Bullion Monarch Leases Nevada Mill Operation

RENO—Chairman of the board of Bullion Monarch, R.B. Morris, announced that the company has signed a lease on the mill at Austin, Nev. It is in operation at present on a part-capacity test basis.

Morris said the plans of the operators, the Manley Brothers (silica producers from Indiana), are to increase the daily tonnage of the one section to 300 tons per day as soon as possible.

Bullion Monarch’s participation will be $3 per ton of ore treated. The minimum guarantee to Bullion is 100 tons per day. Morris said plans call for putting into the circuit the other ball mill, which could increase to 800 tons per day with this section of the mill completed.

The Bear Creek Mining Co., the exploration division of Kennecott Copper Corp., is drilling on Bullion’s Ward Mountain property, Morris stated. The American Selco Co. has developed “some interesting anomalies” and intends further exploration on Bullion’s Swale Mountain gold property, he added.

Morris said the Luna Co. has cleared 800 feet of the 1,500 foot tunnel on the firm’s Leadville property and is continuing a rehabilitation project. Bullion’s Copper Cove project is active with a joint venture project in which Bullion participates in the profits 50/50. He said the operators expect a plant to be completed by the fall.

Bullion Monarch’s Wyoming oil property has been sublet to firms in the oil business, he said. The U.S. Smelting & Refining Co. continues to hold a substantial block of Bullion’s property at Marysville, Utah. The Union Pacific Railroad Co. continues drilling on the Bentley Group outside Battle Mountain, Nev. A subsidiary of the firm, Hunt Sand and Gravel Co., is operating in the black, Morris said.

2. Tonnage online: 437,500 - tons.
 - assuming 70% - close to 70.
 - w/ cycle of (30) 25 percent (27)

 The 26% represents 96% of true weight.

3. Density: 1,000' on deck.
 170' tops deel
 230' water depth.

 \[
 \frac{1,000 \times 170 \times 230}{1} = 3,555,550
 \]

 ratio = \(\frac{26}{26} \% \).

 \[
 26\% \times 3,555,550 = 924,444
 \]

 Mass grade: 369.9 cal.

 \[
 \frac{924 \times 26.7}{3,555} \times \frac{479}{24660} = 5.12 \% - extractive
 \]

 24660
Mitten Trench
152 Tons - exist

1) 25'-Solid Breccia - alley structure
2) 125 - exist - probably 15 or 16 Stripes

\[25 \times 1000 \times 100 = \frac{20,000}{12} \text{ or } \frac{50,000}{50} \text{ Available Art.} \]

\[\frac{125 \times 1000 \times 100 \times 10\% \times 25\%}{12} \]

\[10,500 \times 100 \times 10\% = 1050 \times 25\% = 25250 \]

\[6 \times 25250 = 457500 \]

1,825,000

\[1666.667 \text{ Total Tons} \times 10\% = 166.666 \times \text{Tonnage of Mineral zone to Bingham area making } 10\% \text{ mineable} \]

or 15% would be factored to 250,000 tons

(over)
RE ESTIMATE OF BLAVER PIT AREA

1. USING THROUGHOUT FULL STRATA
 350 x 80 x 500
 = 437,500 Tons
 16 = 1,666,667 Tons

2. Volume of Rock and Mineralization
 Calculated in Aggregate Area = 1,666,667 Tons

 437,500
 = 26% of Aggregate Zone
 Which Is Minerable Material

 on 12 cu ft
 The Butler-Sher smiles et al. 25.8% in CuFe-
 16 177,500 represents 122,875 tons
 of CuFe. Error 10,000 tons

 on 11 cu ft
 437,500 = 23.3%
 1,918,181

 437,500 represents 107,000 tons 100%
 at 91,800 tons

 Grade = 17.0 lbs./cu ft

 3.28
 3.8
Foot Hill Road
Thru Jack Valley
1 mile W Centerville
Crest Sheraton
4 miles S-Y
Kings Ferry

As of Jan 2, 1971-

PLAGUE CLAIM 6080
JACKSON MINING DISK
Rio's 22, 23, 24, 27, 28
Rule - 10 Claims
Known as "PLAGUE MINES"

SESSS

RANCHES IN ROCK
IRVING DOUGLAS
BOYER

BoYER
VINCE BOYER - T82-3139

Est 1938, Mrs. Sanchez.

1. Misses location property in 1938.
2. Mrs. Sanchez made (labored) fence of
3. Sanchez sold to B. Anderson, South
4. Ranch, now in Kentucky.
5. Ranch men in Kentucky.
6. Ranch top of Redder.
7. Ranch men in Redder.
8. Ranch men in Redder.

To Sanchez:

1. Who is another Hispanic boy?
2. Who was the halterman?
3. Who did the gravel mining - a half dollar.
4. What time did the gravel?
5. What happened when they started work?
6. What happened when they started work?
7. What are the mules, please read?
8. Are all the ranches there still or are they fighting.
12th Tenure up to Grade 1

Pecan - on lower Quirt
- Street west in 1970

Chippy Keough
- Rogers

Joe Morris

And Buzz at my top as grade at the Street. Sheppel to Dana
- Chemical

Then grade fell off the poor management.

Property - right here -

Reach got property for heirs to Street west -

Then - same thing (near by)

Lease 500/yr. - negotiable
- Pteq. 1972 -

- Mac Graham
- Briquet 1972

Mea fallible
- 1972

Sanchez sold 10
- 3 mos. later on the

never sold to
- Ferreira
Call to Gemmill & Vooss
Dorothy Krueck
Maurice Birkham
-Indianola-
Chesterton

Manley, Town of
4/15/74

Manley

Representative
Virgil Wedge
1-5247
9-19-74
379-6136

Dept. St. 882-7428

Del Peterson
357-7978
Hidden Valley

Nevada Fluorspar Corporation

Frank C. Zanella
Minnie R. Sanders
Sales Dept.
Carson City

Chuck Fisher - 354-5429

ally well received
on tour - 354-3535

for proposal.

29 miles downstream

255.00 yds x 50-

155.00 -
Austin area
March 26-1973

From Hg. 50 - 27 miles to Iowa C. Raft

14/31/3 Austin (8:45)
 Turn on 5th, Turner, Delco Ave.

155.9 Clear Creek (Potts-Campe) - left

157.95 Iowa Campe (Hall Creek) -

160.1 - y - not to turn for race.
 to left - to Hall Creek

161.55 - go to reach - posted - turn at clean
 cattle guard - to return

163.0 - y - toward a corn row cattle guard

163.7 - Turner to left. - to return.
 " to right. - thick - east - road.

Since in 29th approach look for signal, not to danger.
 Deco. - Raco. - note and go
 on 24th. - return to y of 160.1

1601 = 167.4 - follow left (main)

168.2 - turn - good from Iowa C. R. (Camar)
169.8 - road - clean to reach.

170.7 - turn R - to Pul-e area

177.2 - stop turn to left

177.65 - stop traffic clear
1. Examined on March 29, 1974 in company with Mr. Franklin T. Trask and Mr. L. B. Fair.

2. Property - Location: 1ST Standard Mining Claim
 Sec. 27, T43S, R110E, in Township 43 North, Range 110 East,
 Nevada County, Nevada.
 Distance - 3.9 miles from city of Austin, at roadside
 By - Taking Highway 8A (Pecos-Pepin Road) to 2.71
 Miles north of junction with U.S. 50. Thence
 NE - 1/4 mile (road to Sheep Camp and Hotel Creek Road)
 for 5.7 miles to cattle guard at Sheep Camp Wash -
 thence 6.5 miles up Iowa Creek Road.

3. Examination indicates a rapid accumulation
 of silt that makes the Claim - (See Shale)
 Shale/crystalline and very pneumatoly - could be
 a fault that - no fault was cut. Be taken
 and - the fault is Swan Creek fault -
 also found in the trip - the fault was as
 a fault near - for a fault sheared.

4. Country rock - tuff once appears to be hard
 and solid metamorphic - probably underlain by
 chert - locally more carbonaceous. These
 appear to be mixed with mostly calcite
 +/- a part of chlorite. Minor amounts.
 Minor veins and white quartz veins. Green flecks,
 thin and hard on percussion. Because
 easily mappable and resolvable in a metallogenic
 problem.

These appear to be Si12 parallel
Structures are quite good. Structures
are discontinuous. To fault and generalized
Trucks have a maximum output for every variety of fruit. Some 15 to 20 per cent are-
ning just pans. The 02*/5% were a large
group of small and medium ones. Ackerman - Stab. may
from 1 to 3 per cent of the

Structure, stroke for 1000N or 1000F - water movies -
becomes a frame, evaluation.

one by one area - vast, scattered near
get chickens for Brav - proceeded by what a
general - even about 100 feet - credit -
for - incredible - pruss must. For key.
500 to 600 feet - poor quality. Which may
seen near cats - set each year not observed.
District. - Mitchell suggests - a socking
Great Sheet height.

Cecina -- Nevada.

29/7/4
LAWA CREEK
FLUORSPAR AREA
Lander Co., Nevada

An Analysis
Based on
RAPID RECONNAISSANCE

David LeCount Evans
Consulting Geologist

Reno, Nevada
April 7, 1974
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>1</td>
</tr>
<tr>
<td>PROCEDURES</td>
<td>1</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>2</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>3</td>
</tr>
<tr>
<td>GENERAL AND LIMITING CONDITIONS</td>
<td>4</td>
</tr>
<tr>
<td>LEGAL TITLES</td>
<td></td>
</tr>
<tr>
<td>SCS Properties</td>
<td>4</td>
</tr>
<tr>
<td>Blazer Block</td>
<td>4</td>
</tr>
<tr>
<td>Nevada Fluorspar</td>
<td>5</td>
</tr>
<tr>
<td>HISTORY OF PROPERTIES</td>
<td></td>
</tr>
<tr>
<td>Nevada Fluorspar</td>
<td>5</td>
</tr>
<tr>
<td>Blazer</td>
<td>6</td>
</tr>
<tr>
<td>SCS</td>
<td>6</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>7</td>
</tr>
<tr>
<td>SCS</td>
<td>7</td>
</tr>
<tr>
<td>Nevada Fluorspar</td>
<td>8</td>
</tr>
<tr>
<td>Blazer</td>
<td>10</td>
</tr>
<tr>
<td>SAMPLES</td>
<td></td>
</tr>
<tr>
<td>Blazer</td>
<td>11</td>
</tr>
<tr>
<td>SCS</td>
<td>12</td>
</tr>
<tr>
<td>Nevada Fluorspar</td>
<td>12</td>
</tr>
<tr>
<td>ONE RESERVES</td>
<td></td>
</tr>
<tr>
<td>SCS</td>
<td>12</td>
</tr>
<tr>
<td>Blazer</td>
<td>12</td>
</tr>
<tr>
<td>Nevada Fluorspar</td>
<td>13</td>
</tr>
<tr>
<td>RECAPITULATION</td>
<td>13</td>
</tr>
</tbody>
</table>
NEVADA FLUORSPAR PRINCIPLE PROSPECT AREAS
FOREWORD:

This study represents the first of a series of planned examinations, intended to evaluate the fluorspar potential, if any, for Nevada. Reference is made to the attached "Principle Prospect Areas", showing those districts with better than average possibilities. The six include Iowa Canyon, Kaiser, Ione (Grantsville), Quin River Range, Fluorine District (at Beatty) and Wells Cargo. Since Kaiser, after shipping 150,000 tons, appears to be worked out, and Fluorine still producing, with total production exceeding 200,000 tons, the four remaining districts represent the full scope of future intentions.

Choice of Iowa Creek area, at this time, was dictated by the submittal of the old Iowa Canyon mine, shown on the attached Iowa Creek Area Prospects map as the SCS block. Growth from a one mine study to a more comprehensive analysis must be attributed to the fact that the writer visited the Blazer pit in 1971, and thought well of its possibilities.

Four field days have been required for reconnaissance study and travel, and, two office days have been needed for drafting, organization, and written analysis.

PROCEDURES

1. Regarding the SCS block, the writer, accompanied by Mr. Conrad Stewart, one of the partners, covered that northwestern portion
of the block which showed mineralization.

2. In two additional days the Blazer pit was accurately located, and from the Blazer the Nevada Fluorspar bench and structure was tied in, on both ends, by Brunton-pacing traverse.

3. Values for the Blazer pit were acquired from operators in 1974. No samples were cut from the Nevada Fluorspar brecciation. It was believed that fluorite values for the Blazer deposit, transported from the Nevada Fluorspar, would provide a better answer than a few random samples from brecciation.

CONCLUSIONS

1. The SCS property, with narrow widths of mineralization along discontinuous structures, is without economic value. One area might justify some drilling.

2. The Blazer deposit, with indicated 25.8% CaF₂ content and high silica is questionable. 437,500 tons are estimated. Testing has suggested that up-grading might achieve acid-grade.

3. The Nevada Fluorspar open cut has been mined "clean" except for a few thousand tons. Considering terrane, some 924,000 tons of mineralized breccia combination might be available to surface mining, for the 200 vertical feet beneath cut. Such would have to be mined from about 3,500,000 tons by selective mining and sorting. Value of the 924,000 tons might approach 26% CaF₂.

4. All mineralization would require up-grading near mine-site.

5. Ownership and relationships have been complicated; arriving at an equitable lease and option would present problems.

6. Initial drilling to develop Nevada Fluorspar mineralization down to 200 feet would exceed $75,000.
RECOMMENDATIONS:

We recommend a sequence as follows:

1. Discuss matters with owners of The Blazer and Nevada Fluorspar properties, to determine if an equitable lease and option can be reached.

2. Arrange for expert legal assistance to be assured of clean titles.

3. Take bulk samples from both deposits and have materials tested by a reputable metallurgical laboratory.

4. Map the area in detail.

5. By contract drill a flat to slightly inclined hole (as shown on attached section D-D') on five sections, evenly spaced along the indicated 1000 feet of strike length.

LOCATIONS:

The SCS property lies in section 6, Township 22 North, Range 45 East. Blazer and Nevada Fluorspar fall in section 26, Township 23 North, Range 44 East. Both are in Lander County, Nevada.

For both areas, proceed north on Highway 8-A to a point 27 miles from U.S. Highway 50, to marked Iowa Canyon-Hall Creek road. Follow east for two miles to a divergence of roads.

To reach the SCS property take the right branch to the Iowa Canyon Ranch gate (1.7 miles), thence 6.5 miles up Canyon Creek, passing the reservoir and reaching the center of the claims.

To approach the Blazer pit, take the left branch, proceeding 3.3 miles to a good gravel road on the right. Follow this road 1.8 miles to the base of the Blazer open pit.

Properties are about 40 miles from Austin, Nevada.
GENERAL AND LIMITING CONDITIONS:

Access: Good gravel and dirt roads connect with a paved highway. Distances are 10.2 miles for the SCS and 7.1 miles for the Blazer pit.

Power: There is no power at the property, and distance from the nearest line has not been investigated.

Water Supply: Appears probably adequate; Iowa Creek flows throughout the year. Wells to gravels in valleys have been successfully completed.

Terrain: Elevation at SCS is 6600 feet; at Blazer, 6280 feet and at Nevada Fluorspar 6960 feet. Terrain between Blazer and Nevada Fluorspar, though steep, poses no problems and adequate access road does exist.

Climate: Except for an occasional winter snow, a year-round operation would be assured.

Mill Sites Tailings disposal Adequate.

Labor Supply: Available throughout the Austin-Battle Mtn. region.

LEGAL TITLES:

SCS Property: Consisting of 17 contiguous standard mining claims, acreage is owned by Messrs. Stanley Kinder and Thomas Keene, both of Sierra Chemical Company (1490 East 2nd Street, Reno, Nevada) and Mr. Conrad Stewart, Manager of Austin Mine and Milling Company, of Austin, Nevada.

Blazer Block: Consisting of ten contiguous standard mining claims, discovery was made by Mr. Vincent Sanchez of Gardnerville, Nevada, in late 1970. With Mr. Bert Wade of Lake Tahoe, the area was covered by a placer claim.

On January 2, 1972, C. A. Roark, an executive of the Arrowhead Silica Company, took a lease and option on the property ($100,000 with payments at $1,000 per month), and immediately subleased to Eastern Jewish capital. The group exists under the title, Iowa Fluorspar Corporation.
Blazer Block:

Arrowshead Silica, producers of foundry sand in Winnemucca, arranged for a lease on 50% of the block in 1971. Seven holes were drilled at the time.

In late 1972, Arrowshead bought out Sanchez for cash and a reduced figure (possibly about $25,000), and three months later purchased the interest of Wade, for less than the original $50,000.

Arrowhead, acquiring the ownership, assumed the lease and option held by the Iowa Fluorspar Corporation. Since 1972 Arrowhead has brought legal action against Iowa Corporation for reasons unknown.

Arrowhead Silica belongs to the Manley Brothers. Address is 1050 Ogden Dunes, Portage, Indiana, 46362.

Nevada Fluorspar:

Consisting of ten contiguous mining claims, adjoining Blazer claims, on the south, Nevada Fluorspar Corporation consists of Frank L. Sanders, President; Minora R. Sanders, Secretary; W.E. Stokes, an attorney, and S.P. Chalk, a certified public accountant. All are of Carson City, Nevada.

W.E. Stokes address is 400 West Ann, Carson City, Nevada.

S.P. Chalk's address is 711 East Washington, Carson City, Nevada.

Sanders address is not listed.

On April 6, 1973 an E. A. Elevatorski, located a claim, directly on structure in the open cut. His address is P.O. Box 4870, Irving, California, 92664. His Que Obra claim is invalid and a reflection of ignorance.

HISTORY OF PROPERTIES:

Nevada Fluorspar:

A. Mr. Miltonberger and partner, Sanders, staked locations in 1957. Property was leased to a Mr. O. R. Williams, entrepreneur, in 1968.
Williams negotiated a contract with Kaiser, stipulating 300 tons per day of 65% effective CaF₂. 40 tons were delivered to Caliente; grade was 10%. 1240 tons of like grade was then shipped to Gabbs, for treatment. According to Vincent Sanchez who was mining for Williams, material was taken across the full width without any selective mining. The 10% is in the same ball-park with an estimate of about 6%, worked out from a different approach.

The operation, after these shipments, then collapsed.

Blazer Group:

Discovery was made in late 1970, when mineralization was cut while dozing a road. After the Roark lease and option, seven holes were drilled on the property in July 1971. Ores were also being delivered to the Morris mill at Austin. 3000 tons were stockpiled at mill-site, at the time of our late July visit.

Sanchez reports that first milling provided a shipment of acid-grade which was delivered to Sierra Chemical. Results after that time did not meet acid grade.

In August 1972 Arrowhead leased the Morris (Bullion Monarch) mill for $10,000 per month, and improved the mill, at a cost of $100,000. Additional drilling was completed and, as reported, reserves were estimated at 500,000 tons, with grade of 65% CaF₂. This, of course, is rumor. The operation was closed down by storms in December of the same year and there appears to have been no mining since then.

SCS Group

Date of discovery is not known. In 1961 it was reported that at an earlier date 396 tons of 61% CaF₂ went to the Kaiser mill at Fallon.

Prior to 1961, Federal DMEA funds were provided the owners (or Kaiser) for development. Results are unknown. Present owners located new claims.
on August 3 and 4, 1971.

GEOLOGY

Regional Summary

Distance from the center of SCS to Blazer’s center of mineralization is 3 1/2 miles. Width of trend of interest is about 2000 feet. Geological generalities for this regional area of interest are as follows:

1. Older rocks have been invaded by an acid-granitic intrusive. The granite, using potassium-Argon dating, provides an age of 65 million years before present, which amounts to late Cretaceous or early Tertiary. Rocks intruded are, therefore probably Mesozoic or Paleozoic.

2. Quartz-calcite-fluorite mineralization, where best observed on the Nevada Fluorspar property, follows a sharp structure in the granite; it is, therefore, possibly close to that age and related to the intrusive period.

3. Granite is flanked by gently-inclined, thinly-bedded, unaltered shales and related clastics. The area, too, has its younger volcanic flows. Absolute dating, in that area closest to Blazer and Nevada Fluorspar, provides a 25,000,000 years B.P., which is Miocene, for these lavas.

4. Mineralization at the Nevada Fluorspar and SCS properties is in place. Mineralization at Blazer suggests that it is an erosional and transported product.

5. Mineralized structures strike persistently from N30E to N45E, discounting a few small local variations.

SCS Property:

Earlier rocks consist of altered and discolored masses, possibly clastics and limestones, accompanied by occasional darker igneous
materials which could be basic flows or, conceivably, intrusives, related to a hidden-at-depth intrusive and a source for the mineralization, this hurried look-see, also, suggests that mineralization is related to finely crystalline, white aplite or alaskite.

Mineralization, consisting of quartz (massive to vuggy and with much comb structure) green fluorite and calcite, occurs in tenuous, weak structure, striking from N30E to N40E. Six possible trends, each parallel to the others except for local deviations, cross the upper northwest half of the block. The overall length of trends approaches 2000 feet, but none is continuous, and the largest segment amounts to only about 300 feet, with others in the 100 feet or less category.

Widths of structure are damming. Note the largest, on map, which has 15 feet, but of the 15 feet, 7 feet and perhaps less is fluorite-bearing. Otherwise throughout the segments widths vary from 1 to 12 inches.

Of continued interest is a zone, 1200 feet east of the main shafts. In a saddle surface is covered with an abundance of white vugular and honeycombed quartz; width of show is about 150 feet, and strike to the southeast extends perhaps 500 feet. Because of no apparent fluorite, the zone has not been taken seriously. In the event a program is ever planned for the three property areas, this zone should be tested by diamond drilling; and, as in the case of Blazer and Nevada Fluorspar, the SCS property deserves detailed geological study.

Nevada Fluorspar:

With reference to Section D-D', structure and mineralization occur at the center of a granitic intrusive. The granite has some
900 feet of width, and was mapped for 2000 feet on strike, with the southwest end still open. Granite on the hanging wall side of the mineralized structure is, locally, intensely silicified; the intrusive varies from normal crystallization to finely crystalline aplite. The mass is flanked on the northwest by thinly bedded, fairly fresh shales; shale dips are slightly inclined; these sediments are believed to be post-granite.

Mineralization is controlled by a very sharp structure. In the pit, material left on the hanging wall and not mined, consists of a beautifully developed breccia, with openings between angular fragments filled with coarsely crystalline, lavender to deep purplish-red fluorite, vugular quartz and calcite (barite is suspect); banding is quite common and suggests a rhythmic process of deposition. The unmined zone has an estimated true thickness of 20 feet. Width of mining, as indicated by bench width is close to 170 feet. This is not to suggest that the entire width was similar to the 20 feet left behind; but it does indicate that streaks of similar mineralization could have been erratically distributed throughout the 170 feet. Dip of structure is 57° to the northwest, and strike is N 45° E.

The approach-road, on the north and about 100 feet below pit level, for 250 feet, opened up surface detritus, all fluor spar bearing. Across the arroyo, and another 500 feet southwest, an old road cut, in considerable quantity and for 200 feet cut through surface talus, also fluor spar-bearing. In the area of this last observation, and below road, fluor spar mineralization has been exposed by a series of old cuts.

On the basis of the above, structure followed to date suggests 200 feet of possible width and at least 1000 feet of strike length.
Massive mineralization across the full width is not proposed. This analysis does picture, however, a zone of such dimension, with higher grade mineralization, perhaps 20 to 30 feet thick along the controlling structure, and the remainder of the true thickness of 170 feet with lesser streaks and pockets of like-mineralization, in an overall crushed but mostly barren structural zone.

Selective mining, with sorting, must be accepted if one were to mine the full width.

With the mineralization open on the southwest end, additional length and tonnage appears to be a probability.

Blazer Deposit

The clean, clear, purplish or green fluor spar of the other two properties is not a characteristic of the Blazer.

Material, consisting of a brown to buff, iron-stained, soft, soily mass, occupies a slightly-inclined, elliptical surface area, with average short axis of about 275 feet and long axis of 300 feet, open on the northeast end. On the basis of 1971 drill holes, thickness amounts to 80 feet.

The material rests atop the older pre-granite rocks and on granite. The older rocks are as described for the SGS area; there is also black, altered and disrupted limestone, southwest of the soily deposit, and against the contact with later granite.

Considering the position of the arroyo, leading down from the Nevada Fluorspar area, where it cuts across and through the projection of the mineralized structure, and because of the condition of the fluor spar-bearing material, this analysis suggests that Blazer materials have been transported, for a distance of 3000 feet.
Whereas, economic possibilities have, in all thinking, been limited to fluorspar, it has been reported that Blazer material carries gold and silver in fair quantity. The rumor may be for promotional reasons, and will be discounted until it can be checked.

SAMPLES

Except for one sample of stock-piled Blazer 'ore', the writer has taken no samples.

Blazer

Seven holes were drilled by operators in June and July, 1971, with depths of from 35 to 104 feet. In personal files is a complete record of analyses. Results were very good, but are not included because the writer does not know how the samples were taken and does not trust the local assaying.

Listed below are analyses of the Blazer mine-product, stock-piled at the Austin mill in late July, 1971. The John Butler group reflects assaying by the Nevada Bureau of Mines. The Evans sample was assayed by Martin Quist of Metallurgical Laboratories (San Francisco) and checked by an assayer in Mine, considered reliable.

<table>
<thead>
<tr>
<th>Date</th>
<th>Compound</th>
<th>Heads</th>
<th>Concentrate</th>
<th>Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butler 6-1-71</td>
<td>Fluorite</td>
<td>24.03</td>
<td>90.36</td>
<td>5.78</td>
</tr>
<tr>
<td></td>
<td>Silica</td>
<td>56.00</td>
<td>6.72</td>
<td>76.00</td>
</tr>
<tr>
<td></td>
<td>Calc.Carb.</td>
<td>19.92</td>
<td>2.92</td>
<td>13.22</td>
</tr>
<tr>
<td>Butler 6-4-71</td>
<td>Fluorite</td>
<td>27.68</td>
<td>39.36</td>
<td>5.72</td>
</tr>
<tr>
<td></td>
<td>Silica</td>
<td>53.72</td>
<td>7.60</td>
<td>81.20</td>
</tr>
<tr>
<td></td>
<td>Calc.Carb.</td>
<td>18.60</td>
<td>3.04</td>
<td>13.08</td>
</tr>
<tr>
<td>Evans 7-29-71</td>
<td>Fluorite</td>
<td>27.43 (Quist)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Evans 7-29-71 | Silica | 48.54 (Mina Lab) | |}

John Butler estimated that a 97.96% concentrate required grinding to minus 200 mesh.
Not available are the records for Blazer 1972 drilling.

SCS Property:

No samples were taken by the writer. The Nevada Bureau of Mines reports that ore averaged 50% CaF₂ and 20% SiO₂.

Nevada Fluorspar

No samples were taken and no records are available.

The 1280 tons, shipped from pit, a product of mixing throughout the full pit width, are reported to have assayed 10% CaF₂.

Assuming that the transportation approach is correct and by taking the cross-section of the arroyo and 200 feet of width for the structure, 1,666,667 tons were removed by stream cutting. The 437,500 tons of Blazer deposit were concentrated from 1,666,667 tons of section. With the specific gravity of mineralization at about 3.0 and that of granite at 2.7, concentration through natural processes remains a possibility.

The factor of 26% we then borrow for the percentage of CaF₂, SiO₂ and Ca₃O₃ in the Nevada Fluorspar zone. Using the grade of 26% for CaF₂, as representative for 26% of the mass, and "nil" for the 74% of waste, the full Nevada Fluorspar unit would average 6% CaF₂.

ORE RESERVES

SCS Property

The property is without appreciable ore reserves.

Blazer:

We estimate 437,500 tons of material, which cannot be called ore since it has, to date, not been economic to mine and mill; values are indicated at 25.8% CaF₂, 34.8% SiO₂ and 10.4% CaCO₃. Owners estimate 500,000 tons at 65% CaF₂ on the basis of 1972 drilling.
Nevada Fluorspar:

Target Tonnage

Considering 1000 feet of length and Cross Section D-D', and the 26% factor, worked out under 'Samples', 924,000 tons of mineralization is indicated. We assume the 25.8% CaF₂ as a possible grade for those plums and richer centers and/or veins which would only be available through very selective mining.

RECAPITULATION:

1. In view of the metallurgical difficulties, to date, experienced by Bazer mined tonnages, the property might be condemned. But the estimated tonnage is great, material might have bi-values, and mining costs should be low. Continued metallurgical testing, cost analyses, et cetera, are considered thoroughly in order.

2. Concerning Nevada Fluorspar's deposit, the size of structure is, obviously, impressive, as is the tonnage of mineralization that might be recovered from the 200 foot interval below the abandoned bench. Too, not considered in the above text is the possibility of mineralization to additional depth below the minus 200.

An average grade of between 6 and 10% for the 200 feet of width, however, is discouraging. Several approaches might be considered, i.e:

a) mine as selectively as possible and up-grade the ore by slow and costly hand sorting; the procedure would be costly and probably uneconomic.

b) mine the entire mass without selection, coarsely crushing all tonnage at the mine and delivering the crushed product to a heavy-media plant, near mine-site, via conveyor; and then
delivering partially up-graded results to a final
plant, up-grading ores from both properties.
e) forget the full 200 feet of width and assume that
the better grade, observed along the sharp N45E structure
with 57 degree dip, might continue for the full 1000 feet
of length. Such would provide 400,000 tons, which could
be mined via an underground tunnel, possibly using shrinking
methods.

3. In the event of a program, the SCS large quartz area might
be tested; if not, no further action should be considered.

4. Silica, fluorspar, and calcite are so intimately mixed that
up-grading in the mine area cannot be avoided. This will add, appreciably
to capital costs.

5. The area and properties have enough in their favor to justify
further consideration. This is the occasional property (and there are
very few) that cannot be categorically condemned at first, or second,
sight.

Respectfully submitted,

David LeCount Evans
Consulting Geologist

April 7, 1974
Reno, Nevada.
NEVADA FLUORSPAR
PRINCIPLE
PROSPECT AREAS
BLAZER-MILTONBERGER
PROSPECT
IOWA CREEK AREA
LANDER CO., NEVADA
FLUORSPAR
SECTION D-D'
1"=400'

DAVID LACOURT EVANS
CONS. GEOLOGIST
RENO, NEVADA
APRIL 1, 1974
Yezo Royal

DAVID L. EVANS

RETOUR

SENDER INSTRUCTIONS

Print in the space below your name, address, including ZIP Code.

Postmark of Delivering Office

OF POSTAGE $300

U.S. Postal Service

OFFICIAL BUSINESS

OF POSTAGE $300

USE TO AVOID PAYMENT

PENALTY FOR PRIVATE USE

1974

USPS 12

Postmark of Delivering Office

1972

12-16-882-73
SECTION D-D
Flurospar
LAUNDRY CO., NEVADA
IOWA CREEK AREA
PROSPECT
BLAZER-MILLIONBERGER

5000
4000
3000
2000
1000
0

Proposed B.D. holes
Proposed Apparatus
Metaplectic veins
Teppe Shales
Zone and Mine
Flurospar

Blazer deposit
Transported from Millionberger
Metaplectic
SECTION D-D

Fluorspar Prospect
Lander Co., Nevada
Rova Creek Area

Blazer-Miltonberger

Proposed

Blazer Deposit

From Miltonberger

Miltonberger

Upper Zones

Middle Zones

Lower Zones

Deposited

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

0
Del Peterson
160 E, 4th
670 E, 24
Winnemucca

623-2958
623-3980

Vince Sanchez

Amadorville, California
Mr. John B. Elliott

138-3108

Owner

Taco 2241

Rent 1751

Tel: 23 N -

S 89801

Erb, 1984

411 East A

7th Floor Bingham