WHETE PINE COUNTY GENERAL 0170 0065

DAVID DAVIS -

FOR NBMG MINING DISTRICT FILES.

PDAC 2002

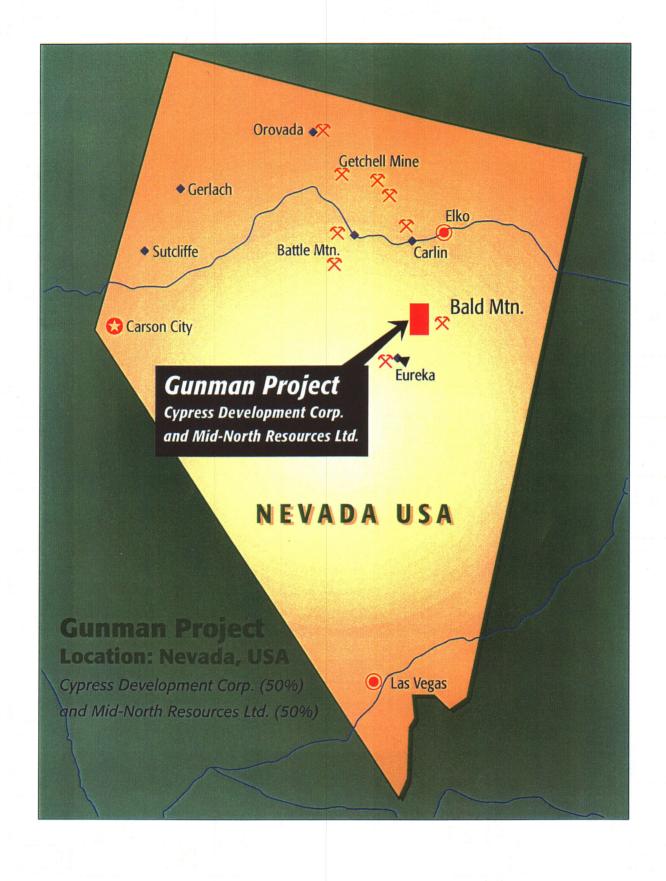
11 MARCH 2002

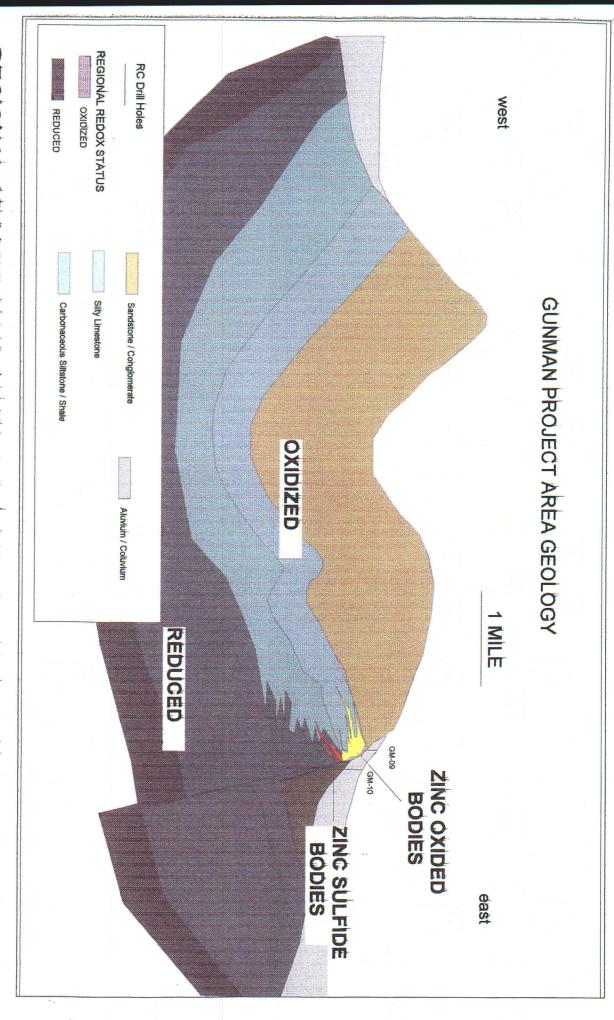
Don Huston

President

CYPRESS DEVELOPMENT CORP. (CYP-V)

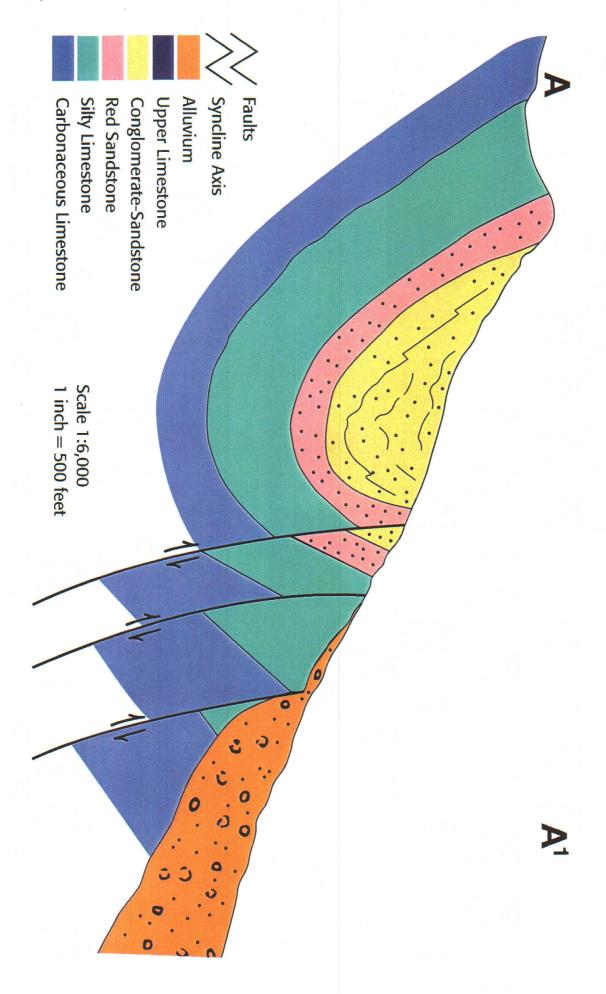
#1950 - 777 Dunsmuir Street P.O. Box 10423 Pacific Centre

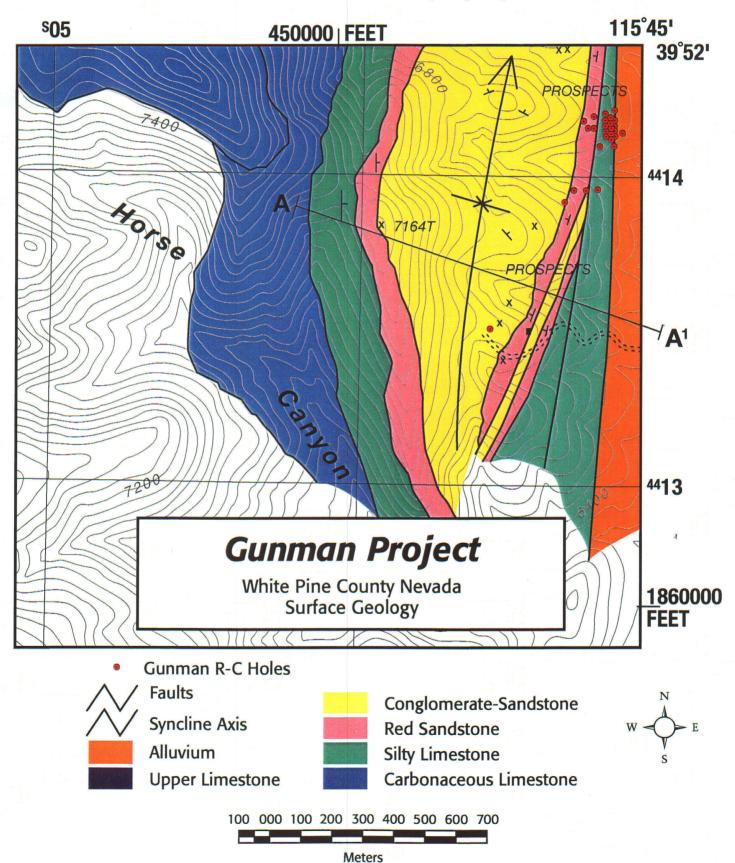

Vancouver, BC V7Y 1K4

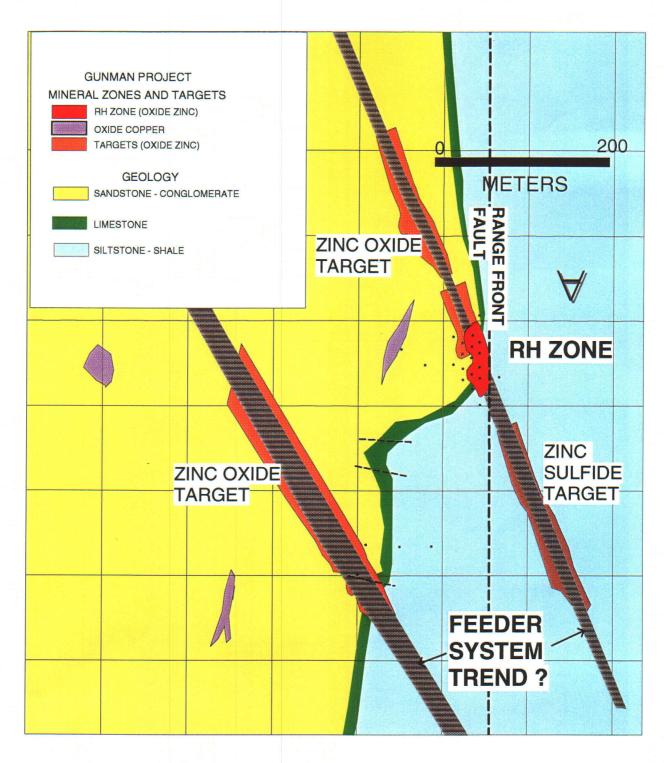

Telephone: 604-687-3376 Facsimile: 604-687-3119

Toll-Free: 1-800-567-8181

Website: www.cypressdevelopmentcorp.com

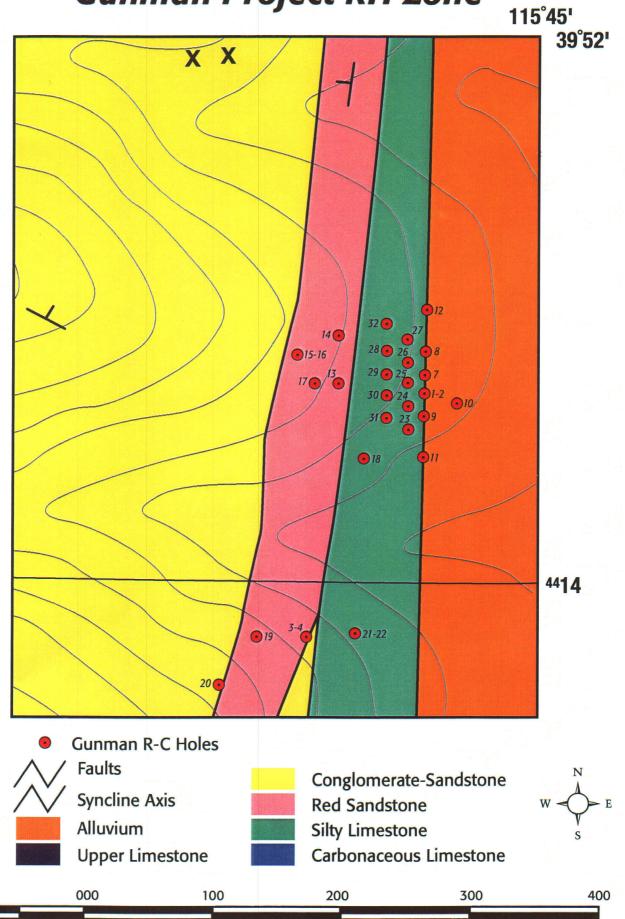

E-mail: dhuston@ninetyeight.com


REGIONAL CROSS SECTION WITH GENERALIZED CONCEPTS

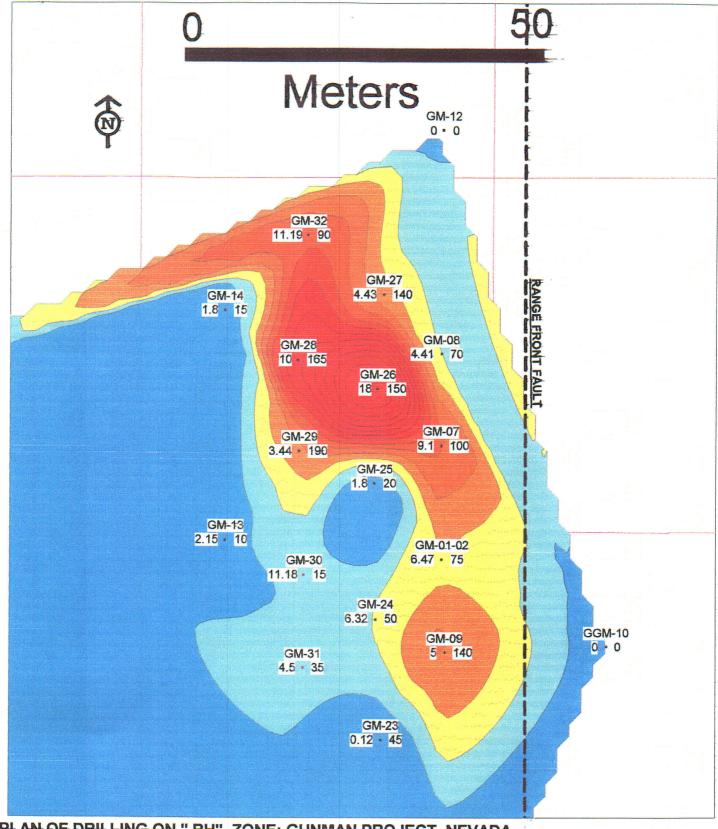

Gunman ProjectGeologic Cross-Section

Christina Peak Quadrangle Nevada

7.5 Minute Series (Topographic)



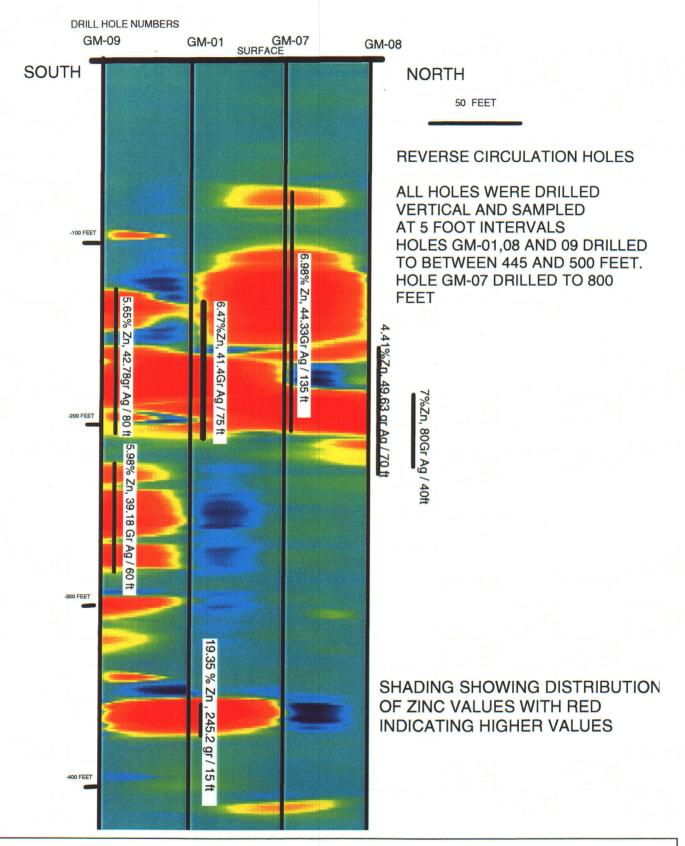
GUNMAN PROJECT; NEVADA


RH ZONE, GEOLOGY AND TARGETS

Christina Peak Quadrangle, Nevada Gunman Project RH Zone

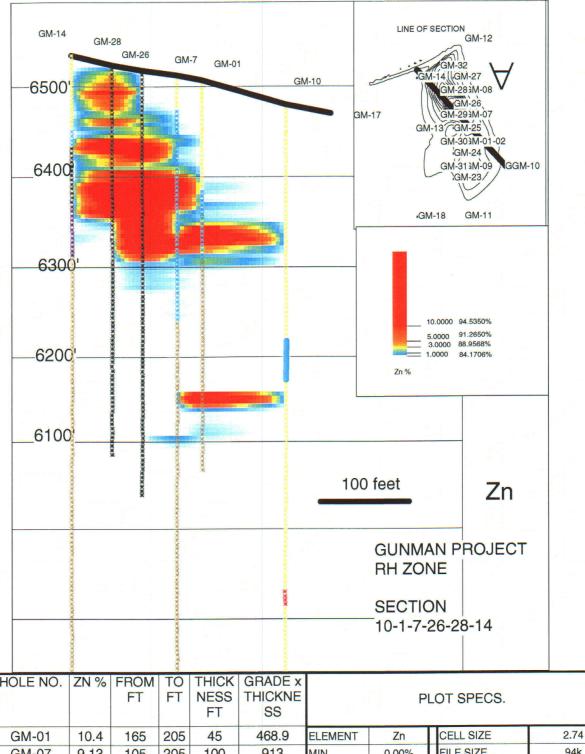
Meters

100

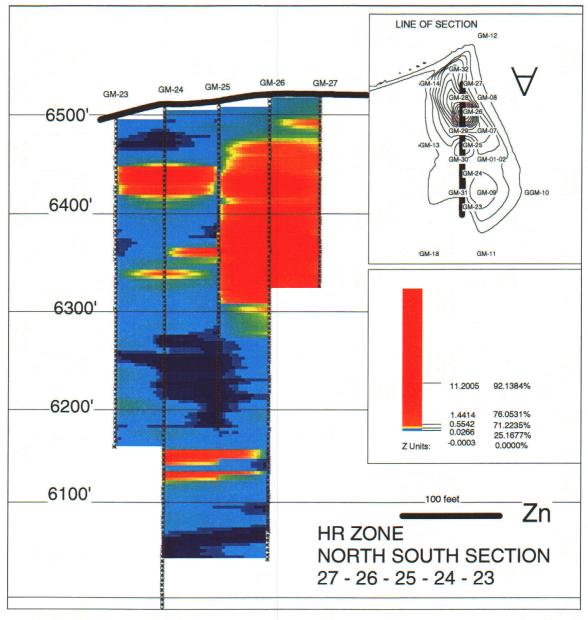


PLAN OF DRILLING ON "RH" ZONE; GUNMAN PROJECT, NEVADA

DRILL HOLE NUMBER SHOWN ABOVE COLLAR POINT

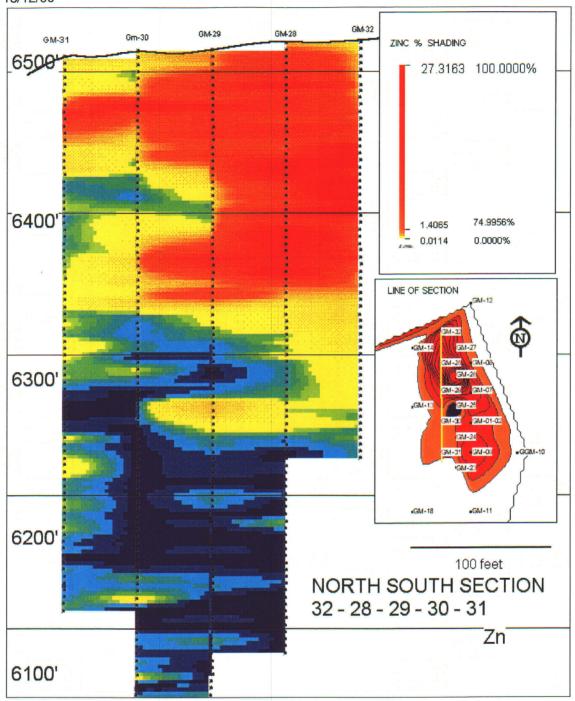

% ZINC IN INTERCEPT IS SHOWN TO LEFT OF COLLAR POINT CONTINUOUS INTERCEPT LENGTH IN FEET SHOWN TO RIGHT OF COLLAR POINT MINERALIZED ZONE SHOWN IS THE 'OXIDE' ZONE WITH ALL INTERCEPTS WITHIN A GENTLY ROLLING, NEAR HORIZONTAL LIMESTONE

INTERCEPT WIDTHS IN VERTICAL HOLES BELIEVED TO BE NEAR TRUE THICKNESS.



GUNMAN PROJECT: NEVADA USA RH ZONE

CYPRESS DEVELOPMENT CORP. (50%) and MID-NORTH RESOURCES LTD. (50%) SECTION SHOWING ZINC & SILVER RESULTS FROM RECENT REVERSE CIRCULATION DRILLING


NAME AND ADDRESS OF TAXABLE PARTY.	Name and Address of the Owner, where the Owner, which is the Owner,	THE RESIDENCE OF THE PARTY OF T	THE OWNER OF TAXABLE PARTY.	NAME AND ADDRESS OF TAXABLE PARTY.	Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is the Owner, which	NAME AND ADDRESS OF TAXABLE PARTY.	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN		A PARTY NAMED IN COLUMN 2
HOLE NO.	ZN %	FROM FT	TO FT	THICK NESS FT	GRADE x THICKNE SS	M	PL	OT SPECS.	
GM-01	10.4	165	205	45	468.9	ELEMENT	Zn	CELL SIZE	2.74
GM-07	9.13	105	205	100	913	MIN	0.00%	FILE SIZE	94k
GGM-10	0	0	0	0	0	MAX	34.60%	INTERPOLATION	RECTANGULAR (BILINEAR)
GM-26	16.1	50	220	170	2733.6	UNITS	FEET		18 L
GM-28	9.49	5	180	175	1661	SEARCH R.	224.4	5 2	Aug a
GM-14	1.8	0	0	15	27		1 10 10 1		15 m 17

HOLE NO.	ZN %	FROM FT	TO FT	THICK NESS FT	GRADE x THICKNE SS	PLOT SPECS.			
GM-23	0.12		-	45	5.4	ELEMENT	Zn	CELL SIZE	3.24
GM-24	8.94	60	95	35	312.9	MIN	0.30%	FILE SIZE	99K
GM-25	6.17	150	155	5	30.85	MAX	33.30%	INTERPOLATION	RECTANGULAR (BILINEAR)
GM-26	16.08	50	220	170	2733.6	UNITS	FEET		
GM-27	5.2	90	200	110	572	SEARCH R.	161		-1

GUNMAN PROJECT: HR ZONE; %ZN SHADING SET STATISTICALLY

18/12/00

HOLE NO.	ZN %	FROM FT	TO FT	THICK NESS	GRADE X THICKNE		- F			
		2 11 251 8 251		FT	SS					
GM-28	9.49	5	180	175	1661	ELEMENT	ZN	CELL SIZE	2.7	
GM-29	3.99	20	180	160	638.4	MIN	0.00%	FILE SIZE	104K	
GM-30	11.18	35	50	15	167.7	MAX	27.36%	INTERPOLATION	RECTANGULAR (BILINEAR)	
GM-31	9.8	40	55	15	147	UNITS	FEET			
GM-32	11.19	70	160	90	1007.1			5 10 10 1 10 1 10 1 10 10 10 10 10 10 10		

THE GUNMAN PROJECT

THE DEAL

Cypress Development Corp.(CYP-CDNX) has the right to earn a 50% interest in the Gunman Prospect in White Pine County, Nevada from White Pine Resources. The terms of the agreement are as follows: 150,000 shares of CYP upon signing; \$60,000 (CDN) work program in the year 2000; \$100,000 (CDN) work program in the year 2001; and \$200,000 (CDN) in the year 2002. Mid-North Resources (MNU-CDNX) has the right to earn the other 50% of the option from White Pine Resources by issuing 200,000 shares of Mid-North Resources upon signing and contributing 50% of all costs of maintaining the option. A Net Smelter Royalty (NSR) of 2% exists for the optioner. Half of the 2% NSR can be bought by the optionees for \$1,000,000.

LOCATION

The Gunman Prospect consists of 240 lode claims (approx. 6000 acres). Located approximately 40 miles northeast of Eureka, Nevada and the Ruby Hill gold mine, the Gunman Prospect lies on the east flank of the Diamond Mountains. Visible from the property, some 50 miles to the southeast, are Hamilton Mountain and the polymetallic mines of the White Pine District. Less than 20 miles east of the White Pine District is the Robinson District and the Ruth Pit (at one time, the largest copper producer in the world). Ten miles east of the Gunman Prospect is the Bald Mountain Gold Mine. The town of Carlin and the world-class mines of the Carlin Trend are located 60 miles to the north-northwest. The Cortez Gold Mine is approximately 50 miles west-northwest.

Access to the Gunman Prospect is paved roads from Eureka. A number of interconnected, public access and drilling roads are found throughout the property.

GEOLOGY

Rocks of the Gunman Prospect can be grouped into two distinct packages. The upper group is a thick sequence of interbedded sandstone and conglomerate. The lower package consists of carbonaceous dolomite, limestone, shale and siltstone. The upper rocks are siliceous while the lower group is calcareous.

In places the contact between the two packages appears conformable; with interbedded sandstone and limestone. However, other locations indicate the contact is unconformable. On a nearby hilltop, a similar contact is an angular unconformity. Core drilling will determine the true nature of the contact in the area of mineralization.

Although Nevada Bureau of Mines reports and maps label these rocks as Permian Carbon Ridge Formation, others suggest Diamond Peak Formation and Joanna Limestones. Regardless of name and age, both carbonate and clastic units were mineralized during the same event.

STRUCTURE

Although limited data has been collected, the area geology is structurally complex. Sedimentary rocks strike north-south, parallel to the range-front fault. The fault is difficult to see on the ground, but readily apparent in aerial photographs. Axes of tightly folded synforms and antiforms also trend in a north-south direction. Veining and fracturing may indicate additional structures trending NW-SE, NE-SW, and an east-west component. Folding could be the result of ramping along low-angle thrust faults.

Crosscutting relationships indicate a minimum of five periods of structural deformation. The oldest structure, which us syngenetic with mineralization, trends N5W to N25E. The dip varies from 70E to 45W. Small, tight folds, shear fabrics, and fracturing associated with this structure are seen over a large portion of the property. This zone is the primary target. The latest structures appear to be north-south range-front faults.

MINERALIZATION

Outcropping mineralization is found throughout the Gunman Prospect. Zinc, silver, copper, and a variety of accessory metals occur in potentially economic quantities and grades. A function of watertable and weathering at depth, minerals are found to be either oxidized, or in their primary sulfide form.

Three types of mineralization occur in outcrop; copper carbonate along fractures and grain boundaries in conglomerate, zinc carbonate replacement of limestone, and polymetallic jasperoid.

The largest quantities and highest grades of zinc and silver occur in the carbonaceous, carbonate units. Zinc and silver mineralization in these units is structurally-, stratigraphically-, and chemically-controlled. Through decalcification and carbonate-replacement of limestone and dolomite, metals were precipitated in fractures, in preferred carbonate units, and at the carbonate/conglomerate contact. Drilling indicates tabular bodies, which are probably parallel to bedding and stratabound (mantos). Also seen in drilling are high angle, mineralized structures which may be chimneys or feeders.

Copper staining is found over a large portion of the Gunman Prospect. Azurite and malachite fill fractures and rim clasts in conglomerate and sandstone. Zinc and silver are accessory to copper. Pockets of higher-grade copper are associated with dilation spaces and fracturing in small folds.

Polymetallic jasperoid lenses are found in the carbonates near the conglomerate contact.

WORK PROGRAM

Cypress Development Corp (CYP-CDNX) and Mid-North Resources (MNU-CDNX) have now completed a two-phase exploratory drill program (5600 ft.) and have come up with highly encouraging results (see news releases dated: June 12, 2000 and July 25, 2000). The Companies will be commencing a 15000-ft. drill program in September 2000.

news releases

June 12, 2000

Cypress Development Corp. and Mid-North Resources Ltd. announce new discovery in Nevada

Cypress Development Corp. (50%) and Mid-North Resources Ltd. (50%) (the "Companies") are pleased to announce that a six hole, exploratory, reverse-circulation drill program conducted by the Cypress Development/Mid-North Resources Joint Venture has been completed on the Gunman Property in White Pine County, North East Nevada. The drilling, totaling 3,025 feet, concentrated on three of many mineralized targets. Assay results have been very encouraging. The most significant intersections occur in holes (01) and (02). Hole (01) was drilled vertically to a depth of 445 feet. Hole (02) was drilled -45 degrees to the west, from the same location as hole (01). Drilling highlights are as follows:

HOLE G	M-01					
Depth From	To	Width	Zinc%	Silver grams/ton		
115 feet	215 feet	100 feet	4.91%	32.86 g/t		
140 feet	215 feet	75 feet	6.47%	41.4 g/t		
160 feet	210 feet	50 feet	9.47%	59.6 g/t		
160 feet	190 feet	30 feet	13.87%	85.1 g/t		
165 feet	185 feet	20 feet	19.62%	115.3 g/t		
175 feet	185 feet	10 feet	24.98%	108.5 g/t		
355 feet	415 feet	65 feet	4.75%	62.23 g/t		
355 feet	405 feet	50 feet	6.13%	79.53 g/t		
355 feet	385 feet	30 feet	10.03%	_		
355 feet	370 feet		19.35%	245.2 g/t		
355 feet	365 feet	10 feet	23.37%	301.6 g/t		
HOLE GM-02						
130 feet 130 feet	165 feet 145 feet	35 feet 15 feet	3.54% 7.46%	5.7 g/t 6.5 g/t		

Zinc-Silver Mineralization occurs in carbonaceous limestone, siltstone, and shale in outcrop and at depth. Interbedded sandstone and conglomerate overlie the carbonaceous units and are the host to at least five, coppersilver-zinc showings. These have yet to be tested. Polymetallic jasperoid bodies are also present on the property. A permit for a second phase of drilling is currently being sought from the Bureau of Land Management, Nevada. Drilling is to begin before the end of June. Cypress Development/Mid-North Resources joint venture may earn a 100% interest in the property by meeting defined expenditure targets as described in a previous news release dated April 28, 2000. All samples were analyzed by Bondar-Clegg, Vancouver, for thirty seven elements. Select samples were re-analyzed to ensure quality.

ON BEHALF OF THE BOARD OF DIRECTORS **Donald Huston** DON HUSTON President CYPRESS DEVELOPMENT CORP.

Rob Dunlop ROBERT DUNLOP President MID-NORTH RESOURCES LTD.

THE CANADIAN VENTURE EXCHANGE HAS NOT REVIEWED AND DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THE CONTENT OF THIS NEWS RELEASE.

news releases

July 25, 2000 Phase 2 Drilling Program Completed On Gunman Project, White Pine County N.E. Nevada

Joint venture partners, Cypress Development Corporation (CYP-CDNX) and Mid-North Resources Ltd. (MNU-CDNX) are pleased to announce the latest results from the recently completed Phase II reverse circulation drilling program on their Gunman property in Northeast Nevada. Four holes (GM-07 - GM-10) were completed in the RH Zone (formerly Zone 1) with three intersecting significant high grade zinc mineralization. Total footage drilled to date is 5,625 feet. (See June 12 assay release at

Property geology consists of a Permian conglomerate and sandstone package overlying carbonatious limestone and siltstone. The mineralization is hosted in the limestone and siltstone in both oxide and sulphide form. Hemimorphite and smithsonite are the zinc minerals encountered in the oxide zone and sphalerite is the primary sulphide. The mineralization style can be characterized as carbonate replacement. Numerous, as yet, untested, malachite and azurite surface showings are found throughout the conglomerate and sandstone package.

Hole GM-07

Depth from	to	Width	Zinc%	Silver grams/ton
70 feet	205 feet	135 feet	6.98%	44.33 g/t
	including			- 14 C. L. L
105 feet	205 feet	100 feet	9.13%	58.25 g/t
115 feet	200 feet	85 feet	10.24%	65.23 g/t
105 feet	155 feet	50 feet	11.51%	63.38 g/t
115 feet	150 feet	35 feet	14.73%	81.81 g/t
120 feet	135 feet	15 feet	18.09%	76.13 g/t
180 feet	205 feet	25 feet	12.50%	82.16 g/t
185 feet	200 feet	15 feet	17.99%	102.67 g/t
185 feet	195 feet	10 feet	21.68%	101.90 g/t
Hole GM-08				
Depth from	to	Width	Zinc%	Silver grams/ton
130 feet	250 feet	120 feet	2.69%	49.63 g/t
130 1001	including	120 100		
155 feet	225 feet	70 feet	4.41%	66.16 g/t
185 feet	225 feet	40 feet	7.00 %	80.13 g/t
185 feet	205 feet	20 feet	12.61 %	124.70 g/t
Hole GM-09				
Depth from	to	Width	Zinc%	Silver grams/ton
120 feet	345 feet	225 feet	4.01%	30.62 g/t
120 1001	including			
130 feet	210 feet	80 feet	5.65%	42.78 g/t
130 feet	190 feet	60 feet	7.20%	51.26 g/t
130 feet	150 feet	20 feet	8.38%	75.08 g/t
130 feet	145 feet	15 feet	10.25%	88.37 g/t
160 feet	195 feet	35 feet	7.73%	45.37 g/t
170 feet	195 feet	25 feet	10.10%	56.80 g/t
175 feet	190 feet	15 feet	14.67%	79.77 g/t

225 feet 225 feet 240 feet 240 feet 245 feet	including 325 feet 285 feet 280 feet 265 feet 260 feet	100 feet 60 feet 40 feet 25 feet 15 feet	4.33% 5.98% 7.97% 9.32% 11.98% 5.81%	30.84 g/t 39.18 g/t 49.54 g/t 49.80 g/t 62.80 g/t r 50.33 g/t
270 feet	285 feet	15 feet	5.81%	50.33 g/t
300 feet	310 feet	10 feet	5.69%	33.75 g/t

A phase III drill program (approx. 15,000 ft.) is planned to begin as soon as the land usage permitting process with the Nevada Bureau of Land Management is completed. Drilling will continue in the RH zone as well as upon numerous other showings on the property.

Cypress and Mid-North may earn a 100% interest (50% each) in the property by meeting specific expenditure targets.

All assaying has been conducted by Bondar Clegg's Laboratory in Vancouver. Selected intersections have been re-analyzed for quality control.

ON BEHALF OF THE BOARD OF DIRECTORS **Donald Huston**President
CYPRESS DEVELOPMENT CORP.

Rob Dunlop President MID-NORTH RESOURCES LTD.

THE CANADIAN VENTURE EXCHANGE HAS NOT REVIEWED AND DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THE CONTENT OF THIS NEWS RELEASE.

© Cypress Development Corp. All Rights Reserved.

CYPRESS DEVELOPMENT CORP.

Suite1950 – 777 Dunsmuir Street, Vancouver, BC, V7Y 1K4

Tel.: (604) 687-3376 (800) 665-3390 Fax: (604) 687-3119

CDNX Trading Symbol: CYP
Email: stocks@ninetyeight.com
Website: www.cypressdevelopmentcorp.com

MID-NORTH RESOURCES LTD.

Suite 400, 609 – 14th St. NW, Calgary, AB, T2N 2A1 Tel.: (403) 283-3619 Fax: (403) 283-3620

CDNX Trading Symbol: MNU Email: mnres@home.com

August 30, 2000

PHASE III PROGRAM THE GUNMAN PROJECT, WHITE PINE COUNTY N.E. NEVADA

The Joint venture partners, Cypress Development Corporation (CYP-CDNX) and Mid-North Resources Ltd. (MNU-CDNX) are pleased to announce that Phase III of the work program on the Gunman Project in northeast Nevada is scheduled to start on or about September 11, 2000. Phase III will consist of 15,000 feet of drilling with the majority of the footage drilled being "reverse circulation".

The joint venture intends to "diamond drill" a portion of the footage to help delineate structure and geology. The drilling is intended to expand the recently discovered zinc/silver mineralized zones which is geologically open all both directions and will also test new zones on the property. With previous drill results that have been published (www.cvpressdevelopmentcorp.com) the joint venture believes a 15,000 foot drill program (\$300,000 Cdn.) is well warranted. Phase III will take up to two months to complete.

The joint venture also wishes to announce that the companies have recently increased their land package size from 120 claims to 240 claims (6,000 acres approximately). The Gunman property is ideally located in northeast Nevada within close proximity of power, water, and all weather roads.

All site and drill permits have now been received from the Bureau of Land Management (B.L.M.) in Nevada, allowing the Cypress, Mid-North joint venture to initiate drilling.

Cypress and Mid-North may earn a 100% interest (50% each) in the property by meeting specific expenditure targets.

ON BEHALF OF THE BOARDS OF DIRECTORS

CYPRESS DEVELOPMENT CORP.

MID-NORTH RESOURCES LTD.

"Donald Huston"
Donald Huston, President

"Rob Dunlop"

Rob Dunlop, President

THE CANADIAN VENTURE EXCHANGE HAS NOT REVIEWED AND DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THE CONTENT OF THIS NEWS RELEASE.

CYPRESS DEVELOPMENT CORP.

Suite 1950 – 777 Dunsmuir Street
P.O. Box 10423, Pacific Centre
Vancouver, British Columbia
V7Y 1K4
www.cypressdevelopmentcorp.com

NEWS RELEASE

October 12th, 2000

CDNX Trading Symbol: CYP Email: stocks@ninetyeight.com

Telephone: (604) 687-3376 Facsimile: (604) 687-3119

PROGRESS REPORT ON PHASE III DRILLING PROGRAM ON GUNMAN PROJECT WHITE PINE COUNTY, NE NEVADA

Cypress Development Corp. (CYP-CDNX), Operator of the Gunman Project in N.E. Nevada, is pleased to announce, on behalf of its Joint Venture Partner, Mid-North Resources Ltd., (MNU-CDNX), initial results from the ongoing Phase III reverse circulation drilling program. Seven holes (GM-11 to GM-17) have now been completed in the area surrounding the initial RH zone with three holes intersecting significant zinc mineralization. Footage drilled to date in Phase III is 4930 feet. The Phase III drill program calls for 15000 feet to be drilled. Total footage drilled on the property to date is 10555 feet (see news release of July 25, 2000 at www.cypressdevelopment.com.

The rocks of the Gunman Property can be grouped into two distinct packages; the upper group is a thick sequence of interbedded sandstone and conglomerate; the lower package consists of carbonatious dolomite, limestone, shale and siltstone. The upper rocks are siliceous while the lower group is calcareous. The contact between the two packages appears comformable in certain places, (interbedded sandstone and limestone). However, other locations indicate the contact is uncomformable. Cypress believes that core diamond drilling will determine the true nature of the contacts within the areas of mineralization. Approximately 2000 feet of diamond drilling (core) is allotted to be completed in Phase III.

The Company finds the area geology to be structurally complex. Sedimentary rocks strike north-south, parallel to the range front fault. Axis of tightly folded synforms and antiforms also trend in a general north-south direction. Veining and fracturing are indicating additional structures trending NW-SE, NE-SW and an East-West component. Small, tight folds shear fractures and fracturing associated with the structure are seen over a large portion of the property. These zones are the primary targets.

Previous Results from the RH Zone:

HOLE GM-01

Depth From	<u>To</u>	Width	Zinc%	Silver Grams/ton
115 feet	215 feet	100 feet	4.91%	32.86 g/t
including				
140 feet	215 feet	75 feet	6.47%	41.4 g/t
160 feet	210 feet	50 feet	9.47%	59.6 g/t
160 feet	190 feet	30 feet	13.87%	85.1 g/t
165 feet	185 feet	20 feet	19.62%	115.3 g/t
175 feet	185 feet	10 feet	24.98%	108.5 g/t
350 feet	415 feet	65 feet	4.75%	62.23 g/t
including	105 51	50 foot	6.13%	79.53 g/t
355 feet	405 feet	50 feet		
355 feet	385 feet	30 feet	10.03%	128.1 g/t
355 feet	370 feet	15 feet	19.35%	245.2 g/t
355 feet	365 feet	10 feet	23.37%	301,6 g/t

HOLE GM-02

Depth From	<u>To</u>		Width	Zinc%	Silver <u>Grams/ton</u>	
130 feet		165 feet	35 feet	3.54%	5.7 g/t	
130 feet	including	145 feet	15 feet	7.46%	6.5 g/t	

HOLE GM-07

Depth from	<u>to</u>	Width	Zinc%	Silver grams/ton
70 feet	205 feet	135 feet	6.98%	44.33 g/t
incl	uding			
105 feet	205 feet	100 feet	9.13%	58.25 g/t
115 feet	200 feet	85 feet	10.24%	65.23 g/t
105 feet	155 feet	50 feet	11.51%	63.38 g/t
115 feet	150 feet	35 feet	14.73%	81.84 g/t
120 feet	135 feet	15 feet	18.09%	76.13 g/t
	205 feet	25 feet	12.50%	82.16 g/t
180 feet	200 feet	15 feet	17.99%	102.67 g/t
185 feet 185 feet	195 feet	10 feet	21.68%	101.90 g/t

HOLE GM-08

Depth From		<u>To</u>	Width	Zinc%	Silver Grams/ton
130 feet		250 feet	120 feet	2.69%	49.63 g/t
	including	225 5-4	70 feet	4.41%	66.16 g/t
155 feet		225 feet			
185 feet		225 feet	40 feet	7.00%	80.13 g/t
185 feet		205 feet	20 feet	12.61%	124.70 g

HOLE GM-09

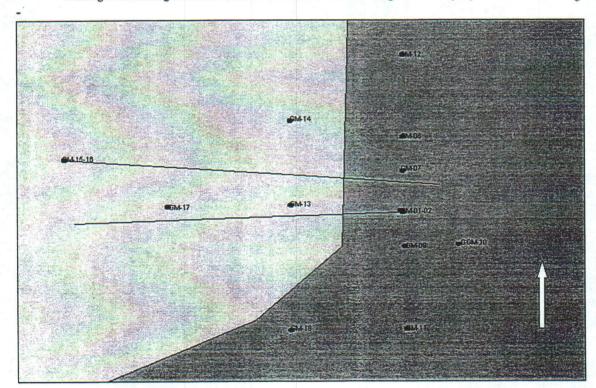
					Silver
Depth from		<u>to</u>	Width	Zinc%	grams/ton
120 feet		345 feet	225 feet	4.01%	30.62 g/t
	including				
130 feet	_	210 feet	80 feet	5.65%	42.78 g/t
130 feet		190 feet	60 feet	7.20%	51.26 g/t
130 feet		150 feet	20 feet	8.38%	75.08 g/t
130 feet		145 feet	15 feet	10.25%	88.37 g/t
160 feet		195 feet	35 feet	7.73%	45.37 g/t
170 feet		195 feet	25 feet	10.10%	56.80 g/t
175 feet		190 feet	15 feet	14.67%	79.77 g/t
			400.0	4.2207	20.04 /
225 feet		325 feet	100 feet	4.33%	30.84 g/t
	including			the second of the second	
225 feet		285 feet	60 feet	5.98%	39.18 g/t
240 feet		280 feet	40 feet	7.97%	49.54/g/t
240 feet		265 feet	25 feet	9.32%	49.80 g/t
245 feet		260 feet	15 feet	11.98%	62.80 g/t
270 feet _		285 feet	15 feet	5.81%	50.33 g/t
300 feet		310 feet	10 feet	5.69%	33.75 g/t

New Results (Phase III)

HOLE GM-13

						Silver		
Depth from		to		Vidth	Zinc%		Copper %	
40 feet	including	80 feet		feet		6.8 g/t		
40 feet		50 feet	10	feet			.185%	
70 feet	including	130 feet	60	feet	1.8%			
75 feet		125 feet	50	feet	2.1%			
90 feet	including	125 feet	35	feet	2.65%			
90 feet		115 feet	25	feet	3.0%			
210 feet	including	230 feet	20	feet	1.3%			
220 feet		230 feet	10	feet	2.1%			
325 feet		345 feet	20	feet	1.1%			

HOLE GM-14


					Silver	
Depth from		to	Width	Zinc%	grams/ton Copper %	
15 feet		35 feet	20 feet		38.25g/t	
	including					
25 feet		35 feet	10 feet		.83%	
25 feet		30 feet	5 feet		1.1%	
20 feet	in about in a	55 feet	35 feet	.41%		
20 feet	including	45 feet	25 feet	.49%		
100 feet	including	130 feet	30 feet	1.1%		
105 feet	merdanig	120 feet	15 feet	1.83%		
105 feet		110 feet	5 feet	3.92%		

HOLE GM-16

Depth from		<u>to</u>		Width	Zinc%	Silver grams/ton
180 feet		190 feet	10	feet	.9%	
320 feet		330 feet	10	feet		16g/t
425 feet		455 feet	30	feet		12.8 g/t
	including					
430 feet		450 feet	20	feet		18.1 g/t
360 feet		410 feet	50	feet	1.3%	
	including					
360 feet		380 feet	20	feet	2.6%	

^{*} All holes verticle (except GM2 45° W GM16 50° E).

- Cypress and Mid-North may earn a 100% interest (50% each) in the property by meeting specific expenditure targets.
- All assaying has been conducted by Bondar Clegg's Laboratory in Vancouver. Selected intersections have been re-analyzed for quality control.
- Drilling is continuing in the RH Zone as well as numerous showings on the Property.

ON BEHALF OF THE COMPANY

Donald Huston, President

THE CANADIAN VENTURE EXCHANGE HAS NOT REVIEWED AND DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THE CONTENT OF THIS NEWS RELEASE. $^{\wedge}$

CYPRESS DEVELOPMENT CORP.

Suite 1950 – 777 Dunsmuir Street
P.O. Box 10423, Pacific Centre
Vancouver, British Columbia
V7Y 1K4
www.cypressdevelopmentcorp.com

NEWS RELEASE

11/07/2000

CDNX Trading Symbol: CYP Email: stocks@ninetyeight.com

Telephone: (604) 687-3376 Facsimile: (604) 687-3119

PROGRESS REPORT ON PHASE III DRILLING PROGRAM ON GUMMAN PROJECT WHITE PINE COUNTY, NEVEDA.

Cypress Development is pleased to report additional results from drill hole assays received from the RH Zone on its zinc oxide project in Nevada. The project is located in the North East section of the State of Nevada 50 miles south of the city of Elko. Placer Dome's open pit gold mine at Bald Mountain is approximately 5 miles east of the Gunman Property on the east side of Huntington Valley.

Reverse circulation drilling of the RH Zone continues to date. Approximately 8900 feet of the projected 15, 000 feet to be drilled in Phase III has been completed. The company is encouraged with the results reported in this release because they further increase the area of known mineralization within the RH Zone.

All assaying has been conducted by the laboratory of Bondar Clegg in Vancouver. Selected intersections have been reanalyzed for quality control.

HOLE GM - 19 (Vertical)

Depth from (feet)	to (feet)	Width(feet)	Zinc%	Ag grams
0 feet	15 feet	15 feet	1.91%	11.7 g/t
220 feet	230 feet	10 feet	3.08%	14.1 g/t

HOLE GM - 24 (Vertical)

Depth from (feet)

to (feet)

60 feet	110 feet	50 feet	6.32%	38.46 g/t
including			7.040/	47.24 g/t
60 feet	100 feet	40 feet	7.84%	50.41 g/t
60 feet	95 feet	35 feet	10.27%	
65 feet	90 feet	25 feet	12.07%	60.96 g/t
65 feet	80 feet	15 feet	16.76%	62.52 g/t
170 feet	17 <u>5</u> feet	5 feet	1.82%	21.3 g/t
360 feet	 390 feet	30 feet	3.23%	27.01 g/t
including	330 1001			
_	385 feet	25 feet	3.44%	31.0 g/t
360 feet	370 feet	10 feet	5.70%	38.0 g/t
360 feet 380 feet	385 feet	5 feet	5.56%	75.0 g/t
HOLE GM - 25 (Vertical)				
Depth from (feet)	to (feet)	Width (feet)	Zinc %	Ag grams
150 feet	165 feet	15 feet	2.36%	6.9 g/t
including			3.26%	8.58 g/t
150 feet	160 feet	10 feet	6.17%	13.5 g/t
150 feet	155 feet	5 feet	0.17%	10.0 g/t
HOLE GM - 26 (Vertical)				
Depth from (feet)	to (feet)	Width (feet)	Zinc %	Ag Grams
45 feet	105 feet	60 feet	7.30%	38.9 g/t
including		55 feet	7.92%	41.8 g/t
50 feet	105 feet	40 feet	10.16%	53.8 g/t
65 feet	105 feet	25 feet	14.32%	72.6 g/t
	40E EL			
80 feet 85 feet	105 feet 105 feet	20 feet	15.91%	83.5 g/t

Width (feet)

Ağ grams

Zinc %

Hole #26 has only received partial assays to date due to a scheduled break in the drilling program. Assays have been received from the first 105 feet only. The hole has since been completed to 485 feet and the rest of the anticipated results will be released immediately when received by Cypress.

More information regarding Cypress Development Corp can be found on the company website at www.cypressdevelopmentcorp.com.

ON BEHALF OF THE BOARD OF DIRECTORS

DONALD HUSTON
President and Director

THE CANADIAN VENTURE EXCHANGE HAS NOT REVIEWED AND DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THE CONTENT OF THIS NEWS RELEASE.

CYPRESS DEVELOPMENT CORP.

Suite 1950 – 777 Dunsmuir Street
P.O. Box 10423, Pacific Centre
Vancouver, British Columbia
V7Y 1K4
www.cypressdevelopmentcorp.com

NEWS RELEASE

November 13,2000

CDNX Trading Symbol: CYP Email: stocks@ninetyeight.com

Telephone: (604) 687-3376 Facsimile: (604) 687-3119

Cypress Development Corp. (CYP-CDNX) is pleased to report the commencement of it's 1,500 metre diamond drill program on it's Baird Township Property located in the Red Lake Mining District of Ontario. This program is planned to test the results of a previously completed IP survey. The initial phase of the drill program should last approximately three to four weeks and assay results will be released as they become available.

ROBERT AUL, Director

THE CANADIAN VENTURE EXCHANGE HAS NOT REVIEWED AND DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THE CONTENT OF THIS NEWS RELEASE.

CYPRESS DEVELOPMENT CORP./MID-NORTH RESOURCES LTD.

Suite 1950 – 777 Dunsmuir Street P.O. Box 10423, Pacific Centre Vancouver, British Columbia V7Y 1K4 Suite 400-609-14th Street N.W. Calgary, Alberta T2N 2A1

NEWS RELEASE

November 27, 2000

CDNX Trading Symbol: CYP

Telephone: (604) 687-3376
Facsimile: (604) 687-3119
Email: stocks@ninetyeight.com

CDNX Trading Symbol: MNU

Telephone: (403) 283-3619 Facsimile: (403) 283-3620 Email: mnres@home.com

GUNMAN PROJECT ZINC OXIDE UPDATE

Cypress Development Corp. (CYP-CDNX) and Mid-North Resources Ltd (MNU-CDNX) are pleased to announce that Phase 3 of the Gunman "Zinc Oxide" Project is now complete. This phase included a total of 22 holes equaling 13500 feet of drilling. The bulk of this drilling was focused on the RH Zone where initial results from Phase 1 and 2 proved very positive. The Companys plan for this phase was to test this zone for continuity and extension of grades. The results to date have far exceeded the Companys expectations and plans are underway for a Phase 4 drill program early in the New Year. A complete analysis and report of the overall program is currently being conducted to determine the size and extent of the future drill program. Cypress and Mid-North are very encouraged with the balance of the Phase 3 results to date and are pleased to report complete assay results from the final 5 drill holes (GM 28 – 32). In order to demonstrate continuity of mineralization from surface, holes GM 26 & 27 are now reported as shown below.

HO	LE	$\mathbf{G}\mathbf{M}$	-26

		Width		Silver
Depth from (feet)	to (feet)	(feet)	Zinc %	Grams/ton
Oft	250ft	250ft	11.04%	85g/t
includin	g			
45ft	250ft	205ft	13.43%	129.1g/t
65ft	215ft	150ft	18.02%	170.8g/t
105ft	245ft	140ft	16.77%	166.5g/t
115ft	215ft	100ft	22.72%	221.7g/t
130ft	205ft	75ft	26.88%	255.2 g/t
135ft	165ft	30ft	27.71%	220 g/t
145ft	150ft	5ft	35.26%	171 g/t
165ft	215ft	50ft	24.31%	293.4g/t
includir	ıg			
170ft	205ft	35ft	28.12%	367.2 g/t
175ft	180ft	5ft	33.45%	496.5g/t
190ft	200ft	10ft	29.34%	423.6 g/t
200ft	205ft	5ft	37.44%	162 g/t

HOL		

		Width		Silver
Depth from (feet)	to (feet)	(feet)	Zinc %	Grams/ton
Oft	250ft	250ft	2.81%	16.27g/t
includi	ng			
Oft	200ft	200ft	3.35%	24.66g/t
30ft	200ft	170ft	3.23%	25g/t
90ft	200ft	110ft	5.22%	40.0 g/t
90ft	145ft	55ft	2.47%	20 g/t
145ft	175ft	30ft	7.23%	59 g/t
145f	200ft	55ft	8.38%	59.1 g/t
175ft	200ft	25ft	9.45%	56.3g/t
185ft	200ft	15ft	14.36%	76.5 g/t
190ft	200ft	10ft	19.17%	89.3 g/t
195ft	200ft	5ft	28.53%	88.1 g/t
				100 10 10 10 10 10 10

HOLE GM28

		Width		Silver
Depth from (feet)	to (feet)	(feet)	Zinc %	grams/ton
Oft	210ft	210ft	8.12%	42.81gm
including				
Oft	175ft	175ft	9.74%	51.1gm
35ft	185ft	150ft	11.06%	60.2gm
85ft	175ft	90ft	14.18%	83.8gm
80ft	125ft	45ft	9.86%	102.4gm
85ft	100ft	15ft	20.2%	75.26gm
115ft	175ft	60ft	14.31%	93.2gm
125ft	175ft	50ft	16.33%	103.4gm
125ft	170ft	45ft	17.25%	105.1gm
135ft	170ft	35ft	20.93%	102.4gm

HOLE GM29

		Width		Silver
Depth from (feet)	to (feet)	(feet)	Zinc %	grams/ton
Oft	270ft	270ft	2.45%	15.88gm
including				
Oft	180ft	180ft	3.62%	21.64gm
Oft	100ft	100ft	4.26%	24.77gm
15ft	85ft	70ft	6.1%	33gm
20ft	80ft	60ft	6.72%	36.5gm
25ft	65ft	40ft	8.2%	47.37gm
40ft	65ft	25ft	10.3%	52.1gm
40ft	45ft	5ft	19.25%	55.3gm
60ft	65ft	5ft	11.04%	77.0gm
140ft	180ft	40ft	5.5%	32.68%gm
including				
140ft	165ft	25ft	7.63%	45.48gm
140ft	160ft	20ft	9.07%	54.35gm
145ft	160ft	15ft	11.0%	56.2 gm
150ft	155ft	5ft	17.6%	76.5gm

HOLE GM30

		Width		Silver
Depth from (feet)	to (feet)	(feet)	Zinc %	Grams/ton
Oft	185ft	185ft	1.0%	8.36gm
including				
Oft	70ft	70ft	2.55%	12.63gm
30ft	65ft	35ft	5.01%	22.2 gm
30ft	60ft	30ft	5.94%	25.7gm
35ft	55ft	20ft	8.71%	35.4gm
35ft	50ft	15ft	11.17%	43.4gm
HOLE GM31				
		Width		Silver
Depth from (feet)	to (feet)	(feet)	Zinc %	grams/ton
Oft	85ft	85ft	1.9%	10.31gm
including				
40ft	85ft	45ft	3.5%	20.1gm
40ft	75ft	35ft	4.44%	21.8gm
45ft	70ft	25ft	6.20%	29.4gm
45ft	65ft	20ft	7.58%	34gm
45ft	55ft	10ft	13.6%	56gm
HOLE GM32				
		Width		Silver
Depth from (feet)	to (feet)	(feet)	Zinc %	Grams/ton
Oft	225ft	225ft	4.78%	29.07gm
including				40.1
40 ft	190ft	150ft	7.35%	42.1gm
50ft	170ft	120ft	9.10%	49.12gm
60ft	165ft	105ft	9.90%	52.76gm
75ft	130ft	55ft	16.51%	75.16gm
including			4.5.000	105.55
75ft	90ft	15ft	15.82%	137.66gm
100ft	125ft	25ft	22.63%	63.62gm

All assays have been conducted by the laboratories of Bonder Clegg in Vancouver. Selected intersections have been re-analyzed for quality control.

ON BEHALF OF THE BOARD OF DIRECTORS

CYPRESS DEVELOPMENT CORP.	MID-NORTH RESOURCES LTD.
DONALD HUSTON President and Director	ROB DUNLOP President and Director

THE CANADIAN VENTURE EXCHANGE HAS NOT REVIEWED AND DOES NOT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THE CONTENT OF THIS NEWS RELEASE.