president of the corporation. Note, the name Marsam is derived from the first syllables of the first names of Mario Lanza, the noted singer, and Samuel Weiler, his manager, according to F. D. Shuck, manager of the Marsam Enterprises, Inc.

DEVELOPMENT

The Marsam Enterprises, Inc., under the direction of F. D. Shuck, drove an adit in for a distance of 43 feet on a mineralized lens of
scheelite. They also dug several small pits about one foot deep along the general strike of the mineralized belt.

In addition they built a 11 ft. by 17 ft. frame structure for use as a change house. It is equipped with a shower and coal burning stove for heating water; one 11 ft. by 16 ft. frame building for a warehouse; one 12 ft. by 20 ft. frame dwelling house; one 14 ft. by 12 ft. tent house and an 8 ft. by 7 ft. by 7 ft. store house partly excavated in the hillside for food storage use.

EQUIPMENT

The corporation has a 215 cu. ft./min. compressor, 2 drifters, mine car, 1 1/2-ton flat rack truck, 1/2-ton truck (Station Wagon), forge, and sundry tools.

PHYSICAL FEATURES

The property is on the south side of Spanish Creek and on the east side of the Toiyabe mountain range overlooking broad Smoky Valley. The terrain rises gradually from the valley floor and changes abruptly on the fringes of the mountains. The claims are at an estimated altitude of 8,000 feet at the mine adit with a continual rise in altitude of several hundred feet towards the crest of the ridges. The area is characterized by long ridges cut by deep ravines with drainage into Smoky Valley. Vegetation consists of piñon pine, junipers, and a variety of birch trees on the higher altitudes with willows and cottonwoods in the lower reaches. An abundant growth of sage and desert grass also covers the area.
Summers are hot and dry with little precipitation, typical of the desert regions. Winters in the higher regions and in the vicinity of the mine are sometimes very severe with heavy snow falls and freezing temperatures.

Ample water for domestic and mining purposes can be obtained from Spanish Creek. No transmitted electric power is available on the property.

GEOLOGY

The rocks of the mine area are mica schist and actinolite-calcite rock of probable Ordovician age, which are intruded by granodiorite (fig. 2). The metamorphic rocks strike east and dip steeply south or are overturned; they are cut by steep cross faults and bedding shears. The tungsten deposits are associated with the actinolite-calcite rock.

The mica schist is a unit about 1,500 feet thick; it was formed by the metamorphism of shale. The actinolite-calcite rock is interlayered with the mica schist and was evidently formed by the metamorphism of shaly dolomite interbedded with the shale. A few quartzite beds as much as 15 feet thick are also interbedded with the mica schist.

The metamorphism is probably related to the granodiorite that cuts the mica schist and actinolite-calcite rock about 1,000 feet north of the mine area. The granodiorite is a gray, medium- to coarse-grained rock, and forms bold outcrops.

The metamorphic rocks are cut by two sets of faults: One set strikes north and dips steeply; the other set parallels the bedding.
which strikes east and dips steeply south in the mine area. The rocks are also cut by many quartz stringers in two sets of fractures: one set strikes north and dips gently west; the other parallels the bedding.

ORE DEPOSITS

The tungsten minerals are localized along three parallel layers of a greenish actinolite-calcite rock which contain locally quartz and calcite stringers. The three layers each range from 6 inches to 10 feet wide and are contained in a zone about 30 feet wide which is reported to continue for 3,000 feet along the strike. Two of the three mineralized layers are exposed in the adit; all three layers are exposed 200 feet east of the adit (fig. 3). All three layers are also exposed about 600 feet west of the adit.

The ore mineral is scheelite that is relatively low in molybdenum. It occurs principally disseminated throughout the actinolite-calcite rock, but was also observed in specimens taken from the quartzite beds.

The scheelite appears to occur mainly in lenticular shoots within the actinolite-calcite rock. The size of shoots is not known; the one partly explored in the adit contains scheelite erratically distributed along a strike length of about 40 feet, and has an average width of 2 feet. The average grade of the tungsten-bearing rock in the outcrops will probably not exceed 0.2 percent WO₃ but locally this rock contains as much as 2 percent WO₃. Three samples were cut across the scheelite-bearing layer in the adit. These were analyzed by the U. S. Bureau of Mines with the following results:
<table>
<thead>
<tr>
<th>No.</th>
<th>Width (ft.)</th>
<th>Place</th>
<th>Percent WO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>face</td>
<td>0.44</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>face</td>
<td>0.88</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>back</td>
<td>0.01³⁵</td>
</tr>
</tbody>
</table>

³less than

The average grade of the three samples taken from the adit is about 0.2 percent WO₃ over a width of 3 feet (fig. 4).

The ore layer two feet wide exposed in the face assayed 0.44 percent WO₃; this assay is considered by the examining geologist to be representative of the grade of ore that has been mined from the adit.

There have been no shipments of ore from the deposit. About 125 tons of rock was mined from the adit and 60 tons from the portal approach. About 50 tons of this rock was sorted and stockpiled (fig. 3), and is reported by the owner to average 2.3 percent WO₃. This estimate of grade appears to be high; the geologist and engineer examined the stockpile by ultra violet light and estimate that the grade is more likely to average about 0.40 percent WO₃. The samples cut in the adit average only 0.20 percent WO₃ (fig. 4); it is inferred, however, that sample No. 3 was cut in a low grade or barren section of the ore layer and is not truly representative. Another group of samples cut at different places in the adit would probably be higher in grade, and it is considered that the grade of the ore may well average 0.40 percent WO₃.
No measured ore reserves have been blocked out at the T-Bone mine, but scheelite-bearing material is indicated in the block above the adit, and is inferred beyond the face.

The triangular block above the adit is 43 feet long, 15 feet high at the west end, and the ore layer is considered to average 2 feet in width. Possibly 50 tons of ore containing 0.40 percent WO₃ may be found above the level and 50 tons below the level.

The block extending 200 feet west beyond the face shows scheelite-bearing layers on the surface which have been exposed in shallow pits; the intervening areas are covered by alluvium (fig. 3). It is difficult to calculate the ore reserves in this block, but it is inferred that the scheelite-bearing layer explored in the adit may have fair continuity in the block which is 200 feet long, 85 feet high at the west end, and 15 feet high at the east end; the ore layer is lenticular, but is estimated to average 2 feet in width. The inferred tonnage in this block is estimated to be about 1000 tons averaging 0.40 percent WO₃. Due allowance has been made for erratic distribution of scheelite within the actinolite-calcite rock.

The ore reserves are summarized as follows:

<table>
<thead>
<tr>
<th></th>
<th>Tons</th>
<th>Percent WO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated</td>
<td>100</td>
<td>0.4</td>
</tr>
<tr>
<td>Inferred</td>
<td>1,000</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>1,100</td>
<td>0.4</td>
</tr>
</tbody>
</table>
In addition, the two parallel layers may contain minable ore bodies. No specific tonnage is assigned to these layers, but they may aggregate an additional 1000 tons of ore containing about 0.4 percent WO₃.

SAMPLING

The tungsten showings were examined at night with the aid of an ultra violet light and observations made of the structures during the day. Two channel samples were taken in the face of the short adit on the mineralized areas or lenses. Another sample was taken 15 feet from the face on the back of the adit. Sample locations, widths, and analyses are shown on figure 4.

PROPOSED EXPLORATION BY THE COMPANY

The company at first proposed an elaborate exploration program consisting of driving an adit (already in 43 feet) for a distance of 340 feet on the mineralized zone, thence drive another adit 100 feet above this one, 170 feet in length with two 100-foot raises connecting the two adits; also a raise to surface about 100 feet long starting at the face of the upper adit.

After an examination by the BMA field team, the exploration program with the approval of R. B. Schuck, manager of the Marsen Enterprises, Inc., was modified. The best method of exploring the mineralized zone, in which the tungsten bearing rock is localized along three parallel layers, appears to be in two phases as follows:

First phase:

a. Drive the present adit an additional 100 feet west (already in 43 feet) following the mineralized lens in the face (fig. 5).
b. Hence drive a crosscut from the face of the adit for a
distance of 25 feet north and 25 feet south. Purpose of the crosscuts
are to explore the width of the tactite zone in search of parallel
mineralized layers. Total drifting and crosscutting would amount to
150 linear feet.

Second phase:

If ore bodies of commercial size and grade are found in the
main adit or the crosscuts at the conclusion of the first phase, then another
examination would be required to determine whether it would be best to
repeat the first phase as shown by figure 4 or drift on the best showing
in the crosscuts.

CONCLUSIONS AND RECOMMENDATIONS

The ore reserves are small, but as the scheelite-bearing zone is
extensive and little is known about the actual size and grade of the ore
bodies, it is felt that some exploratory work is warranted. Although this
property is still in the prospect stage, it is concluded that there is a
reasonable chance for the discovery of a significant quantity of low grade
tungsten ore. If it is in the national interest that exploration of such
deposits be encouraged, it is recommended that the application be approved.

It is recommended that an exploration contract be granted to the Karsam
Enterprises, Inc., on the modified program as shown by figure 5. If no
ore has been encountered at the end of the first phase, no further work is
recommended.
The costs as shown by the applicant are relatively high per foot advance for drifting and crosscutting. The applicant claims that from the experience gained from driving the adit (43 feet) to date, he has averaged only 2.5 feet per shift, and requires two shifts to complete a round. That is, he can break 4 to 5 feet per round, but it takes 27 drill holes and two shifts to complete the cycle. According to Mr. Schack, the ground is slow drilling. An experienced and competent miner could probably reduce the number of holes from 27 to at least 20 and complete a drift round per shift thus reducing the overall cost of the program.

The applicant based his costs, however, on an average advance of 2.5 feet per shift with a total cost of $15,000 for the first phase. On a matching fund basis, the Government's share would be $11,250.
LANDER COUNTY, NEVADA
BIRCH CREEK MINING DISTRICT

FIG. 3

GEOLOGIC MAP OF THE T-BONE TUNGSTEN MININE

EXPLANATION

DEFENSE MINERAL ADMINISTRATION
T-Bone Tungsten Mine, Birch Creek Mining District, Lander County, Nevada

GEOLOGY

The rocks of the mine area are mica schist and actinolite-calcite rock of probable Ordovician age, which are intruded by granodiorite (fig. 2). The metamorphic rocks strike east and dip steeply south or are overturned; they are cut by steep cross faults and bedding shears. The tungsten deposits are associated with the actinolite-calcite rock.

The Mica schist is a unit about 1,500 feet thick; it was formed by the metamorphism of shale. The actinolite-calcite rock is interlayered with the mica schist and was evidently formed by the metamorphism of shaly dolomite interbedded with the shale. A few quartzite beds as much as 15 feet thick are also interbedded with the mica schist.

The metamorphism is probably related to the granodiorite that cuts the mica schist and actinolite-calcite rock about 1,000 feet north of the mine area. The granodiorite is a gray, medium- to coarse-grained rock, and forms bold outcrops.

The metamorphic rocks are cut by two sets of faults: one set strikes north and dips steeply; the other set parallels the bedding which strikes east and dips steeply south in the mine area. The rocks are also cut by many quartz stringers in two sets of fractures: one set strikes north and dips gently west; the other parallels the bedding.
ORE RESERVES

Except for indicated reserves of about 100 tons averaging 0.5 percent WO₃ in the prospect adit, there are no blocked out ore reserves at the T-Bone mine.

Judging from the frequency of outcrops along the ore zone, however, it is inferred that additional ore bodies may be discovered along the strike from the present workings. If it is assumed that unexplored parts of the zone contain scheelite-bearing material of the same grade as the adit, the inferred reserves in the block extending 200 feet beyond the present face from the surface down to the adit level, and having an aggregate width of 6 feet for the three layers, are estimated to be about 2,000 tons containing 0.5 percent WO₃. Allowance has been made for lenticularity of the layers and erratic distribution of scheelite within the layers.

PROPOSED EXPLORATION

The applicant originally laid out a rather extensive exploration program, but has modified his original program and now proposes that the prospect adit be extended in two projects:

Project No. 1. Drive the adit 100 feet west on the strike of the ore zone, and at the face drive cross cuts 25 feet in each direction normal to the drift to test other parallel mineralized layers.

Project No. 2. Continue driving the adit another 100 feet west on the strike of the ore zone, and at the face cross cut 25 feet each way to test other parallel layers. Project No. 2 will be contingent upon the success of Project No. 1.
The proposed exploration should adequately test the mineralized zone and determine the extent of the ore shoot exposed in the adit.

SUMMARY AND CONCLUSIONS

The tungsten mineralization at the T-Zone claims is in actinolite-calcite rock interbedded with mica schist of Ordovician age. These rocks have been intruded by granodiorite that crops out about 1,000 feet north of the mineralized zone. There are at least three parallel mineralized layers, each one from 6 inches to 10 feet wide, in a mica schist unit 30-foot wide that persists for several thousand feet along the strike. The ore is composed of scheelite in an actinolite-calcite gangue.

The scheelite-bearing material crops out in many places along the zone and occurs in lenses or shoots of undetermined size. The outcrops contain on the average about 0.2 percent WO$_3$. One of the ore layers that is developed by a 49-foot adit averages about 2 feet wide and contains approximately 0.5 percent WO$_3$.

The indicated ore reserves in the adit are about 100 tons containing 0.5 percent WO$_3$, but it is inferred that about 2,000 tons of ore averaging 0.5 percent WO$_3$ may be present in the block extending 200 feet beyond the present face between the surface and the adit level.

It is concluded that there is a fair chance that the grade of ore below the outcrops may be high enough to mine and that an ore body of commercial size may be discovered.

The project appears to have merit, and it is recommended that the Defense Minerals Administration enter into a contract with the applicant to do the proposed work. On a matching fund basis the Government's share of the cost would be $11,250.
The rocks of the mine area are mica schist and actinolite-calcite rock of probable Ordovician age, which are intruded by granodiorite (fig. 2). The metamorphic rocks strike east and dip steeply south or are overturned; they are cut by steep cross faults and bedding shears. The tungsten deposits are associated with the actinolite-calcite rock.

The Mica schist is a unit about 1,500 feet thick; it was formed by the metamorphism of shale. The actinolite-calcite rock is interlayered with the mica schist and was evidently formed by the metamorphism of shaly dolomite interbedded with the shale. A few quartzite beds as much as 15 feet thick are also interbedded with the mica schist.

The metamorphism is probably related to the granodiorite that cuts the mica schist and actinolite-calcite rock about 1,000 feet north of the mine area. The granodiorite is a gray, medium- to coarse-grained rock, and forms bold outcrops.

The metamorphic rocks are cut by two sets of faults: one set strikes north and dips steeply; the other set parallels the bedding which strikes east and dips steeply south in the mine area. The rocks are also cut by many quartz stringers in two sets of fractures: one set strikes north and dips gently west; the other parallels the bedding.
ORE DEPOSITS

The tungsten mineralization is localized along three parallel layers of a greenish actinolite-calcite rock that range from 6 inches to 10 feet wide, and locally contain quartz and calcite stringers. The three layers are contained in a zone 25 to 30 feet wide which is reported to continue for 3,000 feet along the strike. Two of the three mineralized layers are exposed in the adit (fig. 3); the third layer is covered by alluvium at the adit portal.

The ore mineral is scheelite that is relatively free from powellite. Small crystals of scheelite are disseminated throughout the actinolite-calcite rock; locally this rock contains as much as 2 percent WO$_3$. The average grade of the tungsten-bearing rock in the outcrops will probably not exceed 0.2/WO$_3$. The weighted average grade of the mineralized rock exposed in the face of the adit is 0.5 percent WO$_3$.

The ore appears to occur in shoots within the actinolite-calcite rock. The size of the shoots is not known; the one partly explored in the adit contains scheelite erratically distributed along a strike length of about 50 feet and has an average width of two feet.

There has been no production from the deposit although about 100 tons of selectively mined ore obtained from the adit is reported by the owner to average 2.3 percent WO$_3$. The stockpile was examined by ultra violet light, and it is estimated that this figure is high; possibly 1.0 percent WO$_3$ would be a more realistic figure.
ORE RESERVES

Except for indicated reserves of about 100 tons averaging 0.5 percent WO₃ in the prospect adit, there are no blocked out ore reserves at the T-Bone mine.

Judging from the frequency of outcrops along the ore zone, however, it is inferred that additional ore bodies may be discovered along the strike from the present workings. If it is assumed that unexplored parts of the zone contain scheelite-bearing material of the same grade as the adit, the inferred reserves in the block extending 200 feet beyond the present face from the surface down to the adit level, and having an aggregate width of 6 feet for the three layers, are estimated to be about 2,000 tons containing 0.5 percent WO₃. Allowance has been made for lenticularity of the layers and erratic distribution of scheelite within the layers.

PROPOSED EXPLORATION

The applicant originally laid out a rather extensive exploration program, but has modified his original program and now proposes that the prospect adit be extended in two projects:

Project No. 1. Drive the adit 100 feet west on the strike of the ore zone, and at the face drive cross cuts 25 feet in each direction normal to the drift to test other parallel mineralized layers.

Project No. 2. Continue driving the adit another 100 feet west on the strike of the ore zone, and at the face cross cut 25 feet each way to test other parallel layers. Project No. 2 will be contingent upon the success of Project No. 1.
The proposed exploration should adequately test the mineralized zone and determine the extent of the ore shoot exposed in the adit.

SUMMARY AND CONCLUSIONS

The tungsten mineralization at the T-Bone claims is in actinolite-calcite rock interbedded with mica schist of Ordovician age. These rocks have been intruded by granodiorite that crops out about 1,000 feet north of the mineralized zone. There are at least three parallel mineralized layers, each one from 6 inches to 10 feet wide, in a mica schist unit 30–feet wide that persists for several thousand feet along the strike. The ore is composed of scheelite in an actinolite-calcite gangue.

The scheelite-bearing material crops out in many places along the zone and occurs in lenses or shoots of undetermined size. The outcrops contain on the average about 0.2 percent WO₃. One of the ore layers that is developed by a 43-foot adit averages about 2 feet wide and contains approximately 0.5 percent WO₃.

The indicated ore reserves in the adit are about 100 tons containing 0.5 percent WO₃, but it is inferred that about 2,000 tons of ore averaging 0.5 percent WO₃ may be present in the block extending 200 feet beyond the present face between the surface and the adit level.

It is concluded that there is a fair chance that the grade of ore below the outcrops may be high enough to mine and that an ore body of commercial size may be discovered.

The project appears to have merit, and it is recommended that the Defense Minerals Administration enter into a contract with the applicant to do the proposed work. On a matching fund basis the Government's share of the cost would be $11,250.
LANDER COUNTY, NEVADA
BIRCH CREEK MINING DISTRICT

GEOLeogIC MAP OF THE T-BONE TUNGSTEN MINE

FIG. 3

EXPLANATION

DOCKET NO. 1964
DEFENSE MINERALS ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR

GEOLoGICAL SURVERY
LANDER COUNTY, NEVADA
BIRCH CREEK MINING DISTRICT

FIG. 3

GEOLeGIC MAP OF THE T-BONE TUNGSTEN MINE

EXPLANATION

DOCKET NO. 1964
DEFENSE MINERALS ADMINISTRATION
U.S. DEPARTMENT OF THE INTERIOR

NOVEMBER 1951

GEOLeGIC BY E. SMITH
FIG. 3

GEOLOGIC MAP OF THE T-BONE TUNGSTEN MINE

LANDER COUNTY, NEVADA
BIRCH CREEK MINING DISTRICT

EXPLANATION

DOCKET NO. 1694
DEFENSE MINERALS ADMINISTRATION

U.S. DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
First phase

(a) Drive main drift @ elevation 200 ft in 1000' on strike of ore zone; (b) at 1000' 200-foot distance in from portal, drive a 250-foot cross-cut northerly and 250 feet southerly normal to vein to be certain drift is on the zone and possibility of finding parallel structures; (c) thence continue drift another 100 feet on zone.

Total estimated cost of first phase is as follows:

- Rehabilitation and repair of buildings: $450,000
- 150' 200 ft. drifting @ $6.50/ft: $255,000
- 50' 200 ft. drifting @ $6.50/ft: $325,000
- Equipment cost: $30,000

Total cost of 1st phase: $10,380

Phase 2 is a repetition of phase 1
\[\frac{12 \times 1.68}{20 \times 2.8} = \frac{15.6}{4.8} = \frac{25}{2.5} = \frac{78.00}{18.0} = 60.0 \]

20 cm 25 cm

12
FIG. 5 - PLAN OF PROPOSED EXPLORATION PROGRAM - MARSAW ENTERPRISES, INC. (T-BONE TUNGSTEN PROPERTY)

Prepared with approval of F. & K. Beck, MGR., MARSAW ENTERPRISES, INC. By DMA Field Team

Explanation

- Old Work
- Proposed Work

Scale

100 Feet

0 30 60

N

25'

100

First Phase

Second Phase

Adit in 43 Feet

Present Workings

Document Pending on Outcome Subject to Revision or Aban.
Table

<table>
<thead>
<tr>
<th>NO.</th>
<th>WIDTH (FT.)</th>
<th>PLACE</th>
<th>WO₃</th>
<th>MO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>FACE</td>
<td>0.44</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>FACE</td>
<td>0.88</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>BACK</td>
<td>0.01*</td>
<td>0.01*</td>
</tr>
</tbody>
</table>

Scale: 0 10 20 30 40 FEET

Base Map from U.S.G.S.

Fig. 4. Assay Map, Marsam Enterprises, Inc. (T-Bone Tungsten Property) Lander County, Nevada
FIG. I.—LOCATION MAP, MARSAM ENTERPRISES, INC. (T-BONE TUNGSTEN PROPERTY)
LANDER COUNTY, NEVADA
FIG. 4.—ASSAY MAP, MARSAM ENTERPRISES, INC. (T-BONE TUNGSTEN PROPERTY) LANDER COUNTY, NEVADA
FIG. 1. LOCATION MAP, MARSAM ENTERPRISES, INC. (T-BONE TUNGSTEN PROPERTY) LANDER COUNTY, NEVADA