Silver Hill

UTAH SURVEY

1983 Percussion Drill Program

Situated at

Latitude: 38° 15' N Longitude: 118° 53' W Sec. 17, T5N R28E

> Mineral County Nevada, U.S.A.

Prepared by:
A.C. Glatiotis, B.Sc. Geol.

Prepared for:

ELECTRA NORTH WEST RESOURCES LTD.

907 - 1112 W. Pender Street

Vancouver, B.C.

V6E 2S1

SUMMARY

In November of 1983, 320 feet of drilling was completed on the UTAH Survey in three holes. The drill was a reverse circulation, percussion rig. Cuttings were sampled over five foot intervals. Significant intersections of quartz and severely altered andesite were encountered. Two, five - foot intersections contained 0.043 and 0.019 ozs. per ton of gold.

20

.

The 1983 program was commenced on the basis of previous underground and surface sampling which yielded encouraging values of gold in the 0.10 to 0.20 oz/ton range.

TABLE OF CONTENTS

confid		Page
	SUMMARY	i ·
	INTRODUCTION	1
	LOCATION AND ACCESS	1
	PROPERTY DESCRIPTION	5
	HISTORY	5
	WORK PERFORMED	5
	GEOCHEMISTRY	12
	CONCLUSIONS	13
	RECOMMENDATIONS	13
	1983 DRILL PROGRAM COST SCHEDULE	14
	CERTIFICATE	15

INTRODUCTION

子子 一直 一次 音 一方 一次 章

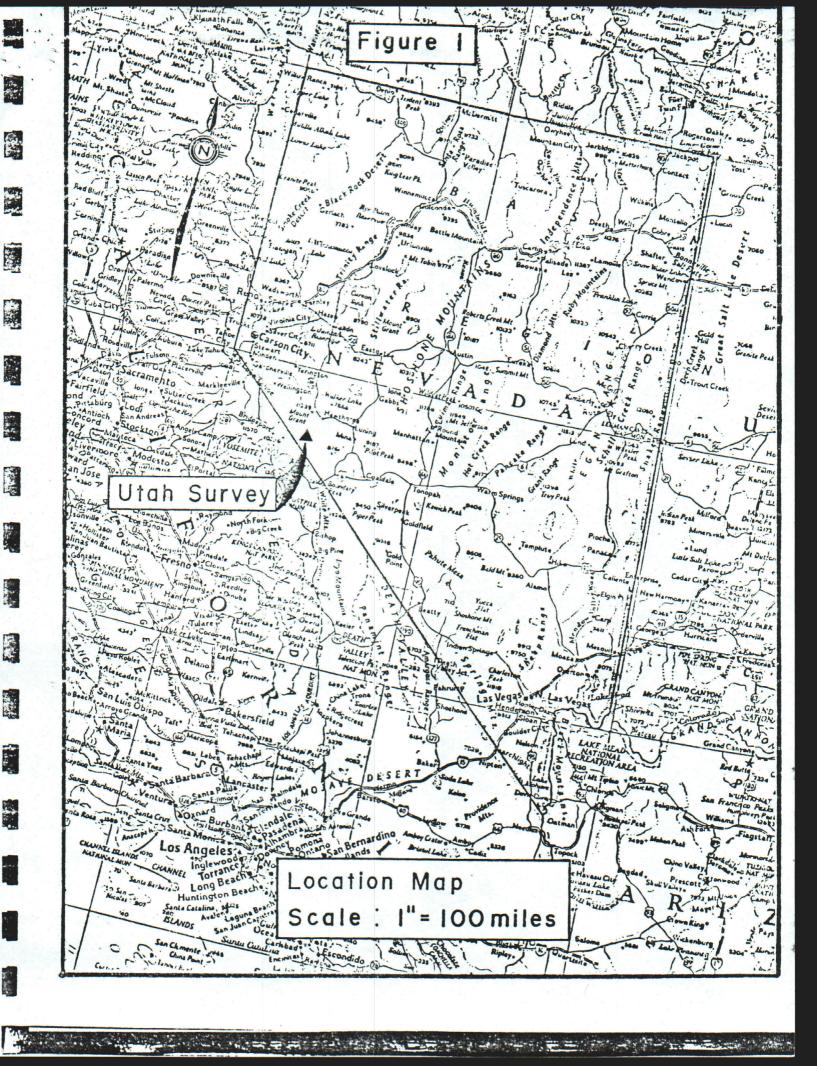
4

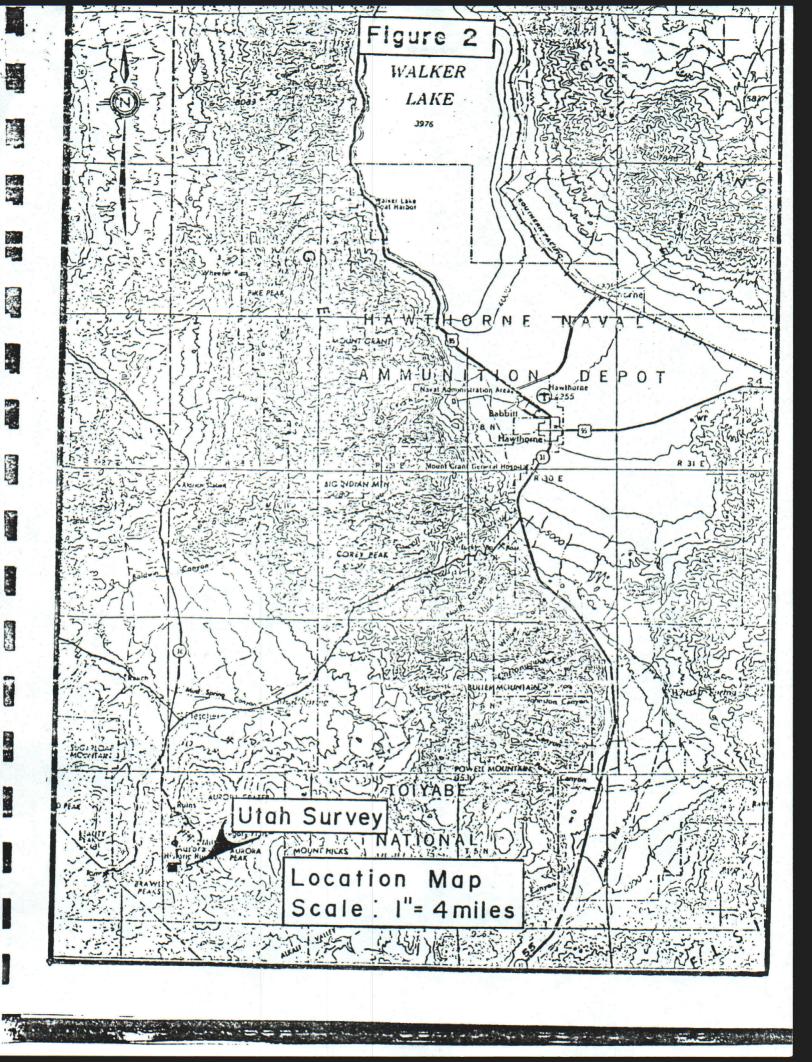
· Water

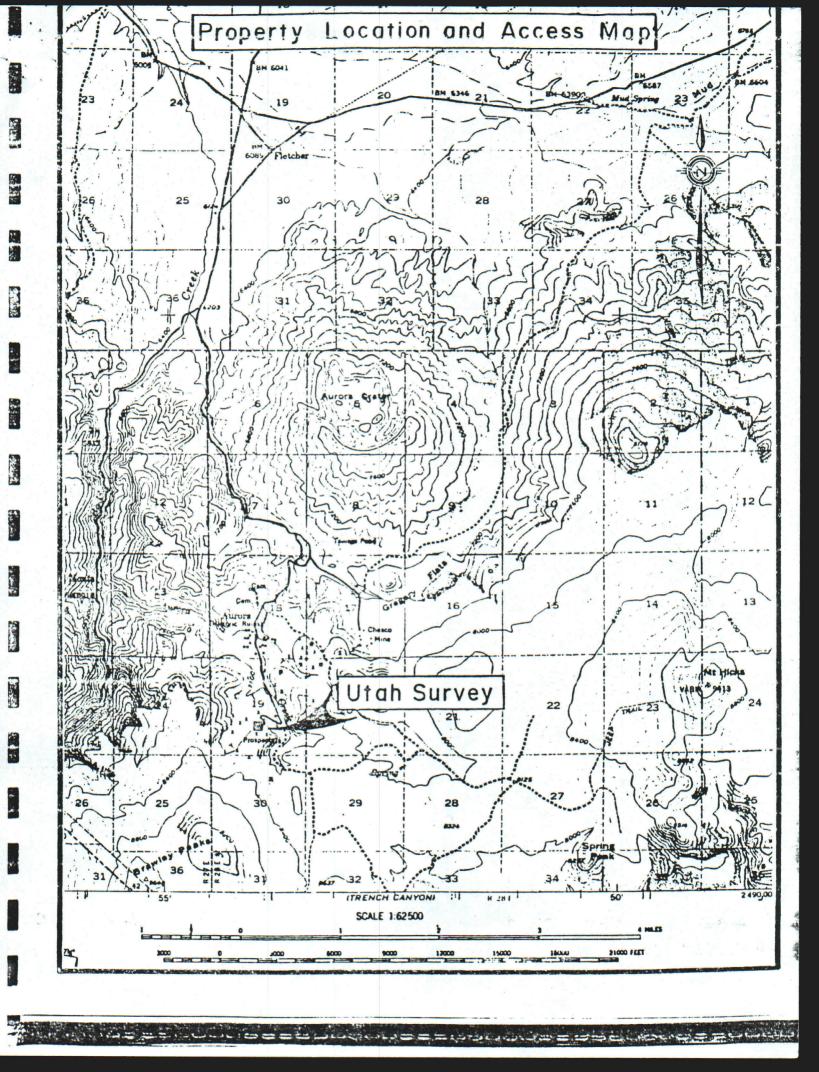
Mr. D.B. Stelling of Electra North West Resources Ltd. of Vancouver, B.C. contracted the author and D.A. Perkins for the purpose of managing an exploration program upon the Utah Survey claim, Mineral County, Nevada.

The program consisted of upgrading the access road and building two drill pads with a D8K cat; drilling 320 feet with a reverse-circulation, percussion drill in 3 holes, sampling the drill cuttings over five foot intervals, logging the cuttings and surveying the drill hole locations with reference to a topographical survey completed in April, 1983.

The program commenced November 3rd and ended November 7th, 1983.


LOCATION AND ACCESS


The Utah Survey is located in the Aurora Mining District, Section 17, T5N, R28E of Mineral County, Nevada, U.S.A. (Figures 2 and 3).

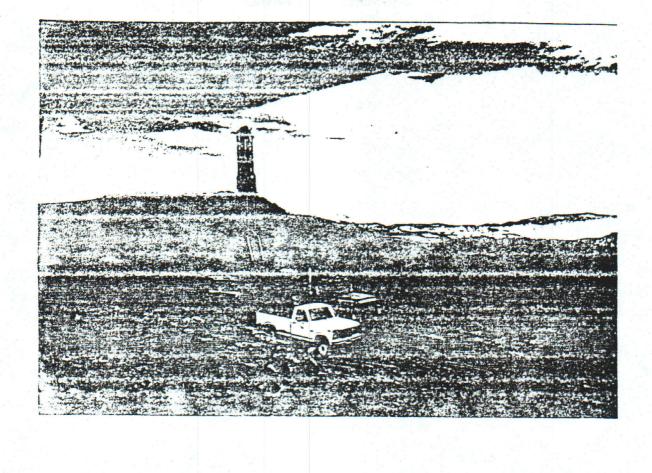

Access to the claim is via a combination of paved highway, well maintained gravel highway and gravel road. Highway 31 is paved and leads south from Hawthorne. Four (4) miles to the south is the intersection of Highway 31 and State Highway 3C, which lies over Lucky Boy Pass a distance of 18 miles to the junction at Fletcher. From this point 7 miles of gravel road leads south through the historic ruins of Aurora onto the property.

The road over Lucky Boy Pass may be closed occasionally during the winter months of late November through to early March due to heavy snowfalls. The gravel road leading onto the property is also snowed in at this time.

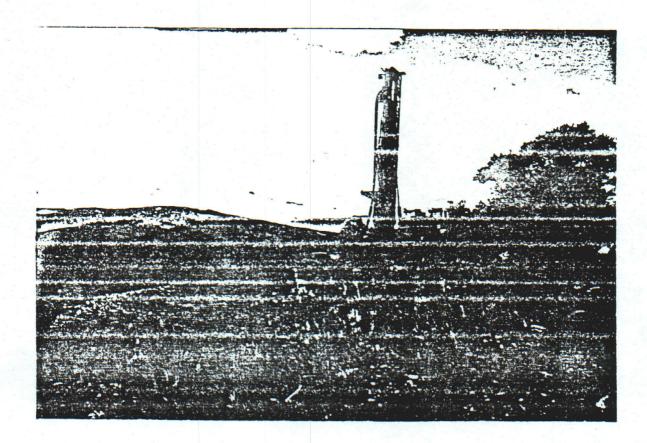
The claim lies on a high slope south of the Aurora townsite between the elevations of 7720' and 7860'.

PROPERTY DESCRIPTION

The Utah claim was surveyed in August, 1872 by Hugo Hochholzer. It is recognized as Lot Number 49 and contains 6.88 acres of land,


HISTORY

The property has seen mining activity in the past. Pods of ore have been removed from the neighbouring Cortez survey. These workings were surveyed and sampled in November, 1981 by the author. Although only a portion of the samples were analyzed gold values in the 0.1 - 0.2 oz/ton range were found. In 1982 a trenching program was carried out to expose and sample veins on the surface. It was unsuccessful due to mechanical problems with the cat. Grab samples taken at that time from various old test pits and dumps yielded encouraging values of gold; also in the 0.1 - 0.2 oz/ton range.


WORK PERFORMED

The access road leading from the old townsite of Aurora to the property required upgrading in order to accommodate the drill rig. The rig was a reverse circulation, percussion drill mounted on a 40 foot long semi-tractor. It was accompanied by a second truck of similar size which carried the drill pipe. Drill pads had to be wide enough for the two trucks to park beside each other. Upgrading the road required 16 hours of work with a D8K cat. Another 9 hours was required to construct the drill pads.

Three hundred and twenty (320) feet of drilling was completed in three holes. Samples of the cuttings were taken over five foot intervals. Each sample was split three times. Material from each sample was sieved, washed and mounted for a drill log. Three surface samples were taken from veins exposed by the cat.

で上京本とは大三台

PLATE 1

THE STATE OF THE S

Drill set up at U1 viewed from the east.

PLATE 2

Drill set up at U1 viewed from the west.

Ö.

1

· X

The same

-

1

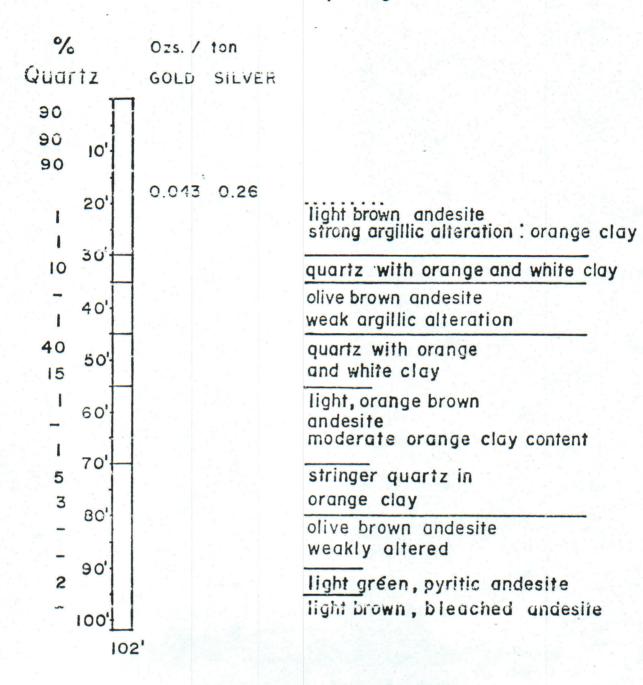
*

是这个人的人的一种,我们就是我们的人,是一个是一个原理,是一个人的人的,他们也是一个人的人的,也不是一个人的人的人,也不是一个人的人的人,也可以是一个人的人的人

Figure 5 Argillicly altered andesite Quartz and orange clay 03 CROSS-SECTION THROUGH PERCUSSION HOLES Andesite 区 02 30 Scale (metres) 1:500 20 5 0 0

to the second section of the second section of

校

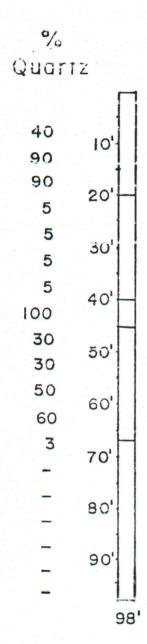

8

意

.

UI Chip Log

(1771年) (1981年) (198


*

Car

Printer.

Any.

U2 Chip Log

Collection of the state of the

*

745

1

io.

.

quartz with orange and white clay

light brown andesite strong argillization: orange clay minor silicification

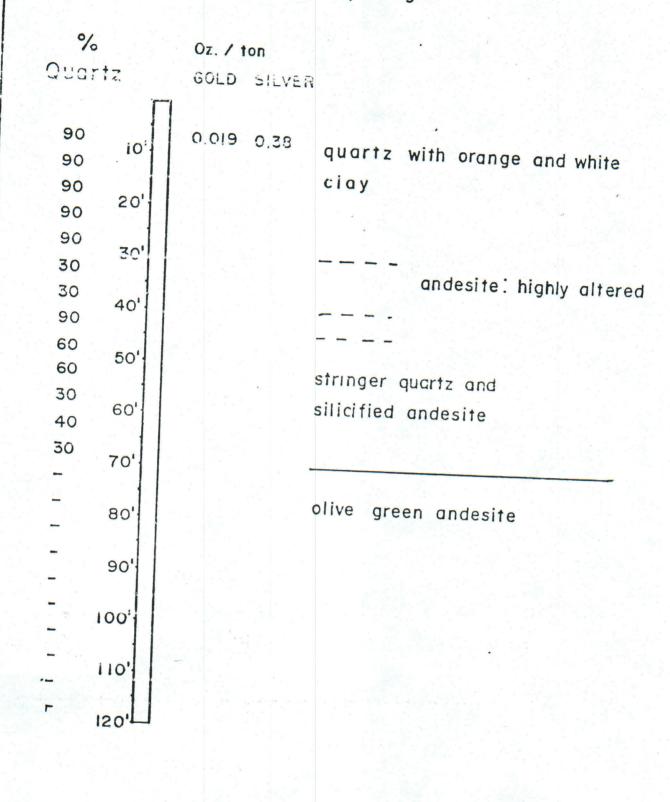
quartz: massive

quartz and silicified andesite strongly argillized andesite moderate orange clay

olive green andesite

U3 Chip Log

and served to be a first


E.

.

4

1

SELECTION OF THE PROPERTY OF T

GEOCHEMISTRY

Analyses were performed by Min-En Laboratories Ltd. of Vancouver. All the samples were ground to -100 mesh size. Silver content was analyzed using a wet-chemical technique after acid digestion. Gold was analyzed by fire assay. (Appendix 1)

The highest gold value occurred in the surface sample AG 83-18. Gold assayed 0.130 ozs/ton and silver was 0.38 oz per ton. An intersection in hole U-1 between 15 feet and 20 feet assayed 0.043 ozs/ton for gold and 0.26 ozs/ton for silver. In U-3 the intersection between 5 feet and 10 feet graded 0.019 ozs/ton for gold and 0.38 ozs/ton for silver. The remainder of the samples yielded uniformly low assays.

Seventeen grab samples were taken from various dumps and test pits on the property by D.B. Stelling in 1982. Five samples yielded significant values of gold. Samples UT-3, 6, 10, 11 and 13 assayed .212, .945, .153, .133 and .058 oz/ton of gold, respectively. Reassaying the samples confirmed sample UT-3 only; doubling the value. Forty-five percent (45%) of the samples assayed in excess of 1 oz/ton of silver. The location of these samples is not well defined, consequently they are not included on the topographic map. These samples were also assayed by Min-En Laboratories Ltd. of Vancouver. Gold was determined by fire assay. Silver was determined by wet chemical analysis after perchloric acid digestion. (Appendix 2)

Fifteen of the sixty samples taken during the 1981 underground Cortez survey were fire assayed by Miller-Kappes Ltd. of Reno, Nevada. Nine of those samples yielded interesting values and were subjected to a cold cyanide extractable test to gain a rough estimate of recoverability of gold in a heap leach situation. It is felt that these values are essentially meaningless due to the small size of each sample. Four of the samples assayed in excess of 0.10 oz/ton of gold with the high value being 0.910 ozs/ton. The high value for silver was 10.06 oz/ton. (Appendix 3)

CONCLUSIONS

不能等級 斯里斯斯特 人名 人名 人名英格兰人

It is unlikely that the grades seen in the drill sections represent the actual grades of the vein material. The veins observed on the surface are typically much less than five feet in width and the wall rock carries no gold values. It is safe to assume that dilution has reduced the value of the assays. Mineable grades are typically poddy in this area. Two such pods were removed from the neighbouring Cortez Survey and a minimum of one from the Utah Survey. All the pods of ore previously mined lay within 300 feet of the surface.

The 1983 drilling does not disprove the possibility of the presence of further mineable pods on the property. However, if such pods exist it is likely that they will contain small tonnages at relatively shallow depths.

RECOMMENDATIONS

Stope break through near US 10 and US 11 (Figure 9) indicates that a pod of ore has been removed from a system of workings similar to those seen on the Cortez Survey. Entrance to these workings may be gained from an adit at the elevation of the Lower Cortez adit. It is important to determine the extent of the workings and to obtain some underground samples. Another adit at US 5 is caved in. This should be opened up, mapped and sampled. These underground workings should yield a better picture of the distribution of veins on the property. It would require an inexpensive program which would outline areas that should not be explored from the surface.

Furthermore, the balance of the samples taken in the 1981 underground Cortez survey should be assayed to fill in the gaps of data.

The results of the proposed work will help decide whether or not to pursue further exploration on this small property.

1983 DRILL PROGRAM COST SCHEDULE

· 多可提供過過數數金次数 · 1 · 1

ic to

*

D8K cat and operator:	
25 hours at \$ 100.00/nour =	\$ 2,500.00
Low boy for cat mobilization and demobilization =	960.00
Drilling cost =	5,180.00
Wages:	
2 geologists @ \$ 150 00/day (Canadian)	
for 6 days = \$ 1,800.00 (Canadian) -	1,451.61
Mobilization and demobilization \$ 1,077.87 (Canadian)	868.87
Truck Rental 50% x 608.14	304.08
Groceries 50% x 188.22	94.11
Meals 50% x 127.80	63.90
Gas 50% x 152.15	76.08
Parking	2.50
Phone calls	61.83
Miscellaneous	76.05
Report Costs \$ 550.00 (Canadian) -	443.30
Sample Shipping	300.00
Assaying 71 samples \$ 1,107.50 (Canadian)	893.14
U.S	. \$ 13,275.47

CERTIFICATÉ

I, Andreas C. Giatiotis, DO HEREBY CERTIFY:

第二人の大学の大学をは、新聞の書きの表示の表示を表示を表示をは、またましたのであった。

- That I am a consulting geologist with an office at # 21, 3519 49th Street N.W., Calgary, Alberta.
- That I am a graduate of the University of Calgary, 1977 with a B.Sc. Geology degree.
- 3. That I have practised my profession for seven years.
- 4. That this report is based on a personal examination of the property and on review of government reports of Mineral County, Nevada.

Dated at Calgary, Alberta this 29th day of February, 1984.

A.C. Glatiotis, B.Sc.

1. C. Glatistic

APPENDIX 1

MIN-EN Laboratories Ltd.

不是不能情報的 熟練 重 医二十二十二年 等分的人 學 医动物 人名 通人 医医疗不良 新中心是是 人名人名

To the same

Analytical Report for 1983 Percussion Hole Samples

MIN-EN Laboratories Ltd.

705 WEST 15th STREET,
NORTH VANCOUVER, B.C., CANADA V7M 1T2
TELEPHONE (604) 980-5814

ANALYTICAL REPORT

Date of report 3an.16/84.
Date samples receivedJan.6/84.
elling
est Resources
Geochem sample
Vest Resources, Vancouver, B. C.
and the state of t
Ground to mesh -100
ed 🗆
ed 🔲
gestion-chemical analysis.
gestion-chemical analysis.

PHONE: (604) 980-5814 OR (604) 988-4524

Certificate of Assay

Attn:

Electra North West Resources, PROJECT No. D. Stelling

907-1112 West Pender St., DATE: Jan. 16/84.

E.

110

SAMPLE No.	Ag	Au	
OAIM EE IIO.	oz/ton	oziton	
II-1-5-10	.12	.001	
10-15	.02	.001	
20-25	.02	.001	
25-30	,01	,002	
30-35	.02	.001	
35-40	.01	.001	
40-45	.01	,001	
45-50	.08	.001	
50-55	.03	.001	
<u>55-60</u>	.01	.001	
60-65	.05	.001	
65-70	.03	.002	
70-75	.02	.003	
75-80	.03	.001	
80=85	.05	.001	
85-90	.13	.001	
90-95	.06	.001	
95-100	.02	.002	
U-1-100-102	.02	.002	
U-2-0-5	.07	.001	
5-10	.03	.001	
10-15	.04	.001	
15-20	.05	.001	
20-25	.04	.001	
25-35	.02	.001	
35_40	.03	.001	
40-45	.02	.001	
45-50	.04	.001	
50-55	.03	.001	
U-2-55-60	.01	.001	

MINE EN Laboratories Ltd

CERTIFIED BY:

MIN-EN LABORATORIES LTD.

705 WEST 15TH STREET, NORTH VANCOUVER, B. ... /M 1T2 PHONE: (604) 980-5814 OR (604) 988-4524

TO: Elect	ra North		ources,	<u> </u>	Attn PROJECT No. D. St	
	112 West		S.Ł.,		DATE: Jan.i	6/84.
Vanco	uver, B.	C.			File No. 4 - 7	
SAMPLE No.		Ag	Au			

SAMPLE No.	Ag	A u			
		02/502			
U-2-60-65	.19	.011	4	TOTAL PROPERTY.	
65-70	.10	.001			
70_75	.03	.001			
75-80		.001			
80-85	.01	.001			190 F
85-90	.06	.001			
90_95	.07	.001			
U_2_95_93	.03	.001		200 H 10 2 H 10 H	
U-3-5-10	.38	.019	<u></u>		
10-15	.02	001			
15-20	.02	.001			
20-25	-01	.001			
25-30	.05	,001			
30-35	.04	.001			
35-40	.02	.001			
40-45	10	.001			
45_50	.09	.001			
50_55	.04	.003			
5560	.01	.001			
60_65	.01	.001			
65 <u>-</u> 70	.05	.003			
70.75	.02	-002			
75_80	.01	.001			
80 <u>-</u> 85	.01	.001			
85-90	.01	.001			
90-95	.01	.001			
95- <u>1</u> 00	.01	.001			
100_105	.01	.001			
105_110	.02	.001			
U-3-110-115	.01	.001		16	1

PHONE: (604) 980-5814 OR (604) 988-4524

Certificate of Assay

Attn:

Electra North West Resources,					Attn: PROJECT No D. Stell:		
907-1112 Wes		DATE: Jan . 16/34					
Vancouver, I	e.c.			File No	_		
SAMPLE No.	ÂS	Au					
AMIT LE IVO.	oz/ton	oz/ton					
U-3-115-120	.01	.001					
AG 83-1	,01	4001					
2	. 62	.062					
3	.39	.123	and the state of the				
4	.01	.002		-			
5	.01	.001	> Doc	4 8 M	Parcra		
6	.01	.012		CL	darcra ain.s		
16	.02	.001					
_17	.01	.001	7/1	tal S	wovey		
AG 83-18	.38	.130					
U-1-15-20	. 26	.043					
	7 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
			T.v. cop.				
		A- 1875					
			58345				
		I STATE		1	1		

APPENDIX 2

MIN-EN Laboratories Ltd.

Analytical Report for 1982 Surface Samples

705 WEST 15TH STREET, NORTH VANCOUVER, B.C. V7M 1T2

PHONE. (504) 980-5814 OR (604) 982-4224

Certificate of Assay

F.

Flectra Resources, 907-1112 W. Pender St.,					DATE: Jan, 12/82,		
		1000명 : 1000명 (1000명 1000명					
Vancouver, E				File No. 2 -	• /		
AMPLE No.	Ag	Au	AS	RE	Colonia		
	oz/ton	oz/ton					
210-A-UT-1	1.21	.017	1.05	.026			
B2	1.63	.009	1.35	.007			
C 3	2,63	.212	2.69	,412	reas		
D 4	.01	.004	.00	.004			
E 5	1.24	.009	. 66	.003			
F 6	2.50	.045	1.33	.042			
G 7	.77	.019	.94	,032			
н 8	.01	.003		,001			
I 9	.01	.006	,0.3	.001			
J 10	1.50	5.158	1.50	.008	16		
X 11	.90	.138	, 81	.061			
L 12	.01	.006	.01	.001			
M 13	1.60	.058	2.03	06:			
N 14	.31	.009	.47	1027			
0 15	.12	.010	.18	.007			
P 16	.05	.003	.03	.003			
2210-Q-UT-17	. 04	.010	.05	.018			
					1		
6	177H	Surley		Lege	d		
				Fire	d's		
					1		
				1,1 - 1,52			

MINE-EN Laboratories

11 1112.12

APPENDIX 3
Assay Results of 1981 Cortez Underground Survey

APPENDIX 3

ASSAY RESULTS OF 1981 CORTEZ UNDERGROUND SURVEY

Gold oz/ton	Silver oz/ton	G				
	02/1011		old /ton	Silver oz/ton		
		Test 1	Test 2	Test 1	Test 2	
0.031	0.03	0.006	0.018	0.09	0.10	
0.009	0.74					
0.103	2.11	0.47	0.034	1.96	1.69	
0.124	4.27	0.026	0.037	2.49	3.05	
0.013	0.65					
0.084	1.49	0.067	0.033	1.41	1.30	
0.025	0.09	0.006	0.10	0.76	0.74	
0.013	1.27					
0.008	0.51					
0.006	0.01					
0.103	10.06	0.073	0.080	7.37	11.02	
0.023	0.49	0.018	0.047	0.58	0.54	
0.910	0.451	0.173	0.466	2.10	3.13	
0.041	1.27	0.039	0.050	1.40	1.38	
	0.009 0.103 0.124 0.013 0.084 0.025 0.013 0.008 0.006 0.103 0.023 0.910	0.009 0.74 0.103 2.11 0.124 4.27 0.013 0.65 0.084 1.49 0.025 0.09 0.013 1.27 0.008 0.51 0.006 0.01 0.103 10.06 0.023 0.49 0.910 0.451	0.031 0.03 0.006 0.009 0.74 0.103 2.11 0.47 0.124 4.27 0.026 0.013 0.65 0.084 1.49 0.067 0.025 0.09 0.006 0.013 1.27 0.008 0.51 0.006 0.01 0.103 10.06 0.073 0.023 0.49 0.018 0.910 0.451 0.173	0.031 0.03 0.006 0.018 0.009 0.74 0.103 2.11 0.47 0.034 0.124 4.27 0.026 0.037 0.013 0.65 0.084 1.49 0.067 0.033 0.025 0.09 0.006 0.10 0.013 1.27 0.008 0.51 0.006 0.01 0.103 10.06 0.073 0.080 0.023 0.49 0.018 0.047 0.910 0.451 0.173 0.466	0.031 0.03 0.006 0.018 0.09 0.009 0.74 0.103 2.11 0.47 0.034 1.96 0.124 4.27 0.026 0.037 2.49 0.013 0.65 0.084 1.49 0.067 0.033 1.41 0.025 0.09 0.006 0.10 0.76 0.013 1.27 0.008 0.51 0.006 0.01 0.103 10.06 0.073 0.080 7.37 0.023 0.49 0.018 0.047 0.58 0.910 0.451 0.173 0.466 2.10	

Assayed 24 February 1982 by Miller-Kappes Ltd., Reno, Nevada